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ABSTRACT

OBJECTIVE: To describe the process and epidemiological implications of georeferencing in 
EpiFloripa Aging samples (2009–2019).

METHOD: The EpiFloripa Aging Cohort Study sought to investigate and monitor the living 
and health conditions of the older adult population (≥ 60) of Florianópolis in three study waves 
(2009/2010, 2013/2014, 2017/2019). With an automatic geocoding tool, the residential addresses 
were spatialized, allowing to investigate the effect of the georeferencing sample losses regarding 
19 variables, evaluated in the three waves. The influence of different neighborhood definitions 
(census tracts, Euclidean buffers, and buffers across the street network) was examined in the 
results of seven variables: area, income, residential density, mixed land use, connectivity, health 
unit count, and public open space count. Pearson’s correlation coefficients were calculated 
to evaluate the differences between neighborhood definitions according to three variables: 
contextual income, residential density, and land use diversity.

RESULT: The losses imposed by geocoding (6%, n  =  240) caused no statistically significant 
difference between the total sample and the geocoded sample. The analysis of the study variables 
suggests that the geocoding process may have included a higher proportion of participants 
with better income, education, and living conditions. The correlation coefficients showed little 
correspondence between measures calculated by the three neighborhood definitions (r = 0.37–
0.54). The statistical difference between the variables calculated by buffers and census tracts 
highlights limitations in their use in the description of geospatial attributes.

CONCLUSION: Despite the challenges related to geocoding, such as inconsistencies in 
addresses, adequate correction and verification mechanisms provided a high rate of assignment 
of geographic coordinates, the findings suggest that adopting buffers, favored by geocoding, 
represents a potential for spatial epidemiological analyses by improving the representation of 
environmental attributes and the understanding of health outcomes.
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INTRODUCTION

With the increase in the world urban population, a growing number of investigations seek 
to understand the relationships between urbanized environments and health outcomes1. 
Planning and managing cities efficiently may promote health and well-being, as well 
as reduce the incidence of chronic non-communicable diseases2,3, with a lasting effect4. 

Geographic Information Systems (GIS) are a set of technologies that allow the integration, 
in the same environment, of variables about different aspects of reality and at different 
aggregation scales5,6. Geographic models based on GIS support in the analysis of health 
disparities concepts such as neighborhood context, health services availability, physical 
activity practice, and daily destination accessibility7–10, capable of contributing to work on 
health and quality of life in cities.

Advances in GIS in the last two decades have increased the specificity with which an 
individual’s neighborhood environment can be spatially defined8. The GIS analyses in the 
Collective Health field are generally based on the residential location of an individual, which 
can be defined at various levels of geographic resolution, such as: a) administrative boundaries 
(neighborhoods, municipalities, or other regionalizations); b) census tracts (territorial unit 
defined at each census by the Brazilian Institute of Geography and Statistics, IBGE, to control 
the collection of population data); and, c) latitude and longitude of a residential address. 
For administrative limits and census tracts, converting the address into a coordinate is 
unnecessary; however, the correspondence of the address with the territorial limit under 
study should be observed. On the other hand, the latter requires a process of converting 
textual addresses into geographic coordinates, known as geocoding6,11.

The importance of geocoding for analyzing health data has been evidenced by  
national surveys12.

Geocoding allows the adoption of buffers, a zone around an individual’s home address 
(point) that establishes a boundary area, defined by a specified maximum distance, where 
spatial data of interest is aggregated. Buffers define and characterize the neighborhood 
accurately, helping to manage census tract limitations and the modifiable area unit problem7. 
Despite the importance of the scale to aggregate the environment variables, few studies have 
examined the influence of different neighborhood definitions in the results of analyses13. 
Thus, the results of the objective attributes of the urban environment acquired with each 
type of geographical resolution may be different, overestimating or underestimating the 
real exposure that the participants of an epidemiological study have to the attributes of 
interest of the investigation.

