Evaluation of the reference value for the Montenegro skin test

Cissiara Manetti Skraba[1], Tatiane França Perles de Mello[1], Raissa Bocchi Pedros[1], Érika Cristina Ferreira[1], Izabel Galhardo Demarchi[1], Sandra Mara Alessi Aristides[2] and Thaís Gomes Verzignassi Silveira[2]

ABSTRACT
Introduction: The Montenegro skin test (MST) has good clinical applicability and low cost for the diagnosis of American tegumentary leishmaniasis (ATL). However, no studies have validated the reference value (5mm) typically used to discriminate positive and negative results. We investigated MST results and evaluated its performance using different cut-off points.

Methods: The results of laboratory tests for 4,256 patients with suspected ATL were analyzed, and 1,182 individuals were found to fulfill the established criteria. Two groups were formed. The positive cutaneous leishmaniasis (PCL) group included patients with skin lesions and positive direct search for parasites (DS) results. The negative cutaneous leishmaniasis (NCL) group included patients with skin lesions with evolution up to 2 months, negative DS results, and negative indirect immunofluorescence assay results who were residents of urban areas that were reported to be probable sites of infection at domiciles and peridomiciles.

Results: The PCL and NCL groups included 769 and 413 individuals, respectively. The mean ± standard deviation MST in the PCL group was 12.62 ± 5.91mm [95% confidence interval (CI): 12.20-13.04], and that in the NCL group was 1.43 ± 2.17mm (95% CI: 1.23-1.63). Receiver-operating characteristic curve analysis indicated 97.4% sensitivity and 93.9% specificity for a cut-off of 5mm and 95.8% sensitivity and 97.1% specificity for a cut-off of 6mm. Conclusions: Either 5mm or 6mm could be used as the cut-off value for diagnosing ATL, as both values had high sensitivity and specificity.

Keywords: Cutaneous leishmaniasis. Montenegro skin test. Cut-off value. Diagnosis.

INTRODUCTION

Leishmaniasis can affect the skin, mucous membranes, and internal organs in humans and other mammals. There are 310 million people in 6 countries at risk of infection, with 1 million cases of cutaneous leishmaniasis reported in the last 5 years, 300,000 estimated cases of visceral leishmaniasis, and over 20,000 deaths annually[1]. In the Americas, cutaneous leishmaniasis occurs in the geographic area ranging from southern United States to northern Argentina, with the exception of Chile and Uruguay.

American tegumentary leishmaniasis (ATL) is widely distributed from northern to southern Brazil. From 1990 to 2013, 635,399 cases of ATL were reported in Brazil, 13,889 from the southern region and 95% from the State of Paraná, from 276 of the 399 municipal districts[2] [3]. Deforestation, urbanization, and the consequent invasion of vectors in the peridomicile have increased the incidence of ATL[4]. The main species of Leishmania that cause ATL in Brazil are Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis, and Leishmania (Leishmania) amazonensis[4].

The diagnosis of ATL is based on epidemiological, clinical, and laboratory data, including parasitological and immunological techniques[5] [6] [7]. An association between two or more techniques provides a more valid diagnosis of ATL. The direct search (DS) for parasites is performed by identifying amastigote forms in smears of the lesion. However, sensitivity decreases with lesion progression. The immunological methods include the Montenegro skin test (MST) to detect delayed hypersensitivity and indirect immunofluorescence (IIF) and enzyme immunooassay (EIA) to search for antibodies. The antibody search tests are sensitive and specific, but they are associated with cross-reactivity with other diseases, mainly Chagas disease and visceral leishmaniasis[6] [7].

The MST was introduced in 1926 by Montenegro to diagnose ATL with good clinical applicability and low cost[8]. The antigen is inoculated in the forearm of the patient, and the reaction is read after 48h[9]. The reaction is characterized by induration at the inoculation site due to abundant infiltration of lymphocytes and macrophages[9]. A diameter of ≥5mm is
considered to indicate a positive reaction. The MST is useful in cases in which the parasites are scarce or absent (i.e., when the ATL lesion has undergone more than 2 months of evolution) and in epidemiological surveys in endemic areas\(^5\).

The criteria for defining a positive result on skin tests for delayed hypersensitivity vary among authors, but a positive test result is considered when the induration diameter is ≥5mm\(^10\). Similarly, with the MST, authors have considered diameters ≥5mm as a positive test result\(^6\)(9)(11)(12)(13)(14)(15)(16)(17). Reaction diameters ≥6mm have also been reported\(^18\)(19). However, no studies have validated the reference value (5mm) that is typically used to discriminate positive and negative MST results for ATL.

The objective of the present study was to analyze MST results and evaluate different cut-off values for the diagnosis of ATL.

