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ABSTRACT: Methods for genetic improvement of semi–perennial species, such as passion 
fruit, often involve large areas, unbalanced data, and lack of observations. Some strategies can 
be applied to solve these problems. In this work, different models and approaches were tested 
to improve the precision of estimates of genetic evaluation models for several characteristics 
of the passion fruit. A randomized block design (RBD) model was compared to a posteriori 
correction, adding two factors to the model (post–hoc blocking Row–Col). These models were 
also combined with the frequentist and Bayesian approaches to identify which combination yields 
the most accurate results. These approaches are part of a strategic plan in a perennial plant 
breeding program to select promising genitors of passion to compose the next selection cycle. 
For Bayesian, we tested two priors, defining different values for the distribution parameters of 
effect variances of the model. We also performed a cross–validation test to choose a priori 
values and compare the frequentist and Bayesian approaches using the root mean square 
error (RMSE) and the correlation between the predicted and observed values, called Predictive 
capacity of the model (PC). The model with the post–hoc blocking Row–Col design captured 
the spatial variability for productivity and number of fruits, directly affecting the experimental 
precision. Both approaches applied to the models showed a similar performance, with predictive 
capacity and selective efficiency leading to the selection of the same individuals.
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Introduction

The passion fruit is indigenous to Tropical America, with 
more than 150 species native to Brazil (Bernacci et al., 
2015). Passiflora edulis is the most marketable passion 
fruit species in Brazil, accounting for more than 95 
% of the fruit farms in the country and also the most 
planted species worldwide (Meletti et al., 2011). Passion 
fruit production in the state of Rio de Janeiro is below 
the national average, mainly due to the lack of improved 
varieties adapted to edaphoclimatic conditions; however, 
breeding programs are working to improve this condition 
(Cavalcante et al., 2019). In passion fruit, breeding 
methods face challenges similar to other perennial species. 
The genetic evaluation of individuals under selection 
requires a large experimental site, due to the planting 
spacing causing a large spatial variation, compromising 
data precision and/or unbalancing experiments.

The post–hoc blocking Row–Col design is a 
method to control the local effect, which is described 
as an efficient for genetic improvement experiments on 
passion fruit (Silva et al., 2016; Machado et al., 2020). 
This technique consists of superimposing a structure of 
rows and columns to the original design and the effects 
of blocks and treatments, which allows greater accuracy 
in the model parameter estimates, redirecting part of the 
model error to these effects (Gezan et al., 2006).

The Bayesian approach is another method for 
more accurate estimates, especially few observations are 
available and designs are unbalanced (Silva et al., 2013; 

Silva et al., 2018; Silva et al., 2020). This approach allows 
to use of a priori distributions incorporated into the model, 
which can be an advantage. Compared to the frequentist 
restricted maximum likelihood/best linear unbiased 
predictor REML/BLUP approach, normally used in 
genetic improvement programs for estimation/prediction. 
If a priori distribution chosen is non–informative or the 
number of observations describes the data very well, the 
Bayesian approach tends to converge to the maximum 
likelihood estimation (Resende et al., 2014).

Thus, techniques to speed up the breeding steps, 
which usually take many years, can be an advantage in 
terms of saving resources. Thus, this study combined 
alternative methods, such as the post–hoc blocking Row–
Col design and Bayesian approach, to improve accuracy 
of estimate components of variance, heritability, and 
selection gain in observations carried out in experiments 
of genetic improvement of passion fruit under recurrent 
intrapopulation selection.

Materials and Methods

Observations

We collected data from 81 progenies of full siblings 
of passion fruit Passiflora edulis Sims, after the third 
cycle of recurrent selection of the genetic improvement 
program of passion fruit developed in the State of Rio 
de Janeiro. The progenies were obtained from 27 half–
sibling progenies selected by Silva et al. (2009).
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The study was carried out in northwestern Rio de 
Janeiro State, Brazil (21º40’ S, 42º04’ W, altitude 76 m 
a.s.l.) aiming to generate cultivars adapted to similar local 
conditions. We used a randomized block design (RBD) 
with two replicates and the experimental unit consisted 
of five plants. The experimental site, despite only two 
blocks, comprised 8505 m2 and some unevenness was 
observed in the field that could not be captured by the 
block, but it was captured by a model incorporating a 
post–hoc blocking Row–Col design.