Although the agility in the spatialization of a large volume of sites is an advantage of 
geocoding, the conversion process increases the risk of position and classification errors. 
Previous works have reported variable geocoding rates and losses caused by problematic 
addresses and poor record quality14–17. Errors can lead to incorrect descriptions of the built 
environment variables, distorted conclusions about the association between dependent and 
independent variables, and inadequate public health decisions11. International studies use 
ArcGIS(r)/ArcView(r), a software licensed for geocoding6, but point out risks of incorrect 
localization6 and errors when applied in other countries19. Other studies hire commercial 
companies with trained professionals, their own software, and continuous spatial corrections18. 
Therefore, to minimize internal geocoding expenses, high-quality locational data is critical.

The EpiFloripa Aging Cohort Study, conducted in Florianópolis, Santa Catarina, sought 
to investigate and monitor the living and health conditions of the older population (60 
years or older) living in the urban area of the municipality20. Publications from this 
project have, so far, used the census tracts as a spatial unit of analysis and representation 
of the participants’ neighborhoods21,22. With households geocoding, new studies can be 
developed, applying more specific units of analysis to the urban environment that can 
effectively be accessed within a certain time interval. However, this process imposes 
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several technological and operational challenges that need to be addressed to ensure 
reliability and accuracy of the results.

Thus, this study describes the process and epidemiological implications of geocoding the 
residences of the EpiFloripa Aging Cohort Study (2009–2019) participants. For the latter, 
more specifically, we: a) compare sociodemographic data, environment and health condition 
perception obtained for the total sample and the proportion that was geocoded, searching 
possible distortions; and b) compare the performance of three possible neighborhood 
definitions from geocoding (census tracts, Euclidean buffers, and buffers across the street 
network) for some relevant variables, such as income, residential density, mixed land use, 
and connectivity.

METHODS

The EpiFloripa Ageing project is a population-based cohort study developed by the Federal 
University of Santa Catarina23. The spatial context of the study involves the entire city of 
Florianópolis (SC), with 421,240 inhabitants and 11.4% of the population over 60 years of age19. 
The sample selection process was carried out by clusters, in which the first stage units were 
the census tracts and those of the second stage were the households themselves. Initially, 
in 2009, the 420 urban census tracts of the municipality were organized according to the 
income deciles of the heads of households, and eight sectors were systematically drawn 
in each decile. Subsequently, a step was taken to reduce the coefficient of variation of the 
households in each sector, by dividing the sectors with the largest number of households 
(> 500) and grouping those with the lowest number (< 150), which resulted in 83 sectors, 
composed of a total of 22,846 households. At baseline, 1,911 older adults (≥ 60 years old) 
were identified and considered eligible.

Data collection was performed with a standardized questionnaire, applied as a face-to-
face interviews at the participant’s residence, which offered registration data necessary for 
geolocation, containing the participant’s identification code (ID), name, telephone, street, 
residential number, residential postal code (ZIP code), and neighborhood.

It had three waves of assessment—baseline (2009–2010), follow-up after five years (2013–2014), 
and follow-up after 10 years (2017–2019)—with the first wave involving 1,705 respondents. 
However, two duplicate participants and one with incompatible age took the sample to 
1,702, keeping the response rate at 89.2%. The second wave reached 1,197 participants, 
and from the third, it became an open cohort with 1,335 participants, of which 743 were 
follow-up interviews, 105 were older adults from the EpiFloripa Adult sample, and 487 were 
new recruits23. Further methodological details can be found in previous studies20,23,24.

The geocoding procedure followed several steps in this study, with three main strategies: 
a) address standardization; b) manual correction; and c) coordinate assignment and 
conference (Figure 1). The recurrence of incomplete address records or those with formatting 
incompatible with the geocoding program required standardization and normalization in 
a format suitable for import. For a low-cost procedure that does not require trained staff, 
we opted for the free Google Earth Pro software. The same software was chosen for the 
availability of qualified researchers and for its ability to quickly and automatically process 
the coordinates corresponding to the addresses9, suggesting corrections for invalid addresses.

To assess the coverage (proportion of successfully geocoded addresses) and positional 
accuracy of the participants’ households (how close the geocoded coordinates correspond 
to the true coordinates)11, a preliminary geocoding of the baseline was generated (EpiFloripa 
Idoso, 2009-2010). It highlighted the need to correct the addresses, preparing them for a 
definitive importation.

