
Kozak556

Sci. Agric. (Piracicaba, Braz.), v.66, n.4, p.556-562, July/August 2009

Point of View

ANALYZING ONE-WAY EXPERIMENTS: A PIECE
OF CAKE OR A PAIN IN THE NECK?

Marcin Kozak

Warsaw University of Life Sciences - Dept. of Experimental Design and Bioinformatics - Nowoursynowska 159,
02-776 Warsaw, Poland. e-mail <nyggus@gmail.com>

ABSTRACT: Statistics may be intricate. In practical data analysis many researchers stick to the most
common methods, not even trying to find out whether these methods are appropriate for their data
and whether other methods might be more useful. In this paper I attempt to show that when analyzing
even simple one-way factorial experiments, a lot of issues need to be considered. A classical method
to analyze such data is the analysis of variance, quite likely the most often used statistical method in
agricultural, biological, ecological and environmental studies. I suspect this is why this method is
quite often applied inappropriately: since the method is that common, it does not require too much
consideration—this is how some may think. An incorrect analysis may provide false interpretation
and conclusions, so one should pay careful attention to which approach to use in the analysis. I do
not mean that one should apply difficult or complex statistics; I rather mean that one should apply a
correct method that offers what one needs. So, various problems concerned with the analysis of
variance and other approaches to analyze such data are discussed in the paper, including checking
within-group normality and homocedasticity, analyzing experiments when any of these assumptions
is violated, outliers presence, multiple comparison procedures, and other issues.
Key words: analysis of variance, assumptions, graphical statistics, multiple comparisons, normal
distribution, non-parametric statistics, one-way designs, statistical analysis

ANÁLISE ESTATÍSTICA DE EXPERIMENTOS COM UM
ÚNICO FATOR: MUITO FÁCIL OU MUITO DIFÍCIL?

Resumo: Realizar análises estatísticas pode ser complicado. Em situações práticas muitos
pesquisadores utilizam os procedimentos de análise mais comuns, sem investigar se os mesmos são
apropriados para os seus resultados, ou mesmo se há outros métodos que poderiam ser mais adequados.
Nesse artigo buscarei mostrar que mesmo na análise de experimentos de classificação simples (com
um único fator) vários aspectos precisam ser considerados. A forma clássica de análise desse tipo de
dados é a análise de variância, que é provavelmente o método estatístico mais usado na agricultura,
biologia, ecologia e estudos de meio ambiente. Suspeito que essa é a razão pela qual tal método é
frequentemente usado de forma inapropriada: uma vez que ele é muito usado, não suscita maiores
considerações. Imagino que seja esse raciocínio que muitos pesquisadores devam empregar. Análises
incorretas podem fornecer falsas interpretações e conclusões, e dessa forma é importante prestar
atenção na escolha do procedimento a ser usado na análise. Não estou sugerindo que algum método
difícil ou complexo deva ser usado, mas sim que um método correto seja adotado, de forma a fornecer
os resultados adequados. Dessa forma, vários problemas relacionados à análise de variância e outras
abordagens para analisar esse tipo de dados são discutidas nesse artigo, incluindo verificações de
normalidade e homogeneidade de variâncias, análise de experimentos com violação dessas
pressuposições, presença de dados discrepantes, testes de comparações múltiplas, além de alguns
outros problemas.
Palavras-chave: análise de variância, pressuposições, análises gráficas, comparações múltiplas,
distribuição normal, estatística não paramétrica, experimentos de classificação simples, análise
estatística

INTRODUCTION

Analysis of variance (ANOVA) is an omnipresent
approach towards analyzing various designs in agri-

cultural, biological, ecological and environmental stud-
ies (see for example, in the following recent Scientia
Agricola issue: Caires et al., 2008; Crusciol et al.,
2008; Cruz & Cicero, 2008; Cruz et al., 2008; Ferreira
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et al., 2008; Guimarães et al., 2008; Miyauchi et al.,
2008; Morgado & Willey, 2008; Oviedo et al., 2008;
Santos et al., 2008; Soares et al., 2008; Vieira et al.,
2008; Yamamoto et al., 2008). Among these designs,
of course, is the most basic, one-way design. The
analysis of variance, proposed by Ronald Fisher in
the first decades of the twentieth century, has been
further developed and has evolved in various direc-
tions. Yet, the main idea remains the same, and most
applications for single-factor data require answering
the ANOVA-like question: whether or not the groups
differentiate a character of study in terms of the
mean.

