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ABSTRACT: Few studies have investigated the biometric attributes of citrus orchards under 
formation that use RGB sensors on board unmanned aerial vehicles (UAV) and the challenges 
are great. This study aimed to develop and validate a method of using aerial UAV images by 
automated routines to evaluate the biometric attributes of a crop of ‘Tahiti’ acid lime under 
formation. We used a multirotor UAV, programmed to capture images at three different map 
scales, with a frontal and side overlap of 80 %. Geoprocessing was carried out both with and 
without ground control points on each scale. An automated routine was developed in an open-
source environment, consisting of three processing phases: i) Estimation of the plant biometric 
attributes, ii) Statistical analysis, and iii) Statistical Report Map (SRM). The use of the developed 
routine allowed to delimit and estimate the crown projection area with an accuracy of more 
than 95 % as well as identify and quantify the plants with an accuracy of over 97 %. The use of 
ground control points during the processing stage does not increase accuracy in estimating the 
biometric attributes under evaluation. On the other hand, map scale is strongly correlated with 
the quality of the estimates, especially plant height. The results allowed to define a method for 
the acquisition and analysis of aerophotogrammetric data using a UAV, which can be used to 
measure the plant biometric attributes under analysis and the method can be easily adapted to 
perennial crops.
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Introduction

Standardizing processes and developing solutions 
(algorithms) for extracting biometric attributes from 
plants are essential when a large amount of data from 
UAV sensors is used (Aasen et al., 2018; Tu et al., 2020), 
especially in search for low-cost solutions (Ampatzidis 
et al., 2020). These authors report that different 
combinations of flight parameters can affect product 
quality and application. For Osco et al. (2020), no 
computer vision technique is universally applicable and 
different approaches should be tested to solve specific 
problems.

Fawcett et al. (2019), Torres-Sánchez et al. (2018), 
and Zarco-Tejada et al. (2014) worked on optimizing 
UAV flight parameters to measure plant structure. Tu et 
al. (2020) conducted a comprehensive study, including 
a series of flight parameters that could be adopted 
to measure height of avocado trees, but only when a 
multispectral sensor was used. Seifert et al. (2019) 
analyzed several parameters with an RGB sensor for 
application in the forestry sector.

Despite advances in methods to extract biometric 
attributes (survival inventory, crown projection area, 
plant height and volume, planting failures, and average 
spacing between plants and rows) of citrus plants, no 
studies have investigated the effects of variations in 
aerophotogrammetric parameters on the quality of the 
automatic extraction of such attributes using a low-cost 
sensor (RGB). This is even more challenging in orchards 
under formation, where greater spatial variability 
of such attributes might occur and, if left untreated, 
orchard yield is certainly compromised.

Therefore, estimation of biometric attributes using 
an on-board UAV sensor proposes various questions: a) 
Is it necessary to use ground control points in processing 
the aerophotogrammetric data? b) What is the effect of 
map scale (or the size of the ground sample distance