Strategies used to deal with incomplete addresses are among the main determinants 
of geocoding positional error11. Thus, addresses that were not found were verified on a 
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case-by-case basis (Figure 1). The correction process involved processing the database 
(Microsoft Excel 2013) and updating the addresses via consultation of additional reported 
data. Searches on mapping sites (Google Maps, Google Street View) and municipal road 
system data (http://geo.pmf.sc.gov.br) favored the manual geocoding of the coordinates of 
addresses that were not found.

Due to the change in the number of census tracts by the IBGE between the 2000 and 2010 
censuses, we chose to group sectors with similar mean income per capita characteristics, to 

Figure 1. Geocoding processes applied in three monitoring waves in Florianópolis. EpiFloripa Ageing Cohort Study, 2009–2019.
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guarantee a minimum number of older adults in each location. Thus, the study created what 
was called an Episector: a grouping of adjacent census tracts with similar characteristics, 
considering their geographical location and corresponding income decile15. The same 
grouping was used as a mechanism to verify geocoding.

To avoid sample loss, participants recruited in the first wave who lived outside the 
boundary of the selected Episector were reconsidered based on a safety margin defined 
by the average size of a block (100 meters from the surroundings of the Episectors). Thus, 
data from individuals living at the edges of the census tract and who are within its zone 
of influence were safeguarded. For the participants in the three waves of the study, the 
location outside the tolerance margin of the Episector was disregarded as an error factor, 
favoring longitudinal studies.

In similar studies, inaccessible addresses were solved by generating a “midpoint of the street 
segment,” deriving a centroid6,25. Therefore, for participants without records related to the 
residential number and without possibility of contact, the latitude/longitude coordinates 
of the centroids of the informed street were assigned. In extensive streets, the numbering 
of houses within the Episector in question was sought.

The same spatialization criteria were followed for the second and third waves of the study. 
Participants who changed addresses between the waves of research had their new home 
address checked and formatted for a new geocoding.

Participants with valid addresses were analyzed regarding 19 variables derived from the 
EpiFloripa Ageing, which encompass blocks of the questionnaire with sociodemographic 
data, data of perception of the environment, and health conditions along three waves of 
follow-up. The information collection method has been described in previous studies20,23,24. The 
data were compared according to the total samples, to identify the effect of georeferencing 
losses on the sample data of the three waves. The significance (95%) of the difference 
between the values for the total sample and the geocoded sample was calculated from 
a Z test for proportions.

Neighborhood definitions were adopted according to three different units of spatial analysis 
(Figure 2). From the database of streets in the municipality (Florianópolis City Hall – PMF 
– 2012), Euclidean (circular) and network (detailed) buffers were generated, which were 
then compared with the area pre-delimited by the traditional analysis unit, the census 
sector. The dimension adopted for the buffer (500 meters) follows previous studies based 
on a distance that allows an active displacement26 and on the average gait speed according 
to age group27, representing 10 minutes of walking from home.

By investigating the differences regarding the three neighborhood definitions, seven 
environmental variables were calculated for each spatial unit of analysis. For the samples 
geocoded in the three waves, the variables area (km²), mean income per capita (census 
tracts28), residential density (housing per hectare), mixed land use (entropy), street 
connectivity (three intersections or more), and health units and public open spaces counts 
were calculated29. When using buffered census data, the sectors and the portion comprised 
by them were considered, weighting the values according to the area of each census tract 
contained therein. To perform the calculations, scripts were created in the QGIS Graphical 
Modeler, combining different analyses into a single process and containing the analysis 
unit as a calculation parameter.

