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ABSTRACT

There is a consensus that the antifungal repertoire for the treatment of cryptococcal infections is limited. Standard treatment involves 
the administration of an antifungal drug derived from natural sources (i.e., amphotericin B) and two other drugs developed synthetically 
(i.e., flucytosine and fluconazole). Despite treatment, the mortality rates associated with fungal cryptococcosis are high. Amphotericin 
B and flucytosine are toxic, require intravenous administration, and are usually unavailable in low-income countries because of their 
high cost. However, fluconazole is cost-effective, widely available, and harmless with regard to its side effects. However, fluconazole is a 
fungistatic agent that has contributed considerably to the increase in fungal resistance and frequent relapses in patients with cryptococcal 
meningitis. Therefore, there is an unquestionable need to identify new alternatives or adjuvants to conventional drugs for the treatment 
of cryptococcosis. A potential antifungal agent should be able to kill cryptococci and “bypass” the virulence mechanism of the yeast. 
Furthermore, it should have fungicidal action, low toxicity, high selectivity, easily penetrate the central nervous system, and widely available. 
In this review, we describe cryptococcosis, its conventional therapy, and failures arising from the use of drugs traditionally considered to 
be the reference standard. Additionally, we present the approaches used for the discovery of new drugs to counteract cryptococcosis, 
ranging from the conventional screening of natural products to the inclusion of structural modifications to optimize anticryptococcal 
activity, as well as drug repositioning and combined therapies.
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FIGURE 1: Micromorphological characteristic of Cryptococcus spp. Direct 
exam, prepared with Indian ink (400×).

INTRODUCTION

Cryptococcosis, a potentially fatal fungal infection in 
immunosuppressed patients, especially in those infected 
with human immunodeficiency virus (HIV), is caused by 
the inhalation of encapsulated yeasts belonging to the 
Cryptococcus neoformans and Cryptococcus gattii species 
complex1. It is associated with high mortality in low- and middle-
income countries, and causes approximately 181,000 deaths 
annually2,3. Sub-Saharan Africa reports the highest number of 
cases, with approximately 720,000 cases per year, followed 
by Southeast Asia and Latin America, which are the second 
and third regions most affected by cryptococcal meningitis3,4. 

Results of antifungal therapies for cryptococcosis are limited. 
Depending on an individual’s immune status, disease severity, 
and availability of antifungals, the standard treatment is based 
only on amphotericin B, fluconazole, and flucytosine5,6. Owing 
to its relatively low cost, high oral bioavailability, and low toxicity 
profile, fluconazole is often used to replace amphotericin B and 
flucytosine in resource-limited settings. However, resistant fungi and 
persistent therapeutic failure have been observed in patients with 
cryptococcosis undergoing prolonged therapy with fluconazole7. 
In addition, the limited antifungal arsenal, serious adverse effects 
of amphotericin B and flucytosine, and intrinsic resistance of  
C. neoformans to echinocandins, the only new broadly available class of 
tantifungal drugs developed in decades, have stimulated new studies 
in search of better antifungal agents to treat cryptococcosis8-10. 

Drugs can be discovered in natural products that, since 
antiquity, have been an important source of attractive bioactive 
compounds for drug development or can be produced through 
full or partial synthesis11. However, despite advances in molecular 
techniques and medicinal chemistry, the development of new 
drugs remains slow and expensive. In addition, several drug 
candidates are barred during the transition from the preclinical 
to the clinical stage, with 89% failing due to toxicity12. Thus, 
the reuse of drugs, that is, the definition of new therapeutic 
indications for substances already approved by the Food and 
Drug Administration, has attracted considerable attention. 
Another used approach is combining antifungal agents with 
other drugs, thus improving the activity of traditional antifungals 
due to their associated action on more than one target10. 

This review aims to provide an overview of the scientific 
evidence available for cryptococcosis in general, current treatment 
options, therapeutic failures, and methodologies for obtaining 
new anticryptococcal drugs, for example, by bioprospecting 
natural products and structural modifications. In addition, it 
aims to address potential drugs, or drug combinations, which 
are undergoing preclinical and clinical investigations for drug 
repurposing and combined therapy.

CRYPTOCOCCOSIS

Cryptococcosis or cryptococcal infection is a life-threatening 
fungal disease caused by the inhalation of encapsulated yeasts 
(Figure 1) belonging to the C. neoformans and C. gattii species 
complex1,13. With the evolution of molecular biology techniques and 
the use of different genotyping methods, it has become possible 
to assign these species to eight main genotypes: VNI, VNII, VNIII, 
and VNIV for C. neoformans and VGI, VGII, VGIII, and VGIV for  
C. gatti14-17. Recently, a fifth genotype (VGV) has been described in 
the C. gattii species complex18. 