Agronomic characteristics 

The phenotyping of progenies was carried out for the 
following characteristics, according to Silva et al. (2017): 
number of fruits (NF), obtained by counting the number 
of total fruits in each plot; total production (PROD in 
kg per plant) expressed in kg per plot, obtained by the 
quantity harvested during the experiment; fruit mass 
(FM in g) expressed in grams, obtained by the arithmetic 
mean of the mass of 15 fruits sampled per plot; fruit 
width (FW in mm); fruit length (FL in mm); percentage 
of fruit pulp (FP), obtained by the ratio between pulp 
mass and total fruit mass; peel thickness (PT in mm), 
determined in the median portion of the sliced fruits 
in the direction of greater diameter; total soluble solids 
content (TSS in °Brix), obtained through a portable 
digital refractometer, with a reading range from 0 to 95º 
Brix degrees, in pulp juice aliquots.

Statistical Analyses

The model used was the linear mixed model:

y = Z1p + Z2b + Z3r + Z4c + e

where: y is the vector of the phenotypic values of the 
trait; p [1, ..., 81] is the parametric vector of random 
effects of progeny associated to vector y by the incidence 
matrix known Z1, assuming that p N I p ( , )0 2⊗σ ; b [1, 
2] is the parametric vector of random effects of blocks 
associated to vector y by the incidence matrix known Z2, 
assuming b N I b ( , )0 2⊗σ ; r [1, ..., 13] is the parametric 
vector of random effects of rows associated to vector 
y by the incidence matrix known Z3, assuming that
r N I r ( , )0 2⊗σ ; c [1, ..., 18] is the parametric vector of 
random effects of columns associated to vector y by the 
incidence matrix known Z4, assuming that c N I c ( , )0 2⊗σ
; e is the vector of random residual effects, assuming 
that ε σε N I( , )0 2⊗ . We assumed that the (co)variance 
matrices follow an inverted Wishart distribution, which 
was used as a priori to model the variance–covariance 
matrix. 

Next, we tested a new model, removing the row 
and column effects from the previous described model. 
These two models were named complete or Row–Col 
and reduced or RBD (only randomized block design). 
The models were compared using the likelihood ratio 

test (LRT) using the Chi–square test with two degrees of 
freedom and a 5 % probability level. After testing these 
two models using the frequentist approach, we also tested 
them with the Bayesian approach. As we could choose 
a priori in the Bayesian approach, before comparing the 
results of the frequentist approach with the Bayesian, 
we tested two a priori approaches for the Bayesian 
approach. Two sets of values for the parameters of the 
distributions (inverted Wishart) of the variances were 
tested, denominated priors to Bayes I and priors to Bayes 
II (Table 1) and then we chose the model that contained 
a priori with the best fit to compare with the frequentist.

The first set of values for variance distributions 
(Bayes I) considers the default of package described by 
Hadfield (2010) not very informative, with wide variance. 
The second set of priori choices (Bayes II) was justified, 
as suggested by Hadfield (2010), with the insertion of 
the alpha.mu and alpha.v extension parameters, now 
based on the results from the frequentist itself. This 
implies that we expected a result at least close to the 
frequentist. The model (a priori) in the Bayesian approach 
was chosen considering the smallest square root of the 
mean squared error, based on the lowest Deviance 
Information Criterion (DIC) value between the models. 
The models were considered equal for |Δ| < 2 between 
the DIC values of the models (Spiegelhalter et al., 2002).

For Bayes I and Bayes II, we used the Monte Carlo 
method based on Markov Chains (MCMC), according 
to Hadfield (2010), using the MCMCglmm::MCMglmm 
package::function in R language. We determined 
1,000,000 iterations (nitt), disregarding the first 100,000 
(burn–in) and performing a 1:3 (thin) sampling, totaling 
a chain with 300,000 iterations to obtain the variance 
components (a posteriori distribution). The Markov 
Chain convergence was tested by the Geweke criterion 
(Geweke, 1991) according to Cowles and Carlin (1996) by 
using the coda::geweke.diag package::function (Plummer 
et al. 2006) in R language. The model following the 
frequentist approach was also adjusted using R language 
(R Core Team, v.4.3.1).

The predictive capacity of the model was also 
considered in a cross–validation test with five-folds 
using 80 % of data for training and 20 % for validation, 
randomly sampled in each fold. Thus, we considered the 
mean correlation of the predicted dependent variables 
and those observed from the folds of cross–validation. 
This same model choice approach was repeated when 
the frequentist and Bayesian models were compared, 
performing a new cross–validation test, and comparing 
the models by their predictive capacity and the mean 
squared error in the model results.