METHODS

In this retrospective, descriptive, analytical study, we analyzed laboratory test results of patients with suspected American tegumentary leishmaniasis (ATL) who were referred by the 15\(^{th}\) Regional Health Division of the State of Paraná and attended the Laboratório de Leishmanioses of the Laboratório de Ensino e Pesquisa em Análises Clínicas, Universidade Estadual de Maringá (LEPAC/UEM) between June 1999 and February 2014. The available epidemiologic data included sex, age, place of residence and work (rural or urban), lesion characteristics, number of lesions, and duration of lesion evolution. The tests used for laboratory diagnosis included DS for parasites by microscopy, IIF, and the MST.

The DS was performed with tissue obtained by scarification of the edge of the lesion, which was smeared on a slide and stained with Giemsa. Indirect immunofluorescence was performed with the edge of the lesion, which was smeared on a slide and stained for parasites by microscopy, IIF, and the MST.

For analysis, patients who underwent the MST were selected based on the presence of skin lesions. To evaluate the cut-off point for the MST, two groups were formed based on laboratory results and clinical and epidemiological data according to criteria that define the epidemiologic characteristics of ATL in Northwestern Paraná\(^20\). The positive ATL [positive cutaneous leishmaniasis (PCL)] group included patients with skin lesions and positive DS results. The negative ATL [negative cutaneous leishmaniasis (NCL)] group included patients with skin lesions of an evolution up to 2 months, negative DS results, and negative IIF results who were residents in urban areas and reported to be probable sites of infection at domiciles and peridomiciles.

The data were plotted in Microsoft Excel 2010 spreadsheets. Quantitative data are described using mean ± standard deviation.

For comparisons of means, Student’s t-tests were used. The Z test was used to compare proportions. Sensitivity and specificity values were used to construct receiver-operating-characteristic (ROC) curves to analyze different reference values (cut-off values) for all of the patients. Statistical analysis was performed using Statistica 8.0 software, with a 5% level of significance (p< 0.05).

RESULTS

Of the 4,256 patients initially evaluated, 1,182 were selected for inclusion (Figure 1) based on the epidemiological data and laboratory results. These patients had a mean age of 40.34 ± 17.80 years and mean MST induration diameter of 8.71 ± 7.27mm (Table 1). Patient age in the PCL group (n = 769) was 39.58 ± 16.38 years (range, 1-86 years) and that in the NCL group (n = 413) was 41.76 ± 20.12 years (range, 1-90 years). The MST induration diameters of the PCL and NCL groups were 12.62 ± 5.91mm (range, 0-44mm) and 1.43 ± 2.17mm (range, 0-15mm), respectively (p< 0.01).

The PCL group had more men (632/769) than women (137/769; p< 0.01). The mean age of the men (39.82 ± 15.83 years) was similar to that of women (38.50 ± 18.76 years; p = 0.32). The mean induration diameter in men (12.51 ± 5.73mm) was also similar to that of women (13.11 ± 6.67mm; p = 0.28). The numbers of men and women in the NCL group were similar (210/413 and 203/413, respectively; p = 0.68), as were the mean ages of men and women (42.05 ± 20.20 years and 41.45 ± 20.10 years; p = 0.76). The mean induration diameter in men (1.65 ± 2.57mm) was significantly different from that in women (1.20 ± 1.64mm; p = 0.03).

Based on ROC curve analysis (Figure 2), the sensitivity and specificity for a 5mm cut-off value were 97.4% and 93.9%, respectively. The sensitivity and specificity for a 6mm cut-off value were 95.8% and 97.1%, respectively.

Receiver-operating-characteristic curves are shown according to sex in Figure 3. The best curve was found for women who had higher specificities for the two cut-off points. Figure 4 shows the ROC curves according to age (0-14 years, 15-29 years, 30-49 years, and ≥50 years). The best curve was observed for patients who were 0-14 years old.

DISCUSSION

Since June 1999, LEPAC/UEM has performed the MST with an antigen from the Brazilian Ministry of Health that is produced in large scale according to good-practice standards of the Centro de Produção e Pesquisa em Imunobiológicos\(^21\)
FIGURE 1 - Selection of groups after analysis from Laboratório de Leishmanioses of the LEPAC/UEM in Maringá, State of Paraná, Brazil, 1986 to 2014. DS: direct search of parasite; MST: Montenegro skin test; IIF: indirect immune fluorescence; LEPAC/UEM: Laboratório de Ensino e Pesquisa em Análises Clínicas, Universidade Estadual de Maringá.
TABLE 1 - Characteristics of 1,182 patients (PCL and NCL groups) according to sex, age, and diameter with the Montenegro skin test.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Age (years)</th>
<th>Induration (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>range</td>
<td>mean ± SD</td>
</tr>
<tr>
<td>PCL (n = 769)</td>
<td>1-86</td>
<td>39.58 ± 16.38</td>
</tr>
<tr>
<td>women (n = 137)</td>
<td>3-86</td>
<td>38.50 ± 18.76</td>
</tr>
<tr>
<td>men (n = 632)</td>
<td>1-81</td>
<td>39.82 ± 15.83</td>
</tr>
<tr>
<td>NCL (n = 413)</td>
<td>1-90</td>
<td>41.76 ± 20.12</td>
</tr>
<tr>
<td>women (n = 203)</td>
<td>1-90</td>
<td>41.45 ± 20.10</td>
</tr>
<tr>
<td>men (n = 210)</td>
<td>4-84</td>
<td>42.05 ± 20.20</td>
</tr>
<tr>
<td>Total (n = 1,182)</td>
<td>1-90</td>
<td>40.34 ± 17.80</td>
</tr>
</tbody>
</table>

