American tripanosomiasis: a study on the prevalence of Trypanosoma cruzi and Trypanosoma cruzi-like organisms in wild rodents in San Luis province, Argentina

Tripanosomiasis americana: um estudo sobre a prevalência do Trypanosoma cruzi e Trypanosoma cruzi-like em roedores silvestres da provincia de San Luis, Argentina

Ana María Brigada1,2, Roberto Doña2,3, Enrique Caviedes-Vidal1,2,4, Edgardo Moretti5 and Beatriz Basso5,6

ABSTRACT

Introduction: Chagas disease is caused by Trypanosoma cruzi. Wild and perianthropic mammals maintain the infection/transmission cycle, both in their natural habitat and in the peridomestic area. The aim of this paper was to present the results from a study on wild rodents in the central and northern regions of San Luis province, Argentina, in order to evaluate the prevalence of this infection. Methods: Sherman traps were set up in capture areas located between latitudes 32º and 33º S, and longitudes 65º and 66º W. The captured rodents were taxonomically identified and hemoflagellates were isolated. Morphological, biometric and molecular studies and in vitro cultures were performed. Infection of laboratory animals and histological examination of the cardiac muscle and inoculation area were also carried out. Parasites were detected in circulating blood in Calomys musculinus, Graomys griseoflavus, Phyllotis darwini and Akodon molinae. The parasites were identified using biological criteria. Molecular PCR studies were performed on some isolates, which confirmed and inoculation area were also carried out. Parasites were detected in circulating blood in Calomys musculinus, Graomys griseoflavus, Phyllotis darwini and Akodon molinae. The parasites were identified using biological criteria. Molecular PCR studies were performed on some isolates, which confirmed the characterization of these hemoflagellates as Trypanosoma cruzi. Results and Conclusions: Forty-four percent of the 25 isolates were identified as Trypanosoma cruzi-like. These findings provide evidence that wild rats infected with Trypanosoma cruzi and Trypanosoma cruzi-like organisms are important in areas of low endemicity.

RESUMO

1. Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina. 2. Laboratorio de Biología "Prof. E. Caviedes Codella", Facultad de Ciencias Humanas, Universidad Nacional de San Luis, San Luis, Argentina. 3. Área de Psicobiología, Facultad de Ciencias Humanas, Universidad Nacional de San Luis, San Luis, Argentina. 4. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL) CONICET, San Luis, Argentina. 5. Servicio Nacional del Chagas, Córdoba, Argentina. 6. Facultad de Medicina. Universidad Nacional de Córdoba, Córdoba, Argentina. Address to: Dra. Ana Maria Brigada. Depart. de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina, Chacabuco 917, 5700 San Luis, Argentina. Tel: 54 2652 42-4027 int 120 e-mail: abrigada@unsld.edu.ar; ana Brigada@gmail.com Received in 02/12/2008 Accepted in 16/03/2010

INTRODUCTION

Chagas disease is widespread in Latin America and is caused by the protozoan parasite Trypanosoma cruzi. Hematophagous Triatominae (Hemiptera: Reduviidae) insects are the major vector of the disease. Wild and perianthropic mammals maintain the infection/transmission cycle in their natural habitat as well as in the peridomestic area1,2.

Infection by trypanosomes depends mainly on the convergence of a given time and place, the etiological agent, the vector insect and the host animal, which are the links that comprise the wild cycle of this zoonosis. The increasing interaction between man and habitats of wild fauna favors the developmental cycle of infection, thus transmitting the parasitosis to the human environment.

Chagas disease is one of the main health problems in Latin America. However, its control is complex since the parasite can survive in the bloodstream of different vertebrate hosts and Triatominae vectors3,4.

The role of wild animals as reservoirs and the flow of trypanosomes across different habitats heighten the alert regarding the epidemic implications of this disease, and this directly affects the quality of life of the Latin American population. Solis Franco et al5 emphasized the importance of rodents in maintaining the wild cycle of this disease. Trypanosoma cruzi has been reported to be present in more than 200 mammal species6-10, including some rodents dwelling in Argentina, such as Calomys musculinus11, Akodon dolores12, Calomys laucha13, Phyllotis griseoflavus14 and Octodon similis15.

The aim of this work was to investigate whether wild rodents in the central and northern regions of San Luis province, Argentina (an area of low endemicity for Chagas disease) were infected with Trypanosoma cruzi, along with the prevalence of this infection. Statistical data provided by the San Luis Health Ministry show that the prevalence of this infection in blood banks in this province has reached around 7% over the last few years.
Gg

Three to ten-day-old Balb/c albino mice (n = 300) were infected subcutaneously with blood taken from wild animals, containing between 3 and 5 x 10^6 trypanosomes/mL. Parasitemia was controlled starting on the fifth day after culturing.

Infection of laboratory animals

A search for amastigotes was carried out in histological heart sections and in the inoculation area, stained with hematoxylin-eosin.