Nonetheless, data vary and each data set has its
own specificity. ANOVA has some assumptions that
for many data sets are violated; sometimes these vio-
lations can be ignored, sometimes they must not. To
apply the method in such a situation, one may need to
act somehow so that ANOVA works as a researcher
desires. If one merely applies the method for any one-
way data without much consideration what actually the
data look like, then in all-too-many cases the analysis
will be incorrect. “Incorrect” does not only mean in-
correct from a statistical point of view; first of all, it
means that the answer to the question the researcher
asks has big odds to be incorrect. Everything must be
done to avoid this undesirable situation.

There are many paths to follow when analyzing
such kind of data. These can be found in various
sources on statistical analysis for agricultural, biologi-
cal, ecological and environmental sciences, including
Sokal & Rohlf (1995), Quinn & Keough (2002), Gotelli
& Ellison (2004) and many others. Because the prob-
lem is quite intricate, researchers still try to find the
best possible paths. For example, recently Kobayashi
et al. (2008) proposed a unified approach towards ana-
lyzing one-way toxicity data. I am in general against
any unified approaches in data analysis. This is sim-
ply because data are very diverse, and one approach
will work well for one data set, but may totally fail
for another.

In this paper I would like to probe into the issue
of analyzing data from one-way experiments. There
are many various methods that may be applied to such
data, and which is the best will never be decided. This
kind of analysis is full of traps and tricks to deal with
them. Here I would like to discuss some of these traps
and tricks, and to direct the readers’ attention to cho-
sen issues of the topic. I will not give any unified ap-
proaches, and I will not say what must and what must
not be done in a particular situation. Instead, I will just
show that even such simple data as those from one-
way experiments may be tricky to analyze, let alone
data from more complex experiments.

Checking normality
Kobayashi et al. (2008) point out that toxicity re-

searchers often pay much attention to the normality
of a variable within groups; this is not limited to tox-
icity researchers. Together with the variance homo-
geneity, the normality is often suggested the most criti-
cal when applying ANOVA. This is not necessarily cor-
rect in every situation. Gotelli & Ellison (2004, p. 296)
say, “Thanks to the Central Limit Theorem…, this as-
sumption is not too restrictive, especially if samples
sizes are large and approximately equal among treat-
ments.” As Quinn & Keough (2002, p. 192) point out,
the F test is robust to violation of the normality as-
sumption if only data are balanced (which means that
sample sizes from groups are the same), the within-
group variances are homogeneous (see the following
section), and the distributions in groups are not too
skewed. If any of these conditions is not met, how-
ever, the lack of normality may noticeably affect the
results by increasing the actual probability of type I
error.

Another problem is how to check whether the
variable is normal within groups. Many authors rec-
ommend statistical tests; so do Kobayashi et al.
(2008), from among several considered recommend-
ing Shapiro-Wilk test (Shapiro & Wilk, 1965) as the
most “powerful” (in inverted commas because the
power considered by the authors seems not to be the
power in a statistical sense). Nonetheless, in spite
of this great attention paid to tests for normality,
many say such tests are not the best way to check
the normality for ANOVA purposes. This is for sev-
eral reasons. First of all, like all statistical tests, they
strongly depend on sample size (from groups in our
case). Statistical power of such tests increases with
an increase in sample size, which is why it may be
difficult not to reject a hypothesis with a large
sample, and difficult to reject it with a small sample
(Quinn & Keough, 2002, p. 192). Paraphrasing the
words of Shipley (2002, p. 191), as sample size in-
creases, we run a greater and greater chance of re-
jecting our hypothesis on normal distribution be-
cause of very minor deviations from the normality
that might not even interest us. On the other hand,
checking for normality makes sense only when
sample size is not too small. Of course, one can ap-
ply the Shapiro-Wilk test for three-element sample,
but practically, the statistical power of such a test
is very small. Besides, as mentioned above, the F
test may work well even despite the lack of within-
group normality, so not applying the classical ANOVA
only because of the modest lack of normality is not
necessarily correct when the other assumptions are
met.
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Kobayashi et al. (2008) compared Kolmogorov-
Smirnov, Lilliefors, Shapiro-Wilk and Chi-square (at
three different class widths) tests as well as visual ex-
amination of the distribution based on normal probabil-
ity paper. Their results provide yet another interesting
proof of why statistical tests for checking normality
should be applied with great caution in the present con-
text. Results of two tests (and the decisions based on
them) may be very distinct, even if this is just the Chi-
square test applied with different widths of class.
Therefore, the choice of a particular test may have
quite an impact on the conclusions, which gives much
room for subjectivity, for certain undesirable.

