Advanced megaesophagus (Group III) secondary to vector-borne Chagas disease in a 20-month-old infant

Lactente de um ano e oito meses de idade com megaesôfago (Grupo III) por doença de Chagas adquirida vetorialmente

Anis Rassi1,2, Joffre Marcondes de Rezende1 and Anis Rassi Junior2

ABSTRACT
The authors report the case of a female infant with Group III (or Grade III) megaesophagus secondary to vector-borne Chagas disease, resulting in severe malnutrition that reversed after surgery (Heller technique). The infant was then treated with the antiparasitic drug benzimidazole, and the infection was cured, as demonstrated serologically and parasitologically. After follow-up of several years without evidence of disease, with satisfactory weight and height development, the patient had her first child at age 23, in whom serological tests for Chagas disease yielded negative results. Thirty years after the initial examination, the patient’s electrocardiogram, echocardiogram, and chest radiography remained normal.

Keywords: Infant. Megaesophagus (Grade III). Vector-borne Chagas disease.

CASE REPORT
Female patient (registration number 350/77), white, born on February 9, 1976 in rural Angical (BA) and a resident thereof, attended to on October 20, 1977.

For 4 months the child had difficulty in swallowing solid food of appropriate consistency for her age. As soon as the food was swallowed, the child regurgitated and then cried as if requesting another portion, which was also regurgitated. Concomitantly, she was getting weaker, gradually lost weight, and cried frequently. Occasionally, she could swallow liquids without regurgitating.

Exceptionally, the onset of megaesophagus is even earlier in infants, for example, since it may appear in the congenital form of Chagas disease5-6 and in the vector-borne form of the disease when the diagnosis of the initial period of infection is known6-8.

The precocity of the involvement of the digestive tract can be explained by Koeberle9, who demonstrated that denervation of the Auerbach’s and the Meissner’s plexuses already occurs in the acute phase of the infection and that a 90% denervation results in motor impairment of the organ at the onset of megaesophagus. He expressed this viewpoint in a phrase that has become well known: “The fate of the chagasic patient is defined in the acute phase.”

The case we report is noteworthy for describing the youngest child in the known literature on megaesophagus secondary to the vector-borne form of Chagas disease, as well as for its evolution.

The patient was aged one year and eight months, had Group III megaesophagus, according to the radiological classification of Rezende et al.10, with important manifestations of the condition, and was accompanied by one of the authors (Rassi A) for thirty years.
they were all apparently healthy. The mother underwent an indirect immunofluorescence test for Chagas disease on March 2, 1978, and indirect immunofluorescence, indirect hemagglutination, and ELISA tests for Chagas disease on May 8, 2007, both with negative results. The patient appeared to be chronically suffering, was dehydrated and malnourished, in poor nutritional status (Figure 1A), and weighed 7.5kg (15% deficit). The height was not recorded, and the axillary temperature was 36°C. Her heart rhythm was regular, with a rate persistently above 140 per minute, and her BP was 70/50mmHg. The adipose tissue was greatly reduced, and the skeletal muscles were hypotrophic. The esophagus radiograph showed Grade III megaesophagus (Figure 1B). The chest radiograph showed a normal cardiac area and pleuropulmonary fields. The electrocardiogram showed sinus tachycardia (187bpm).

The patient was admitted to the Hospital of the School of Medicine of the Federal University of Goiás (Goiânia, GO) on October 20, 1977. After receiving parenteral nutrition for correction of nutritional deficits, she underwent surgery (Heller's extramucosal cardiomyotomy) on April 3, 1978. After surgery, she was able to swallow food normally, showing excessive appetite and gaining weight. By May 17, 1978, she already weighed 10kg, with normal adipose tissue and skeletal muscles (Figure 1C). Then she underwent some exams, which showed the following results: the chest radiograph and electrocardiogram were normal, the esophagus radiograph showed a size reduction when compared to the exam conducted prior to the surgery, and the barium enema revealed a slightly elongated sigmoid.

Aiming at the specific treatment of Chagas disease, we outlined the parasite-serological profile of the patient by xenodiagnosis and serological tests (complement fixation and indirect fluorescent antibody tests) (Tables 1 and 2, which also include the same tests conducted at the first consultation).