Polymerase chain reaction

The polymerase chain reaction was carried out on trypanosomes isolated from Akodon molinae was carried out. These parasites were analyzed by amplifying the DNA of the parasite using oligonucleotides # 121 and # 122, in accordance with the technique described by Winckler et al.19. These oligonucleotides were designed to amplify 330 bp DNA fragments from regions of the parasite kinetoplastid minicircles (k-DNA).

Oligonucleotide

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Nucleotide sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td># 121 (5’→3’)</td>
<td>AAA TAA TGT ACG GGT GAG ATG CAT GA</td>
</tr>
<tr>
<td># 122 (5’→3’)</td>
<td>GCT TCG ATT GGG GTT GGT GTA ATA TA</td>
</tr>
</tbody>
</table>

Briefly, DNA was extracted from the blood of the infected animals, then treated with a lysis buffer (SDS 1%; Tris-HCl 100 mM, pH 8; EDTA 100 mM) using the conventional phenol-chloroform technique, and the final precipitate was resuspended in bidistilled sterile water and stored at -20°C. The reaction was carried out in a final volume of 100 µl, by applying 10 µl of reaction buffer 10X for the Taq polymerase (Tris-HCl 100 mM, pH 8.3; KCl 500 mM); 12 µl of MgCl2 25 mM; 10 µl of a mixture of dNTPs (10 mM of each one); and 10 µl of each Trypanosoma cruzi-specific primer for amplifying and differentiating Trypanosoma cruzi kDNA. Thirty-seven cycles were performed, at between 68°C and 94°C.

Statistical analysis

The parasitemia levels of the different species were contrasted using the percentage of infected animals in each species, and each sampled location, by applying the Wilcoxon matched pairs test20. Only the species that were captured in more than five sampling locations were used.

RESULTS

Parasites were detected in circulating blood in four of the seven species analyzed: Calomys musculinus (Cm) 6.9% (percentage of infected individuals), 8/115 (infected individuals/total captured individuals); Graelmys griseoflavus (Gg) 13.6%, 9/66; Phyllotis darwini (Pd) 18.7%, 3/16; Akodon molinae (Am) 10.2%, 5/49. No significant differences in infection prevalence according to study area were observed.

No circulating parasites were detected in Calomys venustus (n = 7), Calomys laucha (n = 5) and Akodon sp (n = 2).

The criteria proposed by Barreto21 were used for parasite identification. Molecular biology techniques were also performed on some isolates.

Morphological studies

Figure 1 shows the parasites in blood smears from the infected animals. The parasites are C or S-shaped with an undulating membrane, short flagellum, prominent subterminal kinetoplast and well-defined nucleus.

Biometric studies

Table 1 shows the mean values from the biometric studies carried out on the parasites analyzed.

Parasite culture

Animal blood cultured in Senekjie’s culture medium exhibited multiplication of parasites and the characteristic formation of free epimastigotes, starting from the sixth day of culturing (data not shown).
TABLE 1 - Biometrics of the parasites isolated from the different rodent species.

<table>
<thead>
<tr>
<th>Species</th>
<th>FL(µ)a</th>
<th>LC(µ)b</th>
<th>TL(µ)c</th>
<th>PN(µ)d</th>
<th>AN (µ)e</th>
<th>PN/ANf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cm (n = 138)</td>
<td>5.01±0.37</td>
<td>20.03±2.54</td>
<td>25.04±2.51</td>
<td>9.35±0.95</td>
<td>10.68±1.74</td>
<td>0.85±0.20</td>
</tr>
<tr>
<td>Pd (n =30)</td>
<td>5.10±1.0</td>
<td>18.38±2.00</td>
<td>23.60±1.50</td>
<td>8.82±1.40</td>
<td>9.57±1.50</td>
<td>0.94±0.20</td>
</tr>
<tr>
<td>Am (n=36)</td>
<td>5.64±1.55</td>
<td>19.80±1.10</td>
<td>25.52±0.38</td>
<td>10.31±0.32</td>
<td>9.44±0.69</td>
<td>1.10±0.05</td>
</tr>
<tr>
<td>Gg (n =30)</td>
<td>8.21±2.00</td>
<td>18.51±2.20</td>
<td>26.58±2.70</td>
<td>9.68±1.00</td>
<td>8.80±1.50</td>
<td>1.10±0.20</td>
</tr>
</tbody>
</table>

Measurements expressed in micrometers ± 1 standard deviation. aFlagellum length, bBody length, cTotal length, dDistance from the posterior end of body to the center of the nucleus, eDistance from the anterior end of body to the center of the nucleus, fAverage nuclear index.

Inoculation in laboratory animals

On the seventh day, circulating parasites were observed and the morphology was similar to that of *Trypanosoma cruzi*. Moreover, the biometric measurements matched Barreto’s criteria established for this species.