If not tests, what might be applied to check the
normality? There are graphical methods that can be
used for distribution checking. Histograms are the best-
known tool for graphical presentation of distributions,
but they have been criticized by many statisticians; see
for example Farnsworth (2000) for a convincing dis-
cussion on why histograms are subjective. Quinn &
Keough (2002, p. 61) suggest using the boxplot—the
ingenious invention of John Tukey (1977)—for sev-
eral reasons. First, the central value is given by me-
dian, so the shape of a distribution is robust to outli-
ers. Second, they detect outliers in a sample (see the
section about outliers below). Third, they show
whether the variable is symmetrical or not. Reese
(2005) puts it, “Make it a rule: never do ANOVA with-
out a boxplot.” Note, however, that boxplots will not
detect multimodality in a variable’s distribution; they
also require quite a big sample—a boxplot for three
observations does not make too much sense. Probabil-
ity plots are another useful graphical tool (Quinn &
Keough, 2002, p. 62) that may help detect deviations
from normality such as skewness and multi-modality.
See also Cleveland (1993, 1994) for a comprehensive
account of graphical methods for checking distribu-
tions.

Here the problem of sample size comes out; Gotelli
& Ellison (2004, p. 150) gives the “Rule of 10”, ac-
cording to which for each treatment one should col-
lect at least 10 replications. If the Rule of 10 is met,
graphs will help; otherwise, especially with a really
small number of replications (3-4, say, quite a com-
mon number in agricultural experimentation), then not
only graphs but any other method will not work well
in checking normality. The Rule of 10 applies not only
to checking normality, but as Gotelli & Ellison say, to
experimentation in general.

Checking homogeneity of variances
For ANOVA, the assumption of variance homoge-

neity is much more important than that of the within-
group normality of the variable. Robust for violation

of the normality assumption, the F test does not work
well with heterogeneous within-group variances, which
is why some special attention needs to be paid to the
analysis when this situation occurs.

First of all, let us note that the above-given com-
ments on hypothesis testing refer to this situation as well.
With small samples, to reject the hypothesis that the vari-
ances are equal is difficult due to small statistical power;
with large samples, the situation is opposite, and to re-
ject such a hypothesis is rather easy due to large statis-
tical power. This should always be remembered when
applying ANOVA and checking its assumptions.

How should one act, then, to check if this assump-
tion is valid? Quinn & Keough (2002, sec. 8.3.2), criti-
cizing statistical tests as a tool for preliminary check
of this assumption, suggest applying boxplots of ob-
servations within groups or plotting the spread of re-
siduals against group means; Cleveland (1993, 1994)
also supports graphing residuals by means of various
plots. I agree with these suggestions, though I am
aware that many would not; this is a somewhat sub-
jective matter, but the arguments against applying tests
given by Quinn & Keough (2002) and summarized here
seem convincing.

Dealing with non-normal variables and/or hetero-
geneous within-group variances

If the variable is non-normal to the extent that it
indeed should not be analyzed with ANOVA (for ex-
ample, due to large skewness) and/or within-group
variances are heterogeneous, various approaches may
be applied. Let us mention some of them.

First of all, instead of the regular F-test, one can
apply other tests that were constructed to deal with
unequal variances; Quinn & Keough (2002, sec. 8.5.1)
list Welch’s test and its modification by Wilcox,
Brown-Forsythe test, James second order method, and
Z test by Wilcox; they also mention that in particular
situations generalized linear modeling may be of help
“if the underlying distribution of the observations and
residuals is known, and hence why a transformation
might be effective.”. Such tests are still investigated
and new approaches are proposed (see, e.g., Xu &
Wang 2008). Quinn & Keough (2002, p. 196) and
Gotelli & Ellison (2004, pp. 109-116) mention also ran-
domization tests.