The causative agent is widely distributed in the natural 
environment, commonly in feces and birds nest, but mainly in 
pigeons, dead organic matter, bark, leaves, and fruit trees17. 
Cryptococcus spp. are globally distributed, and until 1955, 
prior to the availability of antifungals especially amphotericin, 
cryptococcosis was inevitably fatal19. Today, mortality remains 
high, particularly in the endemic regions of sub-Saharan Africa, 
a setting where access to healthcare is limited and the number 
of HIV infected individuals is high20,21. In developed countries, the 
observed drop in mortality rate can be explained by early diagnosis 
and wide availability of antiretroviral therapy22. 

Cryptococcosis occurs predominantly in immunocompromised 
patients and is a major cause of morbidity and mortality in these 
individuals, especially in those infected with HIV21,23. Individuals with 
diabetes and lupus erythematosus, transplant recipients, patients 
using immunosuppressive therapies, and patients with malignant 
neoplasms are also frequently affected with cryptococcosis, thus 
becoming a worldwide concern5,7. Cryptococcal infection also 
manifests in immunocompetent patients, and the signs and 
symptoms of infection are often nonspecific. This lack of specificity 
often leads to a delay in diagnosis and initiation of appropriate 
treatment, which in turn may lead to a severe clinical course and 
rapid death, even in patients without HIV24. In addition, delayed 
diagnosis can lead to additional morbidities such as stroke, 
blindness, deafness, neurological impairment, and cognitive 
dysfunction25. 

The primary manifestation, pulmonary cryptococcosis, 
can range from mild colonization of the lungs to severe lung 
infection5,6. At this stage, yeast can be spontaneously eliminated 
or remain in a non-replicative state for months or even years 
in immunocompetent hosts26,27. However, in cases of impaired 
immunity, yeasts are reactivated and disseminated via the blood 
to various organs, especially the brain and meninges, leading 
to cryptococcal meningitis. The latter is the most common 
and severe clinical manifestation of cryptococcosis, primarily 
affecting immunosuppressed patients, particularly those with 
depleted or defective CD4+ T cells5,25,28. The infection also 
involves other sites such as the skin, skeletal system, digestive 
tract, and prostate; though uncommon this is well-documented 
in the literature 18,29,30. 
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CONVENTIONAL THERAPY

Depending on the individual’s immune status, site of infection, 
disease severity and drug availability, several therapeutic regimens 
can be considered for the treatment of cryptococcosis5,28,31. 
Although adapted to the infection severity and state of the host’s 
immunity, the World Health Organization (WHO) recommends 
the treatment of cryptococcal infections using a three-stage 
therapeutic strategy: induction, consolidation, and maintenance. 
The standard therapy is limited to the use of the following drugs: 
amphotericin B, flucytosine, and fluconazole28. In summary, 
amphotericin B, alone or in combination with flucytosine, is 
employed as an initial induction therapy, and fluconazole is 
suggested for the consolidation and maintenance therapy28,32,33. 

Among the three drugs available, amphotericin B is the oldest 
antifungal drug for systemic use. It acts by binding to ergosterol 
in fungal cell membranes, forming pores that allow the leakage of 
cell contents, such as K+, Na+, H+, and Cl− ions, which consecutively 
leads to apoptosis34,35. Despite being considered as one of the 
systemic antifungals with the broadest fungicidal activity, the use 
of amphotericin B has some limitations that are mainly associated 
with its nephrotoxicity36. Lipid formulations of amphotericin B 
with reduced toxicity have been developed; however, although 
liposomal amphotericin B has an improved safety profile and 
greater efficacy than conventional amphotericin B7, the cost of 
these lipid formulations continues to be a barrier for the treatment 
of cryptococcosis in resource-limited countries37. 

The synthetic drug flucytosine, which was first evaluated as an 
antitumor agent38, is recommended by WHO; however, it is mainly 
available in resource-rich countries. The drug is efficient for the 
treatment of cryptococcosis when combined with amphotericin 
B 39,40. However, its use as a single antifungal agent is discouraged 
owing to its significant adverse effects, in particular, hepatotoxicity, 
myelotoxicity, and resistance when used in monotherapy, thereby 
compromising therapeutic success8,41-43. 