Table 1 – A priori to values of parameters of distribution for the 
variance components.

A priori υ v alpha.mu Alpha.v Classification m

Bayes I 1 0.002 0 0 Gamma Inverse (GI) N (0.108)
Bayes II 1 1 0 252 Half–Cauchy (HC) N (0.108)
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Genetic parameters

Some genetic parameters were estimated in both 
approaches, using the complete or reduced model, 
according to their fit to each variable. If the complete 
model was significantly different from the reduced 
model for any variable, the complete model was used 
to estimate the genetic parameters. Heritability (ĥ2) was 
estimated by:

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
h progeny

progeny block column row error

2
2

2 2 2 2=
+ + + +

σ

σ σ σ σ σ22

where: σ̂error
2 is the residual variance estimate; σ̂block

2   is 
the variance estimate due to the block factor; σ̂column

2 is 
the variance estimate due to the column factor; σ̂row

2 is 
the variance estimate due to the row factor; σ̂progeny

2 is the 
estimate of the genotypic variance.

Confidence intervals for heritability were also 
obtained for the frequentist approach (CI for ĥ2) and for 
the confidence interval for heritability for the Bayesian 
approach. A ranking was made selecting 30 individuals 
in which the selection gain was obtained by the delta 
method, based on:

where: selection gain is relative to the overall mean ( ) 
and the mean of the first 30 (thirty) selected progenies 
( ). The scripts used in this work are available at 
https://github.com/CAIOAGRO0/scripts_from_papers/
blob/main/Row–Col_Bayesian_passion.rar

Results and Discussion 

The complete model, which incorporates a post–hoc 
blocking Row–Col design by frequentist approach, showed 
a significant difference for the factors (Row–Col) tested 
by the likelihood ratio test (LRT) via Chi–Square only 
for the variables with the small number of observations, 
that is, NF and PROD (Statistics D of 16.70 and 17.10 
respectively) (Table 2). Possibly, as both variables result 
from the total sum of the plot and are not sampled in fruits 
with replicates, a variance captured by Row–Col may not 
be necessary when more observations occur in the other 
variables. The comparison of the models using the Bayesian 
approach showed that the Row–Col model presented 
statistical significance for the variables NF, PROD, FP, 
PT, and TSS by difference between the observed DIC in 
models considering Row–Col and without considering (|Δ| 
< 2 = –44.90, –42.35, –2.16, 2.70 and –8.25, respectively). 
This result is possibly due to the choice of an appropriate 
informative a priori, which provided more accurate 
estimates allowing a better fit (Table 2). As mentioned 
in the methods, two priors were tested for the Bayesian 
approach and only a priori with the best fit was considered. 
A priori Bayes II was chosen because it presented more 
accurate metrics in relation to a priori Bayes I.

Machado et al. (2020) evaluated 135 progenies 
of full siblings of passion fruit and observed superior 
performance of randomized block design + Row–Col, 
compared to the only randomized block design. Kempton 
et al. (1994), Silva et al. (2016), and Machado et al. (2020) 
found similar results for traits fruit mass, number of 
fruits, and TSS content. According to these authors, 
the randomized block design + Row–Col is a low–cost 
technique that improves experimental precision, favoring 
thus selection of superior genotypes. This technique 
less costly especially when compared to the Bayesian 
approach, which requires time and financial resources 
involving the renting a cloud server or maintenance on 
local server in addition electricity costs. 

Adding a posteriori factors to a model may not seem 
an adequate approach, since this was possibly not planned 
before the deployment of the experiment. Overall, the 
randomized block design is effective when variability 
within the replicates is relatively small, which is rare when 
a large number of genotypes is evaluated, as in the case of 
this study and many other perennial cultures.

Another point to consider is the size experiment, 
which easily increases for large plants and it also increases 
the probability of a factor to be an error source and ignored 
in the model. For example, the literature does not have 
many reports indicating that farming can also influence 
the number of samples in trials with genetic improvement 
programs for perennial and fruit species. The problem 
in these experiments is the time needed to carry out the 
farming tasks (from planting to harvesting) or the evaluation 
of all the fruits of the plot. Depending on the labor force 
available, the time required to complete an activity may 

Table 2 – Likelihood ratio test (LRT) for comparison between the 
randomized block design and post–hoc blocking Row–Col models 
using frequentist and Bayesian approach.