She was treated with benznidazole at a dose of 10mg/kg/day, twice daily (12/12h) for 60 days. As a side effect, she had generalized urticaria, predominantly on the trunk, which lasted for only three days and was treated with a commercial product made of dexchlorpheniramine and betamethasone.

The patient was discharged on July 1, 1978. She remained in Goiânia until December 15, 1980, to undergo repeated control examinations after specific treatment, including xenodiagnosis, serological tests, and complement fixation. The patient was cured of Trypanosoma cruzi infection, and her child is therefore free from the possibility of having congenital Chagas disease.

The disclosure of the photographs was authorized by the patient and approved by the Ethics Committee of Anis Rassi Hospital.

FIGURE 1 – Montage of photos of the patient taken at different times.

Indirect immunofluorescence and complement fixation tests for Chagas disease were positive. Xenodiagnostics performed with four boxes, each containing 10 triatomines, were all positive.

A: During the initial care consultation (October 20, 1977). B: Esophagus radiograph at the initial examination showing Grade III megaesophagus. C: After Heller surgery for the treatment of megaesophagus (May 17, 1978). D: The patient as an adolescent. E: The patient and her firstborn. She was cured of Trypanosoma cruzi infection, and her child is therefore free from the possibility of having congenital Chagas disease.

The disclosure of the photographs was authorized by the patient and approved by the Ethics Committee of Anis Rassi Hospital.

TABLE 1 - Xenodiagnosis.

<table>
<thead>
<tr>
<th>Period</th>
<th>Year</th>
<th>Exams (n)</th>
<th>Boxes (n)</th>
<th>Triatomines (n) Examined</th>
<th>Triatomines (n) Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before treatment</td>
<td>1977/78</td>
<td>2/4</td>
<td>6/16</td>
<td>140/20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1978</td>
<td>0/5</td>
<td>0/20</td>
<td>179/21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1979</td>
<td>0/16</td>
<td>0/64</td>
<td>478/162</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>0/17</td>
<td>0/68</td>
<td>567/113</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1982</td>
<td>0/5</td>
<td>0/20</td>
<td>178/22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1987</td>
<td>0/4</td>
<td>0/16</td>
<td>147/13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td>0/7</td>
<td>0/28</td>
<td>262/18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td>0/7</td>
<td>0/28</td>
<td>252/28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>0/1</td>
<td>0/4</td>
<td>30/10</td>
<td></td>
</tr>
<tr>
<td>After treatment</td>
<td></td>
<td>0/62</td>
<td>0/248</td>
<td>2,093/387</td>
<td></td>
</tr>
</tbody>
</table>

Each test was conducted with four boxes, each containing 10 triatomines (3rd stage nymphs of Triatoma infestans). The insects were examined 30 and 60 days after feeding. From each box, two mixtures of feces were obtained by abdominal compression. From each mixture, three slides were examined. The numerator represents the number of positive tests and boxes, and the denominator represents the number of tests performed and boxes used. The table also shows the number of insects examined and the number of insects killed (not examined).
conducted fortnightly, and serological tests, conducted quarterly (Tables 1 and 2). She returned to her hometown on December 16, 1980, to reside in a house located in an urban area and not infested by triatomines.

She was followed up for several years without incidents, with normal height-weight development (Figure 1D). She had her menarche in 1988. She married in 1995 and, in 1999, had her first child, who weighed 2,350g and whose serological tests for Chagas disease (indirect immunofluorescence, indirect hemagglutination, and ELISA), conducted in 2007, were negative (Figure 1E). Later reassessments of the patient, a total of 5 in the period between 1987 and 2006, showed continued negative results of xenodiagnosis (Table 1) and serological tests, now with the addition of indirect hemagglutination and ELISA tests but excluding the complement fixation test (Table 2). In these reassessments, the electrocardiogram and echocardiogram and/or heart radiological exams were consistently normal.

DISCUSSION

Although extremely rare, and therefore worthy of disclosure, there are cases of Grade III megaesophagus secondary to Chagas disease in early childhood, either in the congenital transmission form or in the vector-borne transmission form.

In this case, the possibility of a congenital form was excluded by the negative results of the maternal serological tests on two occasions, indicating a vector-borne transmission; the initial period of infection was not diagnosed, which is usual in the natural history of Chagas disease.

REFERENCES