Detection of Cryptosporidium spp and other intestinal parasites in children with acute diarrhea and severe dehydration in Rio de Janeiro

Filipe Anibal Carvalho-Costa, Alessandra Queiroga Gonçalves, Sandra Laranjeira Lassance, Carla Pontes de Albuquerque, José Paulo Gagliardi Leite and Márcio Neves Bóia

ABSTRACT

The objective of the present study was to estimate the frequency of infection by Cryptosporidium spp and other intestinal parasites in dehydrated children with gastroenteritis who were admitted to a pediatric hospital. Stool examinations from 218 children were performed. Cryptosporidium spp was identified in eighteen out of 193 stool samples (9.3%) subjected to safranin-methylene blue staining. Giardia lamblia was detected in ten out of 213 (4.7%) samples examined via the direct or Ritchie methods. Other parasites identified were Ascaris lumbricoides (4.2%), Blastocystis hominis (1.4%), Entamoeba coli (0.9%), Entamoeba histolytica/Entamoeba dispar (0.5%), Endolimax nana (0.5%), Trichuris trichiura (0.5%) and Enterobius vermicularis (0.5%).


In Brazil, up to 17% of cases of childhood gastroenteritis have been shown to be associated with cryptosporidiosis. Other intestinal parasites, such as Giardia lamblia, Entamoeba histolytica and Blastocystis hominis are associated with gastroenteritis in children.

The purpose of this study was to estimate the frequency of infection due to Cryptosporidium spp and other intestinal parasites, among dehydrated children with acute diarrhea admitted for venous fluid therapy in a pediatric hospital in Rio de Janeiro, Brazil.
The survey was carried out from February 2005 to February 2006 and involved 218 children aged six to 60 months (mean = 15.5 ± 11.8 months) in Salles Netto Municipal Hospital, a pediatric hospital situated downtown in Rio de Janeiro. The children in this study had low socioeconomic status and the majority lived in urban slums. All subjects presented acute diarrhea and were admitted for venous fluid therapy. Stool samples were collected in plastic fecal collectors without preservatives. After direct examination (n=192), a preservative (SAF - sodium acetate, acetic acid and formalin) was added to the sample, in order to perform the Ritchie3 staining method. The data were processed in EpiInfo 2000 v.3.3.2 and presented as descriptive statistics. This study was approved by the Research Ethics Committee of the Evandro Chagas Research Institute, Oswaldo Cruz Foundation. The children were included after informed consent was given by their parents or the adult responsible for them.

Out of 218 samples, 40 (18.3%) were positive for any parasite. Table 1 shows that Cryptosporidium spp were identified in eighteen out of 193 (9.3%) stool samples subjected to the safranin-methylene blue method. Giardia lambia was detected in ten out of 213 (4.7%) samples examined through direct or Ritchie methods. Other parasites identified were Ascaris lumbricoides (4.2%), Blastocystis hominis (1.4%), Entamoeba coli (0.9%), Entamoeba histolytica/Entamoeba dispar (0.5%), Endolimax nana (0.5%), Trichuris trichiura (0.5%) and Enterobius vermicularis (0.5%).

Table 1 - Frequency of detection of intestinal parasites by age groups in children with acute diarrhea in Rio de Janeiro.

<table>
<thead>
<tr>
<th>Parasites</th>
<th>Age groups (months)</th>
<th>0 - 6</th>
<th>7 - 12</th>
<th>13 - 24</th>
<th>25 - 60</th>
<th>Not defined</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptosporidium spp.*</td>
<td></td>
<td>2/33 (6.1)</td>
<td>6/51 (10.9)</td>
<td>6/59 (10.2)</td>
<td>3/30 (10)</td>
<td>1/16 (6.5)</td>
<td>18/195 (9.5)</td>
</tr>
<tr>
<td>Giardia lambia</td>
<td></td>
<td>1/39 (2.6)</td>
<td>4/61 (6.6)</td>
<td>-</td>
<td>4/53 (12.1)</td>
<td>1/19 (5.3)</td>
<td>10/213 (4.7)</td>
</tr>
<tr>
<td>Blastocystis hominis</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3/53 (9)</td>
<td>-</td>
<td>3/213 (1.4)</td>
</tr>
<tr>
<td>Entamoeba coli</td>
<td></td>
<td>-</td>
<td>1/161 (1.6)</td>
<td>1/53 (3)</td>
<td>-</td>
<td>2/213 (0.9)</td>
<td></td>
</tr>
<tr>
<td>E. histolytica/E. dispar</td>
<td></td>
<td>-</td>
<td>1/161 (1.6)</td>
<td>1/53 (3)</td>
<td>-</td>
<td>1/213 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Endolimax nana</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1/53 (3)</td>
<td>-</td>
<td>1/213 (0.5)</td>
</tr>
<tr>
<td>Ascaris lumbricoides</td>
<td></td>
<td>3/61 (4.9)</td>
<td>5/61 (8.2)</td>
<td>1/53 (3)</td>
<td>-</td>
<td>9/213 (4.2)</td>
<td></td>
</tr>
<tr>
<td>Trichuris trichiura</td>
<td></td>
<td>-</td>
<td>1/161 (1.6)</td>
<td>-</td>
<td>-</td>
<td>1/213 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Enterobius vermicularis</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1/19 (5.3)</td>
<td>1/213 (0.5)</td>
</tr>
<tr>
<td>E. Entamoeba</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The present survey showed that Cryptosporidium spp was frequently detected in children admitted with acute diarrhea, among the study population.

Cryptosporidiosis has social and environmental determinants and is more prevalent in unsanitary conditions. Oocysts are hardy, chlorine-resistant and have tiny size. Also, their zoonotic potential contributes to the high transmissibility7 8 9. Cryptosporidium spp has an interaction with malnutrition and development of chronic diarrhea2 and effective treatment is sometimes needed.

In Brazil, Gennari-Cardoso studied 94 children aged zero to twelve years in Uberlândia, State of Minas Gerais, Brazil, and detected Cryptosporidium spp in 4.3% of them using the safranin-methylene blue method6. Mangini et al10 detected Cryptosporidium spp parasitism in 17.4% of children aged 1 to 48 months with diarrhea in São Paulo over a three-year period.

Orlandi11 identified Giardia lambia in 19 out of 130 cases of acute diarrhea in Rondônia and four out of 43 age-matched controls (p = 0.37). This pathogen was detected in four out of 94 children with acute diarrhea in Santa Catarina by Schnack12, in a study that surprisingly identified Cryptosporidium spp in 80 (85.1%) out of 94 stool samples, using an ELISA coproantigen detection method.

Although Blastocystis hominis has been associated with gastroenteritis in children, and has been detected in children with acute diarrhea in Jordan13, its real significance as an etiological agent in diarrheal disease has been discussed1. Brazilian studies on blastocystosis in immunocompetent children have been focusing on parasitological prevalence surveys rather than on Blastocystis hominis detection in diarrheic feces2 11.

We argue that better comprehension of the etiological profile of acute diarrhea in this study population is needed, and suggest that a surveillance system should be implemented for enteropathogen detection, including viruses and bacteria, performed in selected pediatric hospitals.

ACKNOWLEDGEMENTS

We thank Dr. José Carlos dos S. Teixeira and all staff at Hospital Municipal Salles Netto and Enila Marcela do Nascimento from Hospital Municipal Souza Aguiar, for essential support during sample collection. To Laudecir Couto dos Santos for technical support.

REFERENCES