Medians and standard deviations were calculated for the variables income, residential 
density, and entropy. Finally, Pearson’s correlations between the representations by network 
buffer, circular buffer, and census tracts indicated the relationship between the spatial units 
for the same three variables. Scatter plots were used to represent the relationship between 
network buffers and census tract values for the three variables, showing how the different 
representations resulted in similar or different values.
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RESULTS

Figure 1 shows the quantity of successful geocoding and the description of the specificities of 
the addresses during the three waves of data collection. The baseline data of the EpiFloripa 
Aging (2009–2010) required the highest percentage of adjustment (17% of the records 
were incomplete, nw1 = 301) and generated a higher number of losses than the other waves 
(nw1 = 132). Error correction and verification from the expanded limit of the Episector (census 
tract) identified addresses outside it, inconsistent, and without numerical data (geocoded 
by the centroid of the street). The second wave of the study (2013-2014) had 77 losses, and 
the third (2017–2019) had 31, most of which were due to the move to another municipality 
(nw3 = 22). Finally, reconsidering participants from the three study waves with residential 
locations outside the expanded limit of their respective Episector avoided 18 losses (Figure 1).

Comparison between Total Sample and Geocoded Sample

Table 1 shows the percentage distribution and p-value according to sociodemographic 
data, environment and health condition perception of the total sample compared with the 
georeferenced sample, for the three follow-up waves.

Comparing income and schooling values shows a small bias in the direction of higher incomes 
and higher education, although these differences are not statistically significant in any of 
the cases. The geocoded sample showed a reduced proportion of participants with up to 1 
minimum wage and an increased proportion of individuals with more than 10 minimum 
wages. Similarly, the variables related to the environment also show a clear bias towards 
better conditions of the georeferenced samples compared with the total sample: in both 
wave 1 and wave 2, the georeferenced sample has more sidewalks, crosswalks, lighting, 
and safety during the day than the total, whereas only wave 1 has the same effect for the 
presence of flat streets, traffic conditions, safety at night, and the presence of public spaces. 
In all cases, however, these differences were not statistically significant.

Figure 2. Comparison between three types of neighborhood definition, census tract, Euclidean buffer, 
and detailed network buffer. EpiFloripa Ageing Cohort Study, 2009–2019.
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Table 1. Older adults’ sociodemographic variables, environmental perception, and health conditions over three follow-ups in Florianópolis 
according to the total and georeferenced samples. EpiFloripa Aging Cohort Study, 2009–2019.

Variable

1st wave (2009–2010) 2nd wave (2013–2014) 3rd wave (2017–2019)

Total sample 
(n = 1,702)

Georeferenced 
(n = 1,570) p-value

Total sample 
(n = 1,197)

Georeferenced 
(n = 1,120) p-value

Total sample 
(n = 1,335)

Georeferenced 
(n = 1,304) p-value

n (%) n (%) n (%) n (%) n (%) n (%)

Sociodemographic

Gender 

Male 614 (36.1) 561 (35.7) 0.5948 419 (35.0) 386 (34.5) 0.5987 510 (38.2) 499 (38.3) 0.4801

Female 1,088 (63.9) 1,009 (64.3) 0.4052 778 (65.0) 734 (65.5) 0.4013 825 (61.8) 804 (61.7) 0.5199

Age (years)

≤ 69 848 (49.8) 789 (50.3) 0.3859 412 (34.4) 392 (35) 0.3821 461 (34.5) 449 (34.5) 0.500

70–79 616 (36.2) 565 (36) 0.5478 509 (42.5) 475 (42.4) 0.5199 554 (41.5) 538 (41.3) 0.5398

≥ 80 238 (14) 215 (13.7) 0.5987 276 (23.1) 253 (22.6) 0.6141 320 (24) 316 (24.3) 0.4286

Per capita income  
(R$ minimum wage)a                  

≤ 1 197 (11.9) 179 (11.7) 0.5714 92 (8.1) 84 (7.9) 0.5714 140 (10.6) 132 (10.3) 0.5987

2–3 435 (26.3) 400 (26.2) 0.5239 327 (28.7) 310 (29.1) 0.4168 367 (27.8) 361 (28) 0.4562

4 –5 314 (19) 287 (18.8) 0.5596 227 (19.9) 205 (19.2) 0.6628 247 (18.7) 244 (19) 0.4207

6–10 382 (23.1) 350 (23) 0.5279 274 (24.0) 255 (23.9) 0.5239 327 (24.8) 316 (24.6) 0.5478

11–40 310 (18.7) 291 (19.1) 0.3859 216 (18.9) 207 (19.4) 0.3783 233 (17.7) 229 (17.8) 0.4721