Variable Model
Frequantist Bayesian

Deviance Statistics (D) DIC Δ

NF
Row–Col 1935.20

16.70*
1898.68

–44.90d

DBC 1951.90 1943.58

PROD
Row–Col 1296.50

17.10*
1266.68

–42.35d

DBC 1313.40 1309.03

FM
Row–Col 1553.6

0.70ns
1550.31

0.81i

DBC 1554.3 1549.44

FL
Row–Col 1602.00

1.00ns
1036.75

1.68i

DBC 1603.00 1038.43

FD
Row–Col 970.10

0.65ns
942.73

1.38i

DBC 969.45 941.35

FP
Row–Col 1026.5

0.83ns
1019.72

–2.16d

DBC 1027.3 1021.88

PT
Row–Col 496.87

0.00ns
480.03

2.70d

DBC 496.87 477.33

TSS
Row–Col 523.24

4.36ns
496.38

–8.25d

DBC 527.60 504.63
NF = Number of fruits; PROD = Total production; FM = Fruit mass; FL = 
Fruit length; FD = Fruit width; FP = Fruit pulp; PT = Peel thickness; TSS = 
Total Soluble Solids; DIC = Deviance Information Criterion; Difference between 
model DICs (Δ) = i similar models and d different models; D = Likelihood ratio 
test; *significant at 5 % probability level; ns = not significant.
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be enough to cause differences between measurements. 
In this study, the post–hoc blocking Row–Col model was 
capable of capturing some experimental errors, due to a 
large number of treatments, presenting promising results, 
and were selected to estimate the components of variance 
and prediction of the genetic values.

To compare frequentist and Bayesian approaches, 
a cross validation (5-folds) was used to assess model 
accuracy. In general, the metrics of predictive capacity 
(PC) and predictive efficiency (RMSE) showed similar 
values for both approaches (Table 3), indicating that both 
tested approaches have the same generalization capacity, 
regardless of the design. We expected to find a greater 
discrepancy between the approaches, as noted by Silva 
et al. (2020), but apparently a simpler approach was 
satisfactory. The breeder decides whether the precision 
obtained by the Bayesian approach corresponds to the 

investment of processing time and resources for the 
analysis. In this study, as the differences in predictive 
capacity were close to 0.03, when they existed, they still 
did not have a major effect, at least in the short term.

The Bayesian approach tends to converge with 
the frequentist approach REML/BLUP even when 
little informative prior is provided and when the data 
satisfactorily represents a population. Thus, this similar 
performance between the two approaches may not 
compensate for the choice of the Bayesian approach, as 
observed by Roh et al. (2004). The Bayesian approach 
can always provide more accurate estimates with shorter 
credibility intervals (equivalent to confidence intervals 
for frequentist), providing basis for better decision–
making. Other authors, such as Alijani et al. (2012), 
decided that the superior performance for Bayesian 
methodology compared to the frequentist was worth the 
investment. Silva et al. (2020) evaluated 17 full–sibling 
families of guava and observed the same results. These 
authors emphasize that the Bayesian methodology was 
pronounced in situations with small data sets and/or 
incomplete data.

Similarity in the predictive capacity of the models 
shows an advantage that the breeder may have using the 
Bayesian approach. Here, we do not use a priori based 
on data from previous experiments. However, based 
only on the results of a frequentist model, we managed 
to have a similar and even better predictive capacity for 
some variables, such as FP (0.77 for frequentist and 0.81 
Bayesian) and TSS (0.87 for frequenters and 0.90 Bayesian, 
Table 3). Further investments in processing time confer 
confidence to the breeder in their planning due to more 
accurate estimates and the large data volume with the 
Bayesian approach increase accuracy of the predictive 
capacity of the model.

Estimates of some genetic parameters were 
performed for the population. Heritability and selection 
gain showed satisfactory values for the variable 
productivity and number of fruits (Table 4). Variances 
for the effects were slightly smaller using the Bayesian 
approach (Compare Table 4 and Table 5). This result 

Table 4 – Estimation of genetic parameters of 81 passion fruit progenies of full siblings of the third cycle of recurrent selection via mixed models 
restricted maximum likelihood/best linear unbiased predictor.