Fluconazole is one of the best-known antifungal drugs for 
the systemic treatment of a broad spectrum of fungal infections. 
Azoles constitute a class of synthetic antifungals with fungistatic 
activity, and fluconazole, in particular, has been in clinical use since 
the 1980s44. In cryptococcosis therapy, the main advantage of 
fluconazole is its lack of severe nephrotoxic effects. Furthermore, 
they are frequently used to replace amphotericin B or flucytosine 
when their availability is limited33. However, because the duration 
of therapy is long, significant resistance is often reported in this 
antifungal class7. 

WHO has recently published new strategies and guidelines for 
the management of patients with cryptococcosis28. These protocols 
were established in association with a clinical trial carried out 
by Jarvis and colleagues31 that recommend the use of liposomal 
amphotericin B as a first-line treatment for cryptococcal meningitis. 
It was administered as a single dose on day one, followed by 14 
days of flucytosine and fluconazole administration. The study 
revealed that this treatment scheme considerably improved 
survival rates, reduced neurological impairment, and decreased 
adverse events in patients with infection. The WHO stresses the 
importance of early diagnosis and treatment of cryptococcosis, 
together with recommendations of closely monitoring patients 
during and after treatment to avoid relapses.

In summary, access to only the antifungal drugs available for 
the standard treatment of cryptococcosis remains insufficient, 
especially in resource-poor countries, where a high incidence of 
cryptococcal meningitis is observed7,23. In addition, increased fungal 
resistance to azoles, difficulty in administering and monitoring 
the adverse effects of amphotericin B and flucytosine, and their 
high costs remain important challenges in medical practice, even 
in resource-rich countries.

THERAPEUTIC FAILURES

This phenomenon of antimicrobial resistance results in serious 
restrictions on the available options for cryptococcosis clinical 
treatment. Common antifungal resistance mechanisms include 
a decrease in the effective drug concentration, alterations or 
overexpression of drug targets, and metabolic deviations45. Thus, 
therapeutic failure in cryptococcosis may be related to both host 
factors and the existence of strains of Cryptococcus spp. that 
develop resistance to antifungal drugs46. 

Extrapolations from previous studies on other fungal species 
may improve our understanding of the resistance mechanisms 
employed by C. neoformans7 for which research is scarce. Reports 
of Cryptococcus spp. being resistant to amphotericin B are 
relatively rare; however, this phenomenon is already a concern47. 
The mechanisms that confer resistance to polyenes are related to 
mutations in ergosterol biosynthesis pathway genes, resulting in 
reduced binding of amphotericin B and/or inactivation of the drug, 
leading to fungal resistance48,49. The mechanisms of flucytosine 
resistance in Cryptococcus spp. remain unresolved and further 
investigation is needed to define them7. Approximately 10% of 
fungal isolates, even in the absence of previous drug exposure, 
show primary resistance to flucytosine50. In the case of infections 
with C. neoformans in particular, monotherapy with flucytosine 
is discouraged because of the rapid and frequent appearance of 
resistant isolates51. 

In the 1990s, especially in patients with HIV, the indiscriminate 
use of fluconazole resulted in the emergence of drug-resistant 
Cryptococcus spp. strains among susceptible populations52-54. Azole 
resistance is a relatively common event in recurrent episodes of 
cryptococcal meningitis33,55. The molecular basis of this resistance 
in Cryptococcus spp. is poorly resolved; however, overexpression 
of the AFR1 gene that codes for the azole efflux pump and 
point mutations in the ERG11 gene, that is, the gene encoding 
lanosterol 14α-demethylase as the target enzyme of azoles, have 
been associated with alterations in susceptibility to fluconazole in  
C. neoformans7,56-59. 

Resistance to fluconazole in Cryptococcus spp. may also be 
associated with heteroresistance, an adaptive mode of resistance 
against azoles60. This phenomenon refers to the heterogeneous 
susceptibility of a microorganism population to fluconazole, 
meaning that some clones are resistant whereas others are 
susceptible61. Resistant subpopulations gradually adapt to 
increasing drug concentrations. However, this acquired resistance 
to high concentrations of fluconazole can be lost during repeated 
passages in drug-free media and the clones return to their original 
level of heteroresistance60,62. 

The rise of heteroresistance in isolates of the C. neoformans 
species complex against fluconazole has been identified as one 
of the causes of cryptococcosis63. Heteroresistance may explain 
treatment failure in some patients, even when they are treated with 
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the appropriate choices and concentrations of antifungal drugs61. 
Furthermore, current antifungal susceptibility testing algorithms 
have not been designed to detect heteroresistance; accordingly, 
unreliable susceptibility testing results are expected in the case 
of infections with heteroresistant Cryptococcus spp. strains62,64- 66. 