> 41 17 (1.0) 17 (1.1) 0.3897 5 (0.4) 5 (0.5) 0.3594 5 (0.4) 5 (0.4) 0.500

Schoolingb (years)                  

≤ 4 753 (44.2) 685 (43.7) 0.6141 523 (43.7) 486 (43.4) 0.5596 472 (35.5) 463 (35.7) 0.4562

5–8 307 (18) 284 (18.1) 0.4721 199 (16.6) 187 (16.7) 0.4761 244 (18.3) 235 (18.1) 0.5517

9–11 241 (14.2) 218 (13.9) 0.5987 180 (15) 168 (15) 0.5 215 (16.2) 210 (16.2) 0.500

≥ 12 401 (23.6) 380 (24.3) 0.3192 295 (24.6) 279 (24.9) 0.4325 399 (30) 390 (30) 0.500

Environmental perception

Presence of sidewalks 1,276 (74.8) 1,182 (75.3) 0.3707 881 (73.6) 833 (74.4) 0.33 1,101 (82.7) 1,073 (82.5) 0.5557

Presence of flat streets 800 (46.9) 743 (47.3) 0.409 544 (45.4) 506 (45.2) 0.5398 710 (53.3) 689 (53) 0.5596

Traffic conditions (traffic 
DOES NOT hinder 
physical activity)

1,030 (60.4) 952 (60.6) 0.4522 680 (56.8) 634 (56.6) 0.5398 850 (63.9) 829 (63.9) 0.5

Presence of crosswalks 1,027 (60.2) 949 (60.4) 0.4522 756 (63.2) 711 (63.5) 0.4404 933 (70.2) 909 (70) 0.5438

Presence of street lighting 1,490 (87.4) 1,386 (88.3) 0.2148 1,044 (87.2) 986 (88) 0.281 1,204 (90.9) 1,175 (90.9) 0.5

Daytime safety 1,273 (74.7) 1,174 (74.8) 0.4707 942 (78.7) 886 (79.1) 0.4052 1,102 (82.9) 1,076 (82.9) 0.5

Nighttime safety 539 (31.6) 499 (31.8) 0.4522 426 (35.6) 399 (35.6) 0.5 580 (45) 564 (44.9) 0.5199

Presence of public spaces 
(parks, squares, walking 
paths, and sports courts)

595 (34.9) 554 (35.3) 0.4052 590 (49.3) 549 (49) 0.5557 851 (64.1) 832 (64.1) 0.5

Health condition

Overweightc 862 (52.5) 801 (52.9) 0.409 622 (54.2) 584 (54.2) 0.5 708 (56.3) 691 (56.2) 0.5199

Health perception                  

 Very good 156 (9.4) 144 (9.4) 0.5 96 (8.7) 93 (8.7) 0.5 136 (10.6) 135 (10.8) 0.4325

 Good 691 (41.8) 640 (41.8) 0.5 524 (47.6) 510 (47.6) 0.5 658 (51.4) 642 (51.3) 0.5199

 Regular 640 (38.8) 594 (38.8) 0.4761 402 (36.5) 392 (36.6) 0.4801 420 (32.8) 409 (32.7) 0.5199

 Poor 125 (7.6) 117 (7.6) 0.5 59 (5.4) 59 (5.5) 0.4562 56 (4.4) 55 (4.4) 0.5

 Very poor 40 (2.4) 37 (2.4) 0.5 20 (1.7) 17 (1.6) 0.5753 11 (0.9) 10 (0.8) 0.8212

Continue
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The same pattern, although less pronounced, occurs for the variables of health perception, 
depression symptoms, cognitive deficit, and physical activity, which are more favorable 
in the georeferenced sample than in the total, whereas the reverse is true for overweight, 
diabetes, and hypertension.