Var. σ̂progeny
2 σ̂block

2 σ̂row
2 σ̂col

2 σ̂error
2

ĥ2 IC– ĥ2 Gs

NF 4410.00 0.00 2156.00 0.00 4651.00 0.39 0.22; 0.56 34.12
PROD 66.28 1.44 44.74 0.00 99.78 0.31 0.14; 0.48 28.17
FM 200.96 87.37 – – 665.67 0.21 0.01; 0.41 5.38
FL 18.59 7.99 – – 25.81 0.35 0.13; 0.58 4.09
FD 12.00 1.88 – – 13.90 0.43 0.25; 0.62 3.57
FP 8.16 2.52 – – 25.54 0.23 0.03; 0.42 4.47
PT 0.58 0.01 – – 0.81 0.42 0.24; 0.60 –7.31
TSS 0.71 0.09 – – 0.95 0.41 0.22; 0.59 4.50

NF = Number of fruits; PROD = Total production; FM = Fruit mass; FL = Fruit length; FD = Fruit width; PT = Peel thickness; FP = Fruit pulp; TSS = Total Soluble 
Solids; σ̂progeny

2 is the estimate of genetic variance; σ̂error
2  estimate of residual variance; σ̂block

2 estimate of variance due to the block factor; σ̂col
2 estimate of variance due 

to column factor; σ̂row
2 estimate of variance due to row factor; ĥ2 heritability; (Gs) selection gain expressed in %; (IC– ĥ2 ) confidence interval for heritability at 95 % 

probability level.

Table 3 – Estimates of the metrics obtained by cross–validation 
for model fit by frequentist and Bayesiana approaches in models 
considering Row–Cow design when significative.

Variable Model PC RMSE

NF
Frequentist* 0.91 54.43
Bayesian* 0.90 61.33

PROD
Frequentist* 0.89 7.98
Bayesian* 0.89 8.19

FM
Frequentist 0.76 22.82
Bayesian 0.73 23.58

FL
Frequentist 0.86 4.22
Bayesian 0.85 4.29

FD
Frequentist 0.88 2.97
Bayesian 0.88 3.00

PT
Frequentist 0.87 0.74
Bayesian 0.87 0.75

FP
Frequentist 0.77 4.43
Bayesian* 0.81 4.12

TSS
Frequentist 0.87 0.77
Bayesian* 0.90 0.71

NF = Number of fruits; PROD = Total production; FM = Fruit mass; FL = 
Fruit length; FD = Fruit width; PT = Peel thickness; FP = Fruit pulp; TSS = 
Total Soluble Solids; *model considering Row–Cow design; PC = Predictive 
capacity of the model; RMSE = Square root of the mean squared error of 
the model.
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highlights the existence of genetic variability and 
selective potential between passion fruit progenies. The 
confidence intervals (CI) (Table 4) for heritability have 
lower amplitudes than the Highest Posterior Density 
(HPD) (Table 5). This difference in the amplitude of 
HPD and CI, except a posteriori for NF, is because the 
a posteriori distribution for heritability is bimodal, and 
the HPD amplitude may be lower as it improves a priori, 
making it more informative with results from previous 
experiments.

Heritability estimates ranged from 0.21 to 0.43 
in the frequentist approach. The highest values were 
obtained for the variables FD, PT, TSS, and NF (0.43, 
0.42, 0.41, and 0.39 respectively). These estimates 
presented values within the expected range for these 
traits, considering they are controlled by a large number 
of genes and are highly influenced by the environment 
(Resende et al., 2014). Cavalcante et al. (2019) found 
similar estimates for the same crop. Viana et al. (2004) 
evaluated the same variables in passion fruit and found 
higher heritability estimates for all variables except TSS, 
indicating a favorable situation for selection. Smaller 
estimates may be due to the selection cycle. In this study, 
we used data from the third recurrent selection cycle 
and the plants are more homogeneous by increasing the 
frequency of favorable alleles for the desirable traits.

The variables of greatest interest, NF and 
PROD, had the highest selection gains, 34 % and 28 
%, respectively. We can observe a positive gain for all 
variables, except for PT, which showed a negative gain, 
according to expectations. The PT variable showed a 
negative gain of –7 %, which is interesting as a decrease 
of the expression of this variable is expected. Selection 
gains for variables FM (5 %), LDF (4 %), TDF (3 %), FP 
(4 %), and TSS (4 %) presented low estimates, possibly 
due to the successive selection cycles; however, these 
results proved the efficiency of the continuous selection 
in a recurrent program for passion fruit.

Thus, we proceeded with the selection of the best 
individuals in a ranking, selecting the 30 best individuals. 
The promising progenies were kept in both approaches, 
only their ordering was changed (Tables 6 and 7). 