BIOPROSPECTING OF NATURAL PRODUCTS WITH  
ANTIFUNGAL ACTIVITY

Historically, nature has been an important source of therapeutic 
molecules. Currently, secondary metabolites of natural products 
produced by plants, microorganisms, marine animals, and other 
aquatic systems comprise approximately half of all pharmaceutical 
products on the market67,68. This reveals an immeasurable source of 
opportunities in the area of scientific and technological research 
on natural products, and prospecting new drugs from biodiversity 
remains one of the main choices for the identification of new drugs69,70. 

Bioprospecting of anticryptococcal drugs is commonly 
performed using classic or virtual (computational) cell screening. 
In the course of these screening approaches, bioproducts obtained 
from natural sources, such as plants, fungi, bacteria, insects, 
animals, and marine organisms71,72, were initially tested using 
bioassays that assess antifungal activity10. The disk diffusion assay 
is the most commonly used qualitative method for initial screening 
of antifungal activity73. The second most common method is the 
broth microdilution method, which is described by the Clinical 

FIGURE 2: Bioprospecting steps for anticryptococcal drugs, their areas of knowledge, and the clinical trials phase. Created with BioRender.com.

and Laboratory Standards Institute (CLSI; document M-27 A4) or 
the European Committee on Antimicrobial Susceptibility Testing 
(document EDef 7.3.1), and is used to quantitatively determine 
the minimum inhibitory concentration (MIC) of substances with 
antimicrobial effects against pathogenic yeasts74,75. 

Once the antifungal potential is identified, the bioproducts are 
subjected to extraction, isolation, and identification steps, which 
include different techniques capable of detecting the presence 
of compounds and then characterizing them76. In summary, the 
discovery of natural products with antifungal activity generally 
comprises: 1) classic or virtual cell screening; 2) extraction, 
isolation of compounds and structural characterization by thin 
layer chromatography, variations of chromatography associated 
with mass spectrometry, analysis of carbon 13 nuclear magnetic 
resonance, and hydrogen nuclear magnetic resonance analysis; 
3) pharmacological studies to determine the mode of action; 4) 
toxicological studies to delineate the substance’s safety; 5) preclinical 
trials and, if successful; 6) clinical and marketing studies (Figure 2).

Several new natural products from fungi, bacteria, insects, 
sponges, algae, and plants have proven to be effective alternatives 
with the potential to form new drugs that can be effectively used 
against strains of C. neoformans and gattii76,77. In recent years, 
marine sponges and algae have emerged as important sources 
of new natural products with antifungal activity78; however, plants 
and fungi are still the most productive sources of antifungal 
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compounds with anticryptococcal activity, including phenols, 
flavonoids, terpenoids, alkaloids, and peptides, as the main 
chemical classes represented in these plants77.

Natural products are important sources of therapeutic drugs. 
However, it is generally accepted that the drug discovery and 
development processes are time- and resource-intensive. Thus, 
in recent years, both computational and experimental techniques 
have played important roles and represent complementary 
approaches76. For a complete review of computer-aided drug 
design and virtual screening for lead molecules in the discovery 
of new drugs against Cryptococcus spp., the comprehensive work 
by Manjunath and Skariyachan (2018) should be consulted79.   
Table 1 summarizes the lead molecules selected from natural 
sources with antifungal activity against Cryptococcus spp. that 
have been identified in recent years.

TABLE 1: Lead molecules selected from natural sources with antifungal activity against Cryptococcus spp. that have been identified in recent years.

Source Natural source Compound/
chemical class Reference

Plant

Ocimum basilicum (Linnaeus) Sesquiterpenes 80

Lafoensia pacari (St-Hilaire) Punicalagin (tannins) 81

Thymus vulgaris (Linnaeus) Terpenoids 82

Xylosma prockia (Turcz) Phenolic metabolites 83

Uvaria comperei (Le Thomas) Alkaloid and flavonoids 84

Gentiana crassicaulis (Duthie ex 
Burkill) Bisphosphocholines 85

Chromolaena odorata (Linnaeus) Flavonoids 86

Cistus ladanifer (Linnaeus) Terpenoids 87

Hypoxis daylily (Linnaeus) Benzoylcyclopropane derivatives 88

Annona mucosa (Jacquin) Liriodenine 89

Verbesina turbacensis (Kunth) Hydroxycinnamic esters 90

Fungus

Pestalotiopsis sp. Pestalactams 91

Auxarthron / Pseudauxarthron Phenalenones and cyclic 
tetrapeptides 92

Ruby discosia Chaetoglobosins 93

Preussia typharum Macrolides 94

Aspergillus terreus Terrestrial 95

Sodiomyces alkalinus Hydrophobins 96

Animal

Hippospongia sp. Sesquiterpene quinones 97

Plakortis zyggompha and Plakortis 
halichondrioides Plakinic acid and plakortides 98

