Molecular identification and antifungal susceptibility profiles of Candida parapsilosis complex species isolated from culture collection of clinical samples

Fábio Silvestre Ataides[1], Carolina Rodrigues Costa[1], Lúcia Kioko Hasimoto e Souza[1], Orionalda deFátima Lisboa Fernandes[1], Rosália Santos Amorim Jesuino[2] and Maria do Rosário Rodrigues Silva[1]

[1]. Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brasil. [2]. Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brasil.

ABSTRACT

Introduction: Candida parapsilosis is a common yeast species found in cases of onychomycosis and candidemia associated with infected intravascular devices. In this study, we differentiated Candida parapsilosis sensu stricto, Candida orthopsilosis, and Candida metapsilosis from a culture collection containing blood and subungual scraping samples. Furthermore, we assessed the in vitro antifungal susceptibility of these species to fluconazole, itraconazole, voriconazole, posaconazole, amphotericin B, and caspofungin. Methods: Differentiation of C. parapsilosis complex species was performed by amplification of the secondary alcohol dehydrogenase (SADH) gene and digestion by the restriction enzyme BanI. All isolates were evaluated for the determination of minimal inhibitory concentrations using Etest, a method for antifungal susceptibility testing. Results: Among the 87 isolates, 78 (89.7%) were identified as C. parapsilosis sensu stricto, five (5.7%) were identified as C. orthopsilosis, and four (4.6%) were identified as C. metapsilosis. Analysis of antifungal susceptibility showed that C. parapsilosis sensu stricto isolates were less susceptible to amphotericin B and itraconazole. One C. parapsilosis sensu stricto isolate was resistant to amphotericin B and itraconazole. Moreover, 10.2% of C. parapsilosis sensu stricto isolates were resistant to caspofungin. Two C. parapsilosis sensu stricto isolates and one C. metapsilosis isolate were susceptible to fluconazole in a dose-dependent manner. Conclusions: We reported the first molecular identification of C. parapsilosis complex species in State of Goiás, Brazil. Additionally, we showed that although the three species exhibited differences in antifungal susceptibility profiles, the primary susceptibility of this species was to caspofungin.

Keywords: Candida parapsilosis. In vitro antifungal susceptibility. Candidemia. Onychomycosis.

INTRODUCTION

Although Candida albicans is the most common isolate from human infections, other Candida species have also been observed in the 1990s, supporting the increased frequency of non-albicans species[3][4]. Candida parapsilosis is a common yeast species found in cases of onychomycosis and candidemia associated with infected intravascular devices[3][4][5][6]. In State of Goiás, Brazil, C. parapsilosis was found in 52.5% of nail samples and was the second most commonly isolated species (24.2%) from blood cultures[6][7]. Previous work has shown that C. parapsilosis isolates may exhibit genotypic differences, allowing the classification of new species by restriction polymorphism analysis of the secondary alcohol dehydrogenase (SADH) gene.

Candida parapsilosis forms a complex composed of three genetically distinct species: C. parapsilosis sensu stricto, Candida orthopsilosis, and Candida metapsilosis[8]. C. parapsilosis complex species are usually susceptible to antifungal agents; however, some reports have shown that these isolates may exhibit decreased susceptibility to azoles and echinocandins[9]. This difference in antifungal susceptibility among the three species has led to an increased interest in the study of C. parapsilosis complex species[10]. Moreover, antifungal susceptibility surveillance is an important major strategy for the prophylaxis and treatment of candidiasis caused by C. parapsilosis.

Because of the medical importance of C. parapsilosis in our area and the limited local epidemiological data on this species, we aimed to verify the distribution of C. parapsilosis sensu stricto, C. orthopsilosis, and C. metapsilosis species within a culture collection containing blood and subungual scraping samples from patients attending a tertiary hospital.
in Goiás, Brazil. Additionally, we assessed the in vitro antifungal susceptibility of these species to fluconazole (FLC), itraconazole (ITC), voriconazole (VOR), posaconazole (POS), amphotericin B (AMB), and caspofungin (CAS).

METHODS

Isolates

A total of 87 *C. parapsilosis* isolates were recovered from different clinical specimens, including blood (737) and nail specimens (136). These isolates were stored at -70°C in yeast extract peptone dextrose (YEPD) broth (Difco) with 10% glycerol and were obtained from the Laboratory of Mycology, Institute of Tropical Pathology and Public Health, Federal University of Goiás from 2007 to 2012.

Candida parapsilosis was obtained from adult patients with candidemia (n = 54) and onychomycosis (n = 33). The study was approved by the Bioethic Committee from Hospital das Clínicas in Goiânia-GO (protocol 065/2008). Confirmation of the identification of *C. parapsilosis sensu lato*, after subculture on YEPD agar (Difco) for 48 h at 37°C, was based on colony color in Goiânia-GO (protocol 065/2008). Confirmation of the Hospital das Clínicas candidemia (n = 54) and onychomycosis (n = 33). The study was

Molecular identification of the Candida parapsilosis complex species

Genomic deoxyribonucleic acid (DNA) was extracted from each isolate using high-speed cell disruption followed by phenol-chloroform extraction and ethanol precipitation, as described by Tavanti et al. Amplification was performed in a T100 thermal cycler (Bio-Rad, Hercules, CA, USA), and the amplified products were loaded onto 2% agarose gels containing ethidium bromide (0.5mg/mL). A 100-bp DNA ladder was used as a molecular size marker (Invitrogen Life Technologies, USA). Amplified products were electrophoresed on 1.5% agarose gels, visualized under ultraviolet light, and analyzed on a photo documenter (Bio-Rad).