Histological studies

The presence of amastigote pseudocysts was observed through histological examination of heart tissue sections (Figure 2A). Figure 2B shows the various stages of the parasites in Giemsa-stained inoculation areas.
PCR analysis

DNA isolated from parasites in Akodon molinae was used for the PCR reaction using specific primers for Trypanosoma cruzi. Trypanosoma cruzi Tulahuen DNA was used as a positive control. DNA samples of parasites isolated from Akodon molinae showed fragments of sizes similar to the controls (330bp) (Figure 3).

![Image of PCR results](image.png)

Figure 3 - Lane 1 and 2 show the 330 bp fragment amplified for the isolated sample of Akodon molinae. Lane 3 shows the negative control. Lane 4 shows the positive control whereas. Lane 5 shows the molecular weight markers.

DISCUSSION

Several authors have studied rodents as hosts for trypanosomes[10-12,22-14]. Most of these studies had the aim of describing species as trypanosome reservoirs. The present study introduces a horizontal analysis in which various rodent species (Calomys musculinus, Grammys griseoflavus, Phyllotis darwini and Akodon molinae) were found infected with Trypanosoma cruzi or Trypanosoma cruzi-like trypanosomes. These results support the notion that micromammals in general and rodents in particular are important as trypanosome reservoirs.

In accordance with the postulates of Barretto[11], the first factor considered in identifying the trypanosomes was their morphological characterization. This study showed that the morphology of the parasites isolated was similar to Trypanosoma cruzi. In fact, the arrangement of the nuclei and the kinetoplasts of the parasites detected in the animals captured in the Lomas Blancas, Mesilla del Cura, La Bajada, Daniel Donovan and Las Vizcacheras areas matched the morphology of the two blood types described for Trypanosoma cruzi: a very mobile, thin shape with an elongated nucleus, a subterminal kinetoplast and short flagellum; and a thick, slow-moving shape with an oval nucleus and a long, free flagellum[12-13].

The second parameter was the biometric measurements. In a recent study, Martins et al[12] suggested that morphology is an important method for biological characterization of Trypanosoma cruzi. Biometric measurements performed on the blood forms of naturally infected animals confirmed that the parasites isolated from 11 of them were within the range of the mean nuclear index (NA/NP) defined for Trypanosoma cruzi[12]. Moreover, the biometric measurements performed on the trypanosomes obtained from the circulating blood of the Balb/c mice inoculated with blood from field animals showed similar values to those of the respective wild strain.

One interesting observation was that the mortality rate among the laboratory Balb/c mice inoculated with wild strains was very high during the acute phase of the infection. In addition, amastigote forms found in histological sections of cardiac tissue and in the macrophages of the inoculation area of the experimentally infected Balb/c mice were characteristic of the developmental cycle of Trypanosoma cruzi and were one of the fundamental parameters for characterizing the strains[21-25]. The fact that no amastigotes were observed in the naturally infected wild animals was in agreement with previous findings[11-15]. According to Deane[21], the lack of amastigotes may be due to analyzing the wild animals during the chronic phase of the infection, when the tissue forms are scarce. In the areas where the infected wild rodents were captured, no wild triatomines (which would potentially be responsible for wild transmission) were found.

An additional xenodiagnosis performed on some of the experimentally infected wild mice revealed the characteristic metacyclic epimastigote and trypomastigote forms that were observed in the vector (data not shown).

The molecular biological studies performed on the trypanosome isolates from Akodon molinae provided additional data that supported the identification of these hemoflagellates as Trypanosoma cruzi.

Together, the results from this study confirmed that 11 (44%) of the 25 isolates were Trypanosoma cruzi. The other 14 (56%) were classified only as Trypanosoma cruzi-like, in terms of morphology, biometric measurements, similar reservoir use and capture areas, since not all of the studies were performed on them. The presence of Trypanosoma lewisi was discarded because no blood splitting due to this protozoon was observed.

Finally, it is important to state that to our knowledge, this is the first time that the prevalence of Trypanosoma cruzi and Trypanosoma cruzi-like organisms has been reported in wild rodents of seven different populations from the Midwest region of Argentina, inhabiting different phytogeographical regions in an area where 7% of the population is serologically positive for Chagas disease. Moreover, these results confirm that this parasite is widespread in the wild environment, in spite of preventive fumigation efforts, and it maintains an independent cycle that might be influenced by factors that are still unknown and which could influence the human population's health.

ACKNOWLEDGMENTS

The authors dedicate this manuscript to Dr. Enrique Caviedes Codelia on his 10th death anniversary and for his important participation in this research. The authors would also like to thank Mariana Jofre, Antonio Mangione and Maria Eugenia Ciminari for collaborating in the field study, Adriana Garcia and Noemí Rodríguez for their commitment to laboratory work, Fabricio Cid for his support and Mrs Maria Fernanda Garstein for English editing.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.
FINANCIAL SUPPORT

Universidad Nacional de San Luis, Argentina.

REFERENCES