PCL: positive cutaneous leishmaniasis; NCL: negative cutaneous leishmaniasis. SD: standard deviation; 95% CI: 95% confidence interval.

FIGURE 2 - Receiver-operating-characteristic curve for 1,182 patients in the positive cutaneous leishmaniasis and negative cutaneous leishmaniasis groups who attended LEPAC/UEM between June 1999 and February 2014. Se: sensitivity; Sp: specificity; PPV: positive predictive value; NPV: negative predictive value; LEPAC/UEM: Laboratório de Ensino e Pesquisa em Análises Clínicas, Universidade Estadual de Maringá.
FIGURE 3 - Receiver-operating-characteristic curve for 1,182 patients in the positive cutaneous leishmaniasis and negative cutaneous leishmaniasis groups who attended LEPAC/UEM between June 1999 and February 2014 for (A) women (n = 340) and (B) men (n = 842). Se: sensitivity; Sp: specificity; PPV: positive predictive value; NPV: negative predictive value; LEPAC/UEM: Laboratório de Ensino e Pesquisa em Análises Clínicas, Universidade Estadual de Maringá.
1.1 1.1

Se=100.0%
Sp=97.9%
PPV=98.2%
NPV=100.0%

Se=97.4%
Sp=89.2%
PPV=94.9%
NPV=94.3%

Se=96.1%
Sp=91.9%
PPV=96.1%
NPV=91.9%

Se=97.5%
Sp=92.4%
PPV=96.9%
NPV=93.7%

Se=96.6%
Sp=96.6%
PPV=97.5%
NPV=95.3%

Se=94.1%
Sp=99.3%
PPV=99.5%
NPV=92.4%

Se=96.6%
Sp=100.0%
PPV=100.0%
NPV=96.0%

FIGURE 4 - Receiver-operating-characteristic curve for 1,182 patients in the positive cutaneous leishmaniasis and negative cutaneous leishmaniasis groups who attended LEPAC/UEM between June 1999 and February 2014 for patients aged: A. 0-14 years (n = 102); B. 15-29 years (n = 228); C. 30-49 years (n = 502), and D. ≥50 years (n = 350). Se: sensitivity; Sp: specificity; PPV: positive predictive value; NPV: negative predictive value; LEPAC/UEM: Laboratório de Ensino e Pesquisa em Análises Clínicas, Universidade Estadual de Maringá.

(95.8% sensitivity and 97.1% specificity). Previous studies that were conducted by our research group using a 6mm cut-off value for MST found 96% sensitivity among patients with positive DS results and 95.1% sensitivity among patients with positive MST, DS, and IIF results(19). Comparatively, 90.5% sensitivity was reported in patients with a positive DS(19), and 78.2% sensitivity and 77.4% specificity were reported in patients who attended a hospital in Peru(26). Positive MST results were found in 93.3% of patients who had positive direct microscopic examination(27) and 84.4% of confirmed ATL cases from State of Paraná(28).

In the NCL group, six (1.5%) patients had induration diameters ≥10mm with the MST. In endemic areas, a positive MST can be interpreted as prior leishmaniasis, prior injection of the antigen used in the test, exposure to the parasite without disease (infection), allergy to the test dilution agent, or cross-reactions with other diseases (e.g., Chagas disease, sporotrichosis, Virchowian leprosy, tuberculosis, chromomycosis, or others)(6). Patients with sporotrichosis (12%) had an induration diameter ≥10mm with the MST(29). In a non-endemic region, almost 30% of the individuals had positive reactions with the MST(30).