Table 1. Older adults’ sociodemographic variables, environmental perception, and health conditions over three follow-ups in Florianópolis according to 
the total and georeferenced samples. EpiFloripa Aging Cohort Study, 2009–2019. Continuation

Diabetes 376 (22.1) 350 (22.3) 0.4443 301 (25.1) 286 (25.5) 0.4129 336 (25.2) 324 (24.9) 0.5714

Hypertension 1,007 (59.1) 935 (59.6) 0.3859 781 (65.2) 736 (65.7) 0.4013 819 (61.3) 802 (61.6) 0.4364

Depressive symptoms 427 (25.1) 393 (25.0) 0.5279 342 (28.6) 316 (28.2) 0.5832 300 (22.5) 292 (22.4) 0.5239

Cognitive deficitd 453 (26.7) 400 (25.6) 0.7642 306 (25.9) 282 (25.5) 0.5871 258 (19.5) 254 (19.7) 0.4483

Physical activitye 866 (50.9) 801 (51.0) 0.4761 580 (50.5) 565 (50.7) 0.4602 639 (48.6) 625 (48.7) 0.4801
a Per capita income: 1st wave: n = 1,659; 2nd wave: n = 1,147; 3rd wave: n = 1,318.
b Length of schooling: 1st wave: n = 1,694; 2nd wave: n = 1,194; 3rd wave: n = 1,330.
c Overweight: body mass index ≥ 27.0 kg/m².
d Cognitive deficit: categorized based on Almeida (provided in the database).
e Physical activity: sum of time spent on physical activity on commuting and leisure, dichotomized according to recommendations of 150 minutes of 
moderate to vigorous physical activities per week.

Table 2. Neighborhood characteristics of older adults’ residence over three follow-up waves in Florianopolis according to geocoded samples. 
EpiFloripa Ageing Cohort Study, 2009–2019. (nw1 = 1,570; nw2 = 1,120; nw3 = 1,304).

Variable Census tract
Buffer - 500-meter

Circular Detailed network

1st wave (2009–2010) Median (SD) Median (SD) Median (SD) 

Area (km2) of the neighborhood definition type 0.14 (0.57) 0.79 0.23 (0.09)

Income (R$): average per capita income (IBGE, 2010) 1,428.11 (944.10) 1,443.49 (826.37) 1,457.80 (899.21)

Residential densitya: sum of houses per street (IBGE, 2019) 17.41 (52.21) 21.30 (17.27) 29.72 (25.57)

Land use mix (entropy): balance between seven different land uses (IBGE, 2010) 0.12 (0.09) 0.10 (0.06) 0.12 (0.07)

Street connectivitya 9.00 (7.61) 42.00 (29.37) 22.00 (18.24)

Number of health units 0.00 (0.31) 0.00 (0.77) 0.00 (0.56)

Number of POS 0.00 (1.09) 1.00 (2.01) 0.00 (1.27)

2nd wave (2013–2014) Median (SD) Median (SD) Median (SD) 

Area (km2) 0.16 (0.59) 0.79 0.23 (0.09)

Income (R$) 1,447.83 (939.07) 1,469.45 (822.68) 1,471.14 (899.99)

Residential densitya 17.57 (57.16) 21.79 (17.40) 30.23 (25.92)

Land use mix (entropy)b 0.12 (0.10) 0.10 (0.06) 0.12 (0.07)

Street connectivityc 10.00 (7.82) 42.00 (30.31) 22.00 (18.89)

Number of health units 0.00 (0.31) 0.00 (0.77) 0.00 (0.56)

Number of POS 0.00 (1.08) 1.00 (1.95) 0.00 (1.23)

3rd wave (2017–2019) Median (SD) Median (SD) Median (SD) 

Area (km2) 0.16 (0.66) 0.79 0.25 (0.10)

Income (R$) 1,499.71 (955.52) 1,487.45 (821.17) 1,467.73 (884.97)

Residential densitya 17.57 (44.57) 20.10 (16.86) 29.24 (24.88)

Land use mix (entropy) 0.12 (0.10) 0.10 (0.06) 0.12 (0.08)

Street connectivityb 9.00 (8.21) 40.00 (33.07) 23.00 (20.52)

Number of health units 0.00 (0.31) 0.00 (0.79) 0.00 (0.60)

Number of POS 0.00 (0.96) 1.00 (2.12) 0.00 (1.34)