The PCR products (fragments of 716bp) were purified with a specialized kit (Qiagen, Valencia, CA, USA), and digestion of the purified PCR product was carried out for 120 min at 37°C using the restriction enzyme *Ban*I (Thermo Scientific, USA). Digestion of the PCR products was subjected to electrophoresis onto 2% agarose gels (Invitrogen Life Technologies). *C. parapsilosis ATCC 22019*, *C. orthopsilosis ATCC 96141*, and *C. metapsilosis ATCC 96143* were used as controls.

In vitro susceptibility testing

All isolates were evaluated using Etests (AB Biodisk, Solna, Sweden), as recommended by the manufacturer’s guidelines, with Etest strips for ITC, VOR, POS, AMB, and CAS at concentrations ranging from 0.002 to 32µg/mL and for FLC at concentrations ranging from 0.016 to 256µg/mL. *C. parapsilosis ATCC 22019* was included on each day of testing to verify the reproducibility of the results.

Interpretative criteria for FLC minimum inhibitory concentrations (MICs) were as follows: ≤2µg/mL, susceptible; 4µg/mL, susceptible-dose dependent (S-DD), and ≥8µg/mL, resistant. ITC and VOR MICs were interpreted as follows: ≤0.125µg/mL, susceptible; 0.25-0.5µg/mL, S-DD; and ≥1µg/mL, resistant. Caspofungin MICs were interpreted as follows: ≤2µg/mL, susceptible; 4µg/mL, intermediate; and ≥8µg/mL, resistant. Caspofungin MICs were interpreted as follows: ≤0.125µg/mL, susceptible; 0.25-0.5µg/mL, S-DD; and ≥1µg/mL, resistant. Caspofungin MICs were interpreted as follows: ≤0.125µg/mL, susceptible; 0.5-1µg/mL, S-DD; and ≥2µg/mL, resistant. Isolates with MICs of greater than 1µg/mL were considered resistant to AMB and POS, as suggested by Nguyen et al. and Cantón et al.

RESULTS

Among the 87 isolates, 78 (89.7%) were identified as *C. parapsilosis sensu stricto* (two restriction sites), five (5.7%) were identified as *C. orthopsilosis* (no restriction sites), and four (4.6%) were identified as *C. metapsilosis* (four restriction sites). In blood samples, 47 (54.1%), five (5.7%), and two (2.3%) isolates were *C. parapsilosis*, *C. metapsilosis*, and *C. orthopsilosis*, respectively. In nail samples, *C. parapsilosis* and *C. metapsilosis* represented 31 (35.6%) and two (2.3%) isolates, respectively. *Ban*I restriction profiles of SADH fragments used for distinguishing among the three species of the *C. parapsilosis* complex are shown in Figure 1.

According to the interpretative criteria for resistance used for the antifungal drugs described in the Material and Methods, we found that very few isolates were resistant to azoles and AMB. One *C. parapsilosis sensu stricto* isolate was resistant to AMB and ITC. Moreover, 10.2% of *C. parapsilosis sensu stricto* isolates were resistant to CAS. Two *C. parapsilosis sensu stricto* isolates and one *C. metapsilosis* isolate met the criterion for S-DD to FLC.

Susceptible-dose dependent strains were detected in the three species. *C. orthopsilosis* met the criterion for S-DD to ITC; *C. metapsilosis* and *C. parapsilosis sensu stricto* met the criterion for S-DD to ITC and FLC; and isolates of all three species exhibited intermediate susceptibility to CAS. The profiles of the in vitro susceptibility of *C. parapsilosis* complex species to azoles, AMB, and CAS, including MIC ranges, MIC₂₅, MIC₉₀, susceptibility intermediate or S-DD, and resistance, are summarized in Table 1.

DISCUSSION

Within the genus *Candida*, *C. parapsilosis* is the second most commonly isolated species from blood cultures in several casuistics. Moreover, this species represents frequent cause of onychomycosis in several countries, including Brazil, Chile, México, and Iran. Although all 87 isolates of *C. parapsilosis* studied in our work have been identified by
TABLE 1 - In vitro susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis to azoles (fluconazole, itraconazole, voriconazole, and posaconazole), amphotericin B, and caspofungin.