Tetrigone melanoleuca and 
Tetragonula laeviceps Propolis 99

Meccus pallidipennis and Rhodnius 
prolixus Peptides 100

Bacterium Streptomyces clavuligerus Ibomycin 101

STRUCTURAL MODIFICATION

The first step in the design of new anticryptococcal drugs 
using structural modification is the use of a well-defined chemical 
substance with previously characterized biological activity102. 
The next step involves the techniques required to derive new 
analogs, homologues, or structural congeners with improved 
pharmacological properties. For this purpose, general processes of 
simplification and molecular association have been applied102-104. In 
summary, the final product was designed by the partial molecular 
modification of the prototype compound with the inclusion 
or exclusion of chemical structures that favor greater potency, 
stability, and safety characteristics than the original compound68. 

Substituted derivatives of terpenoids, quinones, naphthoquinones 
and coumaric acid are among the compounds with antifungal 
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TABLE 2: Chemical structure of substituted derivatives with noteworthy activity against Cryptococcus neoformans and Cryptococcus gattii strains obtained by 
applying molecular modification. 

Starting material (prototype) Derivative with increased activity Reference

2-hydroxynaphthalene-1,4-dione 1 H -cyclopenta[ b ]naphtho[2,3- d ]furan-5,10(3a 
H,10b H )-dione

109

9 H -pyrido[3,4- b ]indole 1-methyl-8-nitro-9 H -pyrido[3,4- b ]indole

108

Betulinic acid

( 1R,3a S,5a S,5b R,9 S,1(1a R )-3a-((3-(4-(3aminopropyl)
piperazin-1-yl)propryl)carbamoyl)5a,5b,8,8, 

11a-pentamethyl-1-(prop-1-em-2-yl)-icosahydro-1 H 
-cyclopenta[ a ]chrysen-9-yl acetate

111

7 H -naphtho[1,2,3- ij ][2,7]naphthyridin-7-one 3-ethylthieno[3',2':4,5]benzo[1,2 - d ]isoxazole-4,8-dione

110

5,7-dihydroxy-2-methyl-4 H -chromen-4-one
( E )-2-(5-hydroxy-2-methyl-4-methylene-4,6,9,10-

tetrahydrooxocino[3,2- g ]chromen-8-yl)ethyl acetate

112

( S )-6-isopeopyl-3-methylcyclohex-2-enone 3-hydroxy-2-isopropyl-5-methylcyclohexa-2,5,-
diene-1,4-dione

113

( E )-3-(4-hydroxyphenyl)acrylic acid ( E )-ethyl 3-(4-hydroxyphenyl)acrylate

114

5-methyl-5 H -indolo[3,2- b ]quinolin-11(10 H )-one 5,10-dimethyl-5 H -indolo[3,2- b ]quinolin-11(10 H )-one

105

Structures were designed using Chemdraw 19.0.
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properties whose derivatives have been extensively studied in recent 
years for their anticryptococcal activity105-110. Recently, derivatives 
of sampagin, an alkaloid extracted from the stem bark of Cananga 
odorata Lamarck, have been shown to mediate potent antifungal 
activity against C. neoformans and gattii species110. In this study, a 
series of tricyclic isoxazole derivatives with excellent anticryptococcal 
activities were identified by structural simplification and alteration 
of the sample skeleton. The derived compound (Table 2) showed 
a high degree of inhibitory activity against C. neoformans, with an 
MIC80 value of 0.031 μg/mL. This activity was more potent than that 
of substances such as fluconazole and voriconazole. Furthermore, 
the substance showed potent inhibitory effects against important 
virulence factors, such as biofilm activity, melanin production, and 
urease activity of yeasts110. 

Despite the considerable efforts invested in the search for 
antifungals, several new compounds that were screened or 
obtained by structural modification and demonstrated antifungal 
activity against Cryptococcus spp. remain poorly investigated77. 
However, there is hope that some will progress into useful 
antifungal agents owing to molecular modifications. Moreover, in 
the next step, such new drugs with anticryptococcal activity will 
hopefully advance to clinical trials.