Transformations also seem a sensible approach.
One needs to choose from among various transforma-
tions, the most common being the log and root ones.
There is a wide Box-Cox family of transformations
(Quinn & Keough, 2002, p. 66; refer to Gotelli &
Ellison, 2004, pp. 223-235, and Cleveland 1993, pp.
42-67, for a clear and thorough description of vari-
ous transformations), which includes the two above-
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mentioned transformations as well as many others.
Thus, because it searches for the optimum transfor-
mation factor over a wide range of transformations,
there is quite a chance that it will indeed work well.
Nonetheless, it does not have to, in which case one
may try the rank transformation. It leads to rank-based
tests, usually called the non-parametric tests or even
non-parametric ANOVA. One such test, likely the most
common and well known, is the Kruskal-Wallis test;
as Quinn & Keough (2002, p. 196) explain, this test
is incorrectly called the non-parametric ANOVA be-
cause no partitioning of variance is involved in this test.
Weldon (2005) goes even further and correctly claims
that such tests as the Kruskal-Wallis are not non-para-
metric because they are based on location parameters
such as the median, while non-parametric methods
should work outside of the parametric framework of
estimation and hypothesis testing.

The other test is indeed the rank-based ANOVA be-
cause it consists of transforming the variable to ranks
and applying ANOVA for the transformed variable;
Quinn & Keough (2002, p. 196) call this approach the
rank transform method. As they state, both these tests
(the Kruskal-Wallis test and rank-transform method)
provide the same results for one-way ANOVA (which
design we discuss in this paper), but the latter is more
general and can be applied to more complex designs.
Note, however, that Gotelli & Ellison (2004, p. 212)
argue that although rank statistics are used commonly
by some ecologists and environmental scientists, such
an approach “wastes information that is present in the
original observations.”

One extremely important thing is that if one applies
a rank-based method, it does not mean that the vari-
ances (of the rank-based variables) may differ among
groups. If they do, one compares neither means nor
medians, but distributions, so both the central tendency
and the distribution’s shape-including variances, of
which we know that are heterogeneous. Hence the ap-
plication of the rank-based tests to compare the cen-
tral tendency (medians) under the heterogeneity of
within-group variances should be avoided. Unfortu-
nately, as Kobayashi et al. (2008) put it, “The data are
examined [by most toxicologists] for homogeneity of
variance and if the variance is homogeneous, paramet-
ric tests are used and for heterogeneous variance non-
parametric tests are used”.

Outliers
One or more outliers may be a likely reason for both

within-group non-normal (even highly skewed) distri-
butions of the variable and heterogeneous within-group
variances. Identifying outliers may be carried out by ap-
plying graphical tools (including those mentioned above)

and many various techniques (see Hodge & Austin, 2004
for a detailed account of outlier detection).

An outlier can be a mistake, in which case it should
be either corrected or removed. It can also be what
we could call the true outlier. The true outlier is a value
that is unusual for other reasons than a mistake; it rep-
resents some unusual phenomenon which may happen
in nature (and happens, since the outlier has been ob-
served in the study). Note that sometimes it is impos-
sible to find out which is the case; for example, when
an outlier comes from a single measurement that can-
not be checked, it is rather difficult to decide which
version is the case. Nonetheless, if this is indeed a true
outlier, one can try to somehow analyze the data with
the outlier with robust methods (Quinn & Keough,
2002, sec. 4.5), although this may sometimes be dif-
ficult—the outlier may still have quite an impact on the
analysis. One can also remove the outlier from the data
set, but use it somehow in interpretation; the outlier
may indicate that some untypical phenomena can hap-
pen, which may need further, more detailed studies.
Pedhazur (1982, p. 38) puts it in this way: “… ex-
treme residuals may occur in the absence of any er-
rors. In fact, these are the most interesting and intrigu-
ing. … Discovery of such occurrences may lead to
greater insights into the phenomenon under study and
to the designing of research to further explore and ex-
tend such insights.” Rawlings et al. (1998, p. 331) say,
“The outlier might be the most informative observa-
tion in the study.”

In summary, unless you have convincing reasons
and are sure what you are doing, do not simply get
rid of outliers, treating them like an evil. One outlier
can be more intriguing and interesting than a bunch
of regular observations, than all the remaining obser-
vations from the experiment.

Multiple comparison procedures: once more about
them

Multiple comparison procedures (or multiple range
tests) are considered an intrinsic feature of ANOVA.
Once the general null hypothesis is rejected, multiple
comparisons are commonly performed to divide the
factor levels into homogenous groups, a homogenous
group being the group containing the factor levels for
which the means do not differ.