POS: public open space.
Note: the circular buffer size is the same for all cases.
a Number of households by line segment corresponding to street facets. Available at the National Register of Addresses for Statistical Purposes, IBGE, 2019.
b The Entropy formula stems from the sum of the proportions of each land use in a spatial unit, weighted by the Napierian logarithm of these proportions 
(Shannon, 1948). Values range from 0, in which the entire area has a single use, to 1, in which the uses under analysis are divided equally in a spatial unit 
(Park et al. [2018]). Seven categories of land use were considered following the classification used in Epifloripa: 1. Residences; 2. Supermarkets, convenience 
stores/mini markets/grocery stores, farmers’ markets; 3. Stores, bookstores, banks, pharmacies, beauty salons, barbershops; 4. Restaurants, bakeries, snack 
bars, coffee shops; 5. Health centers, community centers; 6. Parks, public squares, walking lanes, bike lines, sports courts; 7. Gyms and/or clubs.
c Three-way or higher intersection (+3).
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Table 2 presents seven descriptive variables for the three spatial units considered here: census 
tract, circular buffers, and network buffers. In general, the standard deviations of the two 
types of buffers are smaller than those of the census tracts. The values of the environmental 
characteristics for the three units indicate low variability between the neighborhoods 

Table 3. Pearson’s correlation between spatial units regarding income (average per capita income in 
BLR), residential density (dwellings per hectare), and objective entropy according to geocoded samples. 
EpiFloripa Ageing Cohort Study, 2009–2019. (nw1 = 1,570; nw2 = 1,120; nw3 = 1,304).

Variable Network buffer 500 m Circular buffer 500 m

1st wave (2009–2010)

Objective entropy

Network buffer 500 m -  

Circular buffer 500 m 0.83* -

Census tract 0.50* 0.54*

Residential density

Network buffer 500 m -  

Circular buffer 500 m 0.78* -

Census tract 0.39* 0.39*

Income

Network buffer 500 m -  

Circular buffer 500 m 0.97* -

Census tract 0.90* 0.86*

2nd wave (2013–2014)

Objective entropy

Network buffer 500 m -  

Circular buffer 500 m 0.82* -

Census tract 0.51* 0.55*

Residential density

Network buffer 500 m -  

Circular buffer 500 m 0.78* -

Census tract 0.37* 0.37*

Income

Network buffer 500 m -  

Circular buffer 500 m 0.97* -

Census tract 0.89* 0.85*

3rd wave (2017–2019)

Objective entropy

Network buffer 500 m -  

Circular buffer 500 m 0.74* -

Census tract 0.46* 0.56*

Residential density

Network buffer 500 m -  

Circular buffer 500 m 0.81* -

Census tract 0.41* 0.42*

Income

Network buffer 500 m -  

Circular buffer 500 m 0.97* -

Census tract 0.88* 0.85*

*p < 0.05.
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along the three lines of study, except for the contextual income, which showed an increase. 
Attributes such as mixed land use, number of health units, and number of public open 
spaces maintain lower values over three follow-up waves. The low values, evidenced by the 
three units of analysis, reveal a lower access to different land uses, and a limited access to 
health and leisure equipment in the sampled neighborhoods.

Table 3 shows that measures of mixed land use and residential density for circular and 
network buffers are highly correlated across the three waves, with values ranging from 0.74 
to 0.83, whereas the correlation of both types of buffers with census tracts is much lower 
(0.37 to 0.54). For the income variable, all measures in all spatial units are highly correlated, 
ranging from 0.85 to 0.97.

DISCUSSION

The geocoding of data from the EpiFloripa Ageing Cohort Study with Google Earth Pro 
had a high proportion of matches, despite the difficulties related to inconsistencies in the 
addresses. Among the residential data of the three study waves, only 6% (nw1,w2,w3 = 240) were 
considered losses, and 1% (nw1,w2,w3 = 44) received coordinates corresponding to the centroid 
of their respective street, which led to the absence of statistically significant difference 
between the total sample and the georeferenced sample (Table 1).