Table 6 – Ranking of the first 30 passion fruit progenies from full 
siblings of the third cycle of recurrent selection obtained from the 
mean value added to the predicted genotypic value (u + g) through 
a frequentist approach using restricted maximum likelihood/best 
linear unbiased predictor for each variable.

Rank NF PROD FM FL FD FP PT TSS
1 56 26 69 68 3 81 7 6
2 26 56 5 8 8 19 54 75
3 1 47 3 44 27 54 26 38
4 11 11 8 27 42 68 27 53
5 24 1 68 5 48 6 76 69
6 47 24 42 41 41 17 37 68
7 68 68 47 69 69 18 18 44
8 38 70 72 40 5 41 50 35
9 16 16 75 37 78 28 29 63
10 70 38 51 7 60 36 28 47
11 9 31 78 23 68 50 14 52
12 23 9 2 52 2 30 23 51
13 34 22 41 10 72 45 6 56
14 10 69 6 73 52 65 36 66
15 5 48 33 13 53 7 81 79
16 31 23 7 42 75 16 70 11
17 22 10 53 53 50 35 12 5
18 60 60 73 48 24 34 34 20
19 48 5 1 32 9 40 19 25
20 15 15 24 29 59 67 41 48
21 19 34 52 35 11 23 43 8
22 12 19 44 75 47 57 64 50
23 69 27 29 78 71 9 8 43
24 79 78 59 4 23 25 16 21
25 27 50 48 54 33 29 68 33
26 80 79 27 72 61 43 55 39
27 67 36 31 24 7 64 65 2
28 28 80 35 59 22 69 69 60
29 54 75 60 80 13 20 62 65
30 45 41 9 50 51 79 59 41

160.97 22.18 167.47 82.35 74.75 42.25 7.93 14.20
215.89 28.43 176.48 85.71 77.42 44.14 7.35 14.84

NF = Number of fruits; PROD = Total production; FM = Fruit mass; FL = Fruit 
length; FD = Fruit width; PT = Peel thickness; FP = Fruit pulp; TSS = Total 
Soluble Solids; ( ) is the overall mean; ( ) mean of the first 30 (thirty) 
selected progenies.

Table 5 – Estimation of genetic parameters of 81 passion fruit progenies of the third cycle of recurrent selection via Bayesian Inference.

Var. σ̂progeny
2 σ̂block

2 σ̂row
2 σ̂col

2 σ̂error
2

ĥ2 Gs HPD

NF 4178.00 2873.00 2075.00 147.10 4975.00 0.35 31.98 0.15; 0.53
PROD 67.27 1559.00 53.07 5.61 102.20 0.21 27.00 0.00; 0.39
FM 180.00 3658.00 – – 702.20 0.14 4.61 0.00; 0.31
FL 19.14 1847.00 – – 26.45 0.18 4.02 0.00; 0.43
FD 12.41 2183.00 – – 14.21 0.22 5.53 0.00; 0.50
FP 8.20 1339.00 2.00 1.39 24.89 0.11 4.21 0.00; 0.31
PT 0.60 1067.00 – – 0.84 0.19 –7.16 0.00; 0.48
TSS 0.67 868.60 0.06 0.18 0.88 0.14 4.01 0.00; 0.41

NF = Number of fruits; PROD = Total production; FM = Fruit mass; FL = Fruit length; FD = Fruit width; FP = Fruit pulp; PT = Peel thickness; TSS = Total Soluble Solids; 
σ̂progeny

2  is the estimate of the genetic variance; σ̂error
2  estimate of residual variance; σ̂block

2 estimate of variance due to the block factor; σ̂col
2 estimate of variance due 

to column factor; σ̂row
2 estimate of variance due to row factor; ĥ2 heritability obtained by the a posteriori distribution; Gs = selection gain, expressed in %; (HPD – ĥ2) 

highest posterior density is the credibility interval for heritability at the 95 % probability level.
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Conclusion

The model with the post–hoc blocking Row–Col 
design captured the spatial variability for productivity 
and number of fruits traits, influencing directly the 
experimental precision. It indicates that the technique 
can be recommended for selection in the genetic 
improvement of passion fruit, mainly for variables with 
a small number of observations and large experiments.

Both approaches applied to the models showed 
similar performance, with predictive capacity and 
selective efficiency leading to the selection of the same 
individuals. As both approaches tended to converge, 
the advantage of Bayesian inference described in 
the literature with little or unbalanced data was not 
necessary for this experiment.
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