Wildly used, multiple comparison procedures are
thought of as a natural extension of ANOVA; I suppose
most researchers share this opinion. This is very wor-
rying information because these procedures are one of
the topics of applied statistics that cause many concerns,
misconceptions, misunderstandings and in general, prob-
lems. Hence we should devote some space to multiple
comparison procedures and discuss it once more.
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Why once more? For the very simple reason that
so much has been said about why multiple comparisons
should not be used whatsoever; for example, see very
convincing and compelling discussions in Saville (2003)
and Webster (2007). Yet multiple comparisons are used,
interpreted and based on by so many scientists around
the world. Yet so many journals, even those really good
ones, urge their authors to use these procedures. Yet
many would argue that multiple comparisons are the
best way to interpret differences among treatment means
from the analysis of variance model.

In general, multiple comparison procedures were
constructed to overcome the problem of increasing the
probability of type I error that occurs when more than
one hypotheses are verified simultaneously (hence the
name ‘simultaneous’ or ‘multiple’ testing)—in pair-wise
(or post hoc) comparisons every pair of factor levels
is compared. The most popular tests for mean sepa-
ration that are resistant to multiple testing are for ex-
ample Fisher’s protected LSD, Tukey’s HSD,
Scheffé’s, Duncan’s and Neuman-Keul’s tests. Re-
searchers still work on multiple comparison procedures
(e.g., Conagin & Barbin,, 2006 and Conagin et al.,
2008).

Webster (2007) criticizes the common understand-
ing of pair-wise comparisons in ANOVA with the fol-
lowing words: “Investigators who compare every pair
of means by one of the above-mentioned tests seem
not to appreciate the difference between a whole ex-
periment, for which these techniques have been de-
veloped, and individual comparisons of interest.” Saville
(2003) calls these tests inconsistent, explaining, “I call
a procedure ‘inconsistent’ if the probability of judging
two treatments to be different depends on either the
number of treatments included in the statistical analy-
sis, or on the values of the treatment means for the
remaining treatments”.

So, multiple comparison procedures were con-
structed to overcome the theoretical problems con-
cerned with multiple testing. Nonetheless, in most, if
not all, situations the practical analysis does not call
for such an action: investigators are usually interested
in testing the difference between two particular treat-
ments irrespective of other treatments. They ask, “Do
treatments A and B differ in mean of a character studied,
no matter how many treatments are studied in the ex-
periment?”, rather than, “Do treatments A and B dif-
fer in mean of a character studied, when I compare
(say) four treatments?.” Webster (2007) puts it, “Fur-
ther, one must ask why the inclusion of more treat-
ments in an experiment should diminish the power of
a test to detect true differences, which is what hap-
pens if you apply experiment-wise tests: it does not
make sense practically”.

Then, the question that suggests itself is whether
there is any superiority of analysis of variance in com-
paring two treatment means from among a number of
means over classical t-test to compare two means. Of
course there is, because the one-way ANOVA model
can provide a more precise estimate of the within-group
residual variance than the separate analysis of two cho-
sen treatments.

What should then one do instead of applying mul-
tiple comparisons? Saville prefers reporting unrestricted
LSD (Least Significance Difference), while Webster
SED (Standard Error of the Difference); both are more
or less equivalent in the sense that the former strictly
follows from the latter. The pro of the former is that
it is easy to compare two means by checking whether
the absolute difference in two treatment means is
smaller than the LSD (which means the difference is
not significant for the chosen significance level); its
con is that it is done for a particular significance level
while the reader may want to decide him/herself about
the significance level. The SED, on the other hand,
does not base on a significance level, and one may sim-
ply calculate LSD for the chosen level from the SED;
it does require, however, some calculations, and even
if these are simple, it does not facilitate reading a pa-
per. Usually it does not really matter which of the two
one chooses since they are more or less parallel if only
the reader is skillful in interpreting them; authors may
decide to provide both ways if only a journal agrees
to publish them, and this may be the best mean of pre-
senting such results.

Yet some other issues
Note that above I have not touched upon all issues

concerned with one-way data. For example, there are
big differences between observational and experimen-
tal studies, both common in environmental and eco-
logical studies. This difference is not necessarily in
how the data are analyzed, but rather how the results
are interpreted—in the case of observational studies the
effect of the experimental factor may be confounded
with many other factors, which practically cannot be
taken into account. On the one hand, this is a disad-
vantage of observational studies because we cannot
estimate the “pure” effect of the factor of interest. On
the other hand, nature plays its own rules, so what is
the worth of experiments in which everything is un-
der control? Can such a fully-controlled situation hap-
pen in natural conditions? So, both these types of ex-
periments have their pros and cons. Gotelli & Ellison
(2004, chapter 6) discuss this topic in detail.