For lesions lasting up to 1 month, the sensitivity was 97.5% (5mm cut-off) or 94.9% (6mm cut-off). For durations of 1 and 2 months, the sensitivity was 98.6% (5mm cut-off) or 97.1% (6mm cut-off). Previous studies have reported 78% sensitivity for cutaneous lesions with a duration of up to 2 weeks and 94% and 98% sensitivities for durations of 4 and 6 weeks, respectively, in patients with positive parasitological tests; however, the MST was repeated every 7 days until a positive reaction was obtained (5mm cut-off)(15). Nine (1.2%) patients and 11 (1.4%) patients with lesion durations >2 months presented negative MST results, depending on the cut-off (5mm and 6mm, respectively). A negative response with the MST after 2 months of disease evolution might be related with a defect of the host immune response(23).

The ROC curves that were constructed according to sex showed higher sensitivity for men, which supports the findings of previous study(26), while higher specificity was found for
women for both cut-off points. Regarding the positive and
negative predictive values, our results agree with this previous
study, with higher predictive values in women. The superior
specificity and positive predictive value in women is reported to
be the result of fewer false-positive results(26). This is supported
by the findings in the NCL group in the present study, in
which 18 (8.6%) men and 7 (3.3%) women had induration
diameters ≥ 5mm with the MST.

The ROC curves for the different age groups showed that the
0-14 years old had a better curve, and both cut-off values (5
and 6mm) could be used. The individuals in this age group were
likely not to have encountered many antigens yet, which would
provide a more specific response with the MST. In a previous
study, a 63.2% sensitivity for patients <12 years of age, 100%
specificity and positive predictive value in women is reported to
be the result of fewer false-positive results(26). This is supported
by the findings in the NCL group in the present study, in
which 18 (8.6%) men and 7 (3.3%) women had induration

The present study evaluated the response to the MST in a
population from an ATL endemic area in the northern and
northwestern regions of the State of Paraná, Brazil. The results
showed 97.4% sensitivity and 93.9% specificity for the 5mm
cut-off and 95.8% sensitivity and 97.1% specificity for the 6mm
cut-off, with higher sensitivity in men, higher specificity and
predictive values in women, and the best curves for both the
5 and 6mm cut-off values in 0-14 years old. Considering the
need to balance sensitivity and specificity, both cut-off values
(5 and 6mm) could be used in this population. It would also
be interesting to investigate the cut-off values for the MST in
populations from other ATL endemic areas.

ACKNOWLEDGMENTS

We offer our deepest thanks to the institutions that provided
technical support for the development and implementation of
this study, especially to the pharmaceutical-biochemical Eneide
Aparecida Sabaini Venazzi and Paulo Donizeti Zanzarini.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

FINANCIAL SUPPORT

This work received financial support from Fundação
Araucária, Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior (CAPES) and Laboratório de Ensino
e Pesquisa em Análises Clínicas of the Universidade Estadual
de Maringá (LEPAC/UEM).

REFERENCES

1. World Health Organization (WHO). Leishmaniases. Geneva,
at: http://www.who.int/leishmaniases/en

Americana. Brasil, Grandes Regiões e Unidades Federadas.
September 15). Available at: http://portalsaudae.saude.gov.br/

3. Lima AP, Minelli L, Communello E, Teodoro U. Distribuição da
leishmaniose tegumentar por imagens de sensoriamento remoto
orbital, no Estado do Paraná, Sul do Brasil. An Bras Dermatol
2002; 77:681-692.

4. Marzochi ACA, Marzochi KBF. Tegumentary and visceral
leishmaniasis in Brazil – emerging anthropozoonosis and possibilities

5. Andrade BB, Boaventura V, Barral-Neto M, Barral A. Métodos
Diagnósticos da leishmaniose tegumentar: fatos, falácias e

6. Ministério da Saúde, Secretaria de Vigilância em Saúde,
Departamento de Vigilância Epidemiológica. Manual de vigilância
da leishmaniose tegumentar americana. 2º ed. Brasília: Ministério

7. Gontijo B, Carvalho MLR. Leishmaniose tegumentar americana.

8. Montenegro J. Cutaneous reaction in leishmaniasis. Arch Dermatol

H, Rocha H. Characterization of the immune response in subjects

derived leishmanin skin test surveys of visceral leishmaniasis in

12. Arana BA, Roca M, Rizzo NR, Mendoza CE, Kroeger A.
Evaluation of a standardized leishmanin skin test in Guatemala.

13. Basano AS, Camargo LMA. Leishmaniose tegumentar americana:
histórico, epidemiologia e perspectivas de controle. Rev Bras
Epidemiol 2004; 7:328-337.

14. Sadeghian G, Momeni A, Siadat AH, Yousefi P. Evaluation of
leishmanin skin test and its relationship with the clinical form and

15. Manzur A, Bari A. Sensitivity of leishmanin skin test in patients

leishmaniases/research/978924129496_pp67_71.pdf?ua=1

17. Alimohammadian MH, Jones SL, Darabi H, RiaziFarid A, Ajdary S,
Shabani A, et al. Assessment of Interferon-γ Levels and Leishmanin