Although the coordinate assignment rate approached 100%, a significant part of the losses 
involved addresses that were not found (nw1 = 79; nw2 = 39; nw3 = 9). This fact is partially justified 
by the physical-geographical characteristics of the municipality and its historical occupation 
process. The previous rural structuring and naval flows led to the formation of a disjointed 
and fragmentary urban fabric, with the presence of fishbone traces, varied easements, 
and disconnected and peripheral neighborhoods30. In addition, the slight difference in the 
proportion of income groups indicates possible problems related to geocoding populations 
of neighborhoods of lower socioeconomic status (Table 1).

In the insular portion, low-income settlements are located on hillsides and in areas with 
little accessibility30. The irregularity and urban exclusion impose inequalities in the 
municipal registry, implying difficulties in georeferencing. This problem is not unique to the 
research: another Brazilian study19 revealed weaknesses in the geocoding of less urbanized 
sectors, neighborhoods of lower socioeconomic level, and recent settlements, with irregular 
completeness and precision, which may impact public health and education actions precisely 
in areas that need them most.

Another factor that may justify the volume of losses is the small number of interviewers in 
the field in the first wave of the study, their turnover, and the need for replacement in the 
second wave9. These factors generated limitations in the accuracy and rigor of the procedure 
for registering the participants’ home addresses. Additionally, 53 addresses were located 
outside the Episector, excluding participants of the three waves (nw1,w2,w3 = 18). These results 
reinforce the need for epidemiological studies to include in their planning training on ways 
to obtain address data with greater quality or accuracy, or to use other forms of geolocation, 
such as mobile devices for real-time location (e.g., mobile phones, portable GPS, among 
others). This can ensure higher quality of the georeferenced data.

Regarding the possibility of introducing a bias with the losses imposed by geocoding, the 
p-values in Table 1 indicate that, for all considered variables, and for the three waves, the 
total sample and the georeferenced sample showed no statistically significant difference. 
That is, the losses in the georeferencing of the three study waves did not affect their 
representativeness compared with the total sample. Despite this, all variables of built 
environment perception showed a slight increase in the georeferenced sample. Considering 
that higher values in these characteristics indicate areas with higher quality (greater 
presence of sidewalks, greater safety during the day and at night, etc.), this suggests that 
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the geocoding process may have inserted a small (and statistically insignificant) distortion 
of including a higher proportion of participants with better levels of income, education, and 
living conditions. The proportions of income groups confirm this impression, reinforcing 
what was previously commented on the greater amount of losses in areas with more 
socioeconomic problems.

On the other hand, although the process caused sample losses, geocoding allowed the 
adoption of buffers, evidencing their statistical difference compared with measures calculated 
by census tracts, and highlighting flaws in describing the spatial attributes calculated 
on this territorial unit. The artificial spatial standardization of the census tract creates 
units of different dimensions and aggregation levels, which generated spatial measures 
with high variation (larger standard deviations) compared with buffer-based measures, 
especially for measures such as area, income, residential density, and mixed land use (Table 
2). Pearson’s correlation coefficients showed little correspondence between the measures 
calculated by the different spatial units during the three study waves, except for the income 
measure, calculated with data at the census tract level (Table 3). This was probably due to 
limitations in the data source causing aggregation in buffers to use data from the census 
tracts themselves. The results point to the influence of the use of census tracts on findings 
of spatial epidemiological analyses6, suggesting that adopting buffers can help manage 
their limitations, representing a more effective aggregation unit of environmental data7,13.

Due to these problems, we recommend that household-based surveys standardize 
records, expanding the detailing of location information9. The use of specific software and 
programming for normalization and search of the input addresses could have reduced the 
time spent updating the problematic addresses. Therefore, future studies may employ different 
geocoding methods, comprising address verification algorithms16, precision measurements 
of geocoded locations, and positional error assessments. Similarly, we recognize the need 
for a team familiar with geocoding and data manipulation software.

Finally, the low quality of municipal records in peripheral areas highlights a problem that 
impacts knowledge about urban reality and limits the creation of evidence-based public 
policies aimed at the most vulnerable populations. Therefore, the need to improve municipal 
registries is highlighted, expanding the detailing of location information that serves as 
input for geocoding.
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