<table>
<thead>
<tr>
<th>Isolates (n)</th>
<th>MIC range</th>
<th>MIC50*</th>
<th>MIC90</th>
<th>S-DD</th>
<th>R</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida parapsilosis (78)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLU</td>
<td>0.064–4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ITRA</td>
<td>0.002–2</td>
<td>0.125</td>
<td>0.125</td>
<td>5</td>
<td>6.4</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>VOR</td>
<td>0.002–0.25</td>
<td>0.012</td>
<td>0.047</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>POS</td>
<td>0.003–0.094</td>
<td>0.016</td>
<td>0.032</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMB</td>
<td>0.064–32</td>
<td>0.5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CAS</td>
<td>0.125–32</td>
<td>0.75</td>
<td>16</td>
<td>3</td>
<td>3.8**</td>
<td>8</td>
<td>10.2</td>
</tr>
<tr>
<td>Candida orthopsilosis (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLU</td>
<td>0.5–2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ITRA</td>
<td>0.125–0.5</td>
<td>0.125</td>
<td>0.5</td>
<td>2</td>
<td>40.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VOR</td>
<td>0.008–0.047</td>
<td>0.023</td>
<td>0.047</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>POS</td>
<td>0.008–0.094</td>
<td>0.047</td>
<td>0.094</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMB</td>
<td>0.094–0.38</td>
<td>0.25</td>
<td>0.38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CAS</td>
<td>2–4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>80.0**</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Candida metapsilosis (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLU</td>
<td>0.5–4</td>
<td>0.75</td>
<td>4</td>
<td>1</td>
<td>25.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ITRA</td>
<td>0.064–0.75</td>
<td>0.125</td>
<td>0.75</td>
<td>2</td>
<td>50.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VOR</td>
<td>0.008–0.032</td>
<td>0.012</td>
<td>0.032</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>POS</td>
<td>0.008–0.047</td>
<td>0.016</td>
<td>0.047</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMB</td>
<td>0.125–0.38</td>
<td>0.125</td>
<td>0.38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CAS</td>
<td>0.38–4</td>
<td>0.38</td>
<td>4</td>
<td>2</td>
<td>50.0**</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

MIC: minimum inhibitory concentration; S-DD: susceptible-dose dependent; R: resistant; FLU: fluconazole; ITRA: itraconazole; VOR: voriconazole; POS: posaconazole; AMB: amphotericin B; CAS: caspofungin. *MIC50 and MIC90: MIC at which 50% and 90% of the isolates were inhibited. **Isolates with intermediate sensitivity to caspofungin.
phenotypic methods, we were not able to differentiate among the *C. parapsilosis* complex species, which are phenotypically identical. Amplification of the SADH gene followed by BanI restriction enzyme digestion has been used as a rapid and reliable method with high discriminative power for *C. parapsilosis* complex species. Data have shown that these three species exhibit different prevalence rates, virulence, and *in vitro* antifungal susceptibility. *C. parapsilosis* has been observed by Chen et al. Moreover, Gomez-Lopez et al. found an MIC of greater than 4µg/mL FLC for these species, while Silva et al. found an MIC of 16µg/mL FLC for one *C. parapsilosis sensu stricto* isolate. According to Van Asbeck et al., the differences in FLC susceptibility may also reflect the different affinities of azoles for the key ergosterol-synthesizing enzyme 14-α-demethylase or for other enzymes in this pathway.

Interestingly, all isolates of the *C. parapsilosis* complex were susceptible to the new triazole antifungal agents tested in this study (i.e., VOR and POS). These results are consistent with several studies demonstrating the greater efficacy of these new triazoles against *C. parapsilosis* complex isolates. In this study, we considered an isolate resistant to AMB when the MIC was greater than 1µg/mL. Thus, in our study, only one *C. parapsilosis sensu stricto* isolate was classified in this category. Although Lockhart et al. reported MICs of more than 1µg/mL for these three species, they found that the proportion of AMB-resistant *C. parapsilosis sensu stricto* is higher than those of *C. orthopsilosis* and *C. metapsilosis*.

Although Trabasso et al. observed some fluctuations in MIC values between the three *C. parapsilosis* complex species, they also showed that these isolates were susceptible to echinocandin, with MIC values within those of the reference strain or the proposed MIC values (CLSI). However, 19.5% (17/87) of *C. parapsilosis* complex isolates studied in our work were less susceptible to CAS, with resistance detected in eight isolates of *C. parapsilosis sensu stricto* (Table 1). Several studies have shown that the MIC of CAS in *C. parapsilosis sensu stricto* is higher than that of the two species within the complex. However, the reason for the high MIC values for CAS is unclear. Recent works have described a functional point mutation in the glucan synthase (FKS) gene of the *C. parapsilosis* complex species, which may explain this observation. FKS gene mutations have been shown to be associated with resistance to CAS, as demonstrated by increases in MICs in mutant isolates compared with those of wild-type isolates.

In summary, our study reported the first molecular identification of *C. parapsilosis* complex species in State of Goiás, Brazil. We provided evidence showing that although *C. parapsilosis sensu stricto* was the dominant species among the three *C. parapsilosis* complex species, the other two species (*C. metapsilosis* and *C. orthopsilosis*) have clinical importance as pathogens in candidemia and onychomycosis. Moreover, we observed important differences in antifungal susceptibility profiles among the three species, mainly with regard to CAS.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.
REFERENCES