DRUG REPURPOSING 

To accelerate the development of new antifungal agents, drugs 
developed for other therapeutic purposes can be repurposed if 
they also show antifungal activity2. Wemuth was an early advocate 
of screening approved drugs for new therapeutic indications and 
coined the term systematic optimization of side-activities (SOSA), 
which has become well known as a drug repositioning strategy115. 

The repositioning of drugs has few advantages, namely: 1) 
pharmacological, pharmacokinetic and safety data in humans 
have already been previously established in preclinical and human 
trials, 2) the clinical use of a drug already available on the market is 
immediate, and 3) reduction in research costs associated with the 
expansion of the therapeutic indication8,115,116. Therefore, expanding 
the applicability of a drug to other diseases is a promising approach 
that has been successfully used in recent years to identify drugs 
with antifungal activity37. 

In recent years, a series of drugs developed for other 
therapeutic purposes have demonstrated antifungal activity against 
Cryptococcus spp.117-130. The most notable examples of repurposed 
pharmaceutical compounds for cryptococcal meningitis that have 
reached the clinical trial stage involve the drugs sertraline and 
tamoxifen2,117. Tamoxifen has not shown any benefit in eliminating 
Cryptococcus spp. from the cerebrospinal fluid, and the sertraline 
study had to be terminated early due to serious adverse effects116,117. 
It is important to note that repurposed drugs are not optimized 
for indications other than those on the leaflet. Therefore, their 
pharmacokinetic properties and efficacy often need to be improved 
if off-label applications are desired. Considering this observation, 
an alternative approach to repurposing is the optimization of a 
compound or drug for its secondary effect, also known as SOSA115. 

For a comprehensive review of this approach, please refer to the 
recent work of Donlin and Meyers (2022)118. 

COMBINATION THERAPY 

Compared with the discovery of antibiotics, the discovery of 
antifungal agents is much more difficult. A common explanation for 
this finding is that fungus, similar to its human host, is a eukaryotic 
organism. This phylogenetic relatedness hinders the development 
of effective antifungal agents that are nontoxic to human cells130. 
This problem is evident within the Cryptococcus genus because 
of the pathogenicity, virulence, and resistance mechanisms that 
these fungi have developed6. In this context, combining different 
drugs for antifungal therapy is a feasible strategy to increase the 
efficacy of antifungals, decrease and/or avoid toxicity, and prevent 
fungal resistance.

The commonly used mode of assessing the combined effects 
of the two substances is the checkerboard test131-133. This method 
is based on the broth microdilution technique, in line with 
document M7-A4 of the CLSI74. Table 3 summarizes published 
drug combination studies of amphotericin B and fluconazole 
against Cryptococcus spp. In summary, the presented combinations 
are associated with improved activity of conventional antifungal 
agents owing to the combined action of more than one target, 
as well as reduced toxicity, because small amounts of one or 
both drugs can be used in combination12. An example of this 
is flucytosine, which seems to be of little use when used on its 
own for cryptococcosis therapy but has been reported to act 
synergistically in combination with amphotericin B. Therefore, 
additional benefits for the treatment of cryptococcal meningitis are 
observed when this drug is used in combination8. Consequently, 
combined antifungal therapy using flucytosine and amphotericin 
B has been used for at least four decades. However, as mentioned 
previously, the adverse effects, high cost, and unavailability of 
flucytosine in resource-poor countries still negatively interfere 
with the treatment of cryptococcal meningitis25,39. 

There is some hope on the horizon, with the new antifungals 
fosmanogepix and opelconazole, which are in the advanced stages 
of clinical development and exhibit antifungal activity against 
Cryptococcus spp. However, the available antifungal therapies 
for this infection remain limited. The adverse effects and high 
costs of the combined amphotericin B and flucytosine therapy, 
as well as the emerging resistance of C. neoformans and C. gattii 
to fluconazole, pose considerable challenges to clinical treatment. 
To overcome these problems, the use of drugs and combination 
therapies has attracted considerable attention in recent years. 
These methodologies have been increasingly applied because they 
are associated with a fast and economical mode of searching for 
new antifungal agents with antifungal activity against cryptococci. 
In parallel, research on the bioprospecting of natural products and 
studies, including planned structural modifications of bioactive 
molecules, continues in research laboratories. These combined 
efforts have fueled the ongoing hope of identifying a successful 
new antifungal agent, either by screening or targeted modifications 
of pre-existing molecules.
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