Nonorthogonal data, which are dealt with under
unbalanced designs (in which within-group sample
sizes differ), are another topic of importance. Although



Analyzing one-way experiments 561

Sci. Agric. (Piracicaba, Braz.), v.66, n.4, p.556-562, July/August 2009

usually nonorthogonality calls for special treatment in
factorial designs, for one-way data it does not cause
too many problems. Quinn & Keough (2002, sec.
8.1.6) say that nonorthogonality can be a problem
when other assumptions are not met because the F-
test is less robust to violations of the assumptions for
unbalanced designs. Following Underwood (1997),
Quinn & Keough (2002) suggest that “experimental
and sampling programs in biology with unequal sample
sizes should be avoided, at least by design”. This is a
sensible recommendation, but in many situations the
data will not be balanced. Then one should pay even
more attention to checking assumptions to ensure that
they are indeed met.

Independency of observations—or rather its lack—
is another important topic for the analysis. In a com-
pletely randomized design the observations are as-
sumed to be independent. This means that one out-
come does not influence another and vice versa. For
example, if one studies a perennial plant species and
measures its traits across several years on the very
same plants each year, then these observations are not
independent and we have a so-called repeated-measures
design. In such a case not taking into account the spe-
cific correlation pattern among the observations may
cause the results be far from correct. See, for example,
Quinn & Keough (2002) and Schabenberger & Pierce
(2002) for interesting insights into the problem of re-
peated-measures analysis.

Yet another issue, quite an important one, is that
when a predictor variable is quantitative, it should not
normally be treated as a quantitative one, as is often
done. Quite often in such instances not analysis of vari-
ance, but regression should be applied to analyze the
relationship between the dependent variable and the
factor. Webster (2007) and Gotelli & Ellison (2004)
discuss this topic. The latter authors stress this topic
by distinguishing ANOVA designs and regression de-
signs (Gotelli & Ellison, 2004, chapter 7).

Finally, worth mentioning are visual methods of
analyzing data. These should not replace the standard
statistical inference, but they can greatly enhance un-
derstanding the data and their interpretation. Such
methods can be applied to one-way data as well as to
more complex experiments. Cleveland (1993, 1994)
discusses this topic.

CONCLUSION

Analyzing one-way data may seem simple at first
glance, but the truth is quite otherwise. If only any
assumption is violated to the extent that the standard
F test should not be applied, there are many possible
paths to follow; the choice of the best path is not easy.

One should follow the general guidelines (such as those
given above and in the sources cited) rather than a
flow chart (c.f. Kobayashi et al., 2008) which strictly
shows what and when one should do; such flow charts
are examples of a mechanical, unified approach to-
wards statistical analysis. Mechanical approaches
should be avoided in statistical analysis, and so should
unify approaches; the key thing in any data analysis is
to understand the data. In general, the bottom line is
that when indeed any problems with assumptions or
generally analysis occur, an investigator should dig deep
into the data to find out the best way of analysis.

Before ending, it is worth mentioning that the
above discussion is far from being a complete account
of designing and analyzing one-way experiments. For
example, we did not touch upon (at least directly) such
issues as randomization and replication; spatial grain
and special extent of a study; confounding factors,
which are common in badly designed experiments and
in observational studies; fixed and random factors.
There are also many possible methods and approaches
that have not been mentioned here. The reader can refer
to various sources to learn about these aspects; for
example, Gotelli & Ellison (2004) present a very nice
introduction to such topics, while Quinn & Keough
(2002) go into further detail.

Let us recall also that this paper deals with one-
way data from completely randomized experiments.
Such experiments are not rare (e.g., Barbanti et al.,
2007; Beutler et al., 2007; Oreja & González-Andújar,
2007; Revoredo & Melo, 2007; Damin et al., 2008;
Silva et al., 2008), and they represent the most basic
experimental situation; any more complex design may
require more complex methods and approaches. In
fact, many of the comments above are not limited to
one-way data, but a number of others are. Each de-
sign has its own specificity and may need some spe-
cial treatment. My aim was to direct your attention to
the problem that statistics can have many faces. It re-
quires attention and commitment, just as painting re-
quires attention and heart from a painter. If one treats
each data set exactly the same way, then the data will
hide their most important features. It does pay off,
then, to spend some time on the analysis.

I would like to end this paper with the following
thought: “If something goes wrong with an analysis,
these are not data what fails to be analyzed—it’s the
analyst who fails to analyze the data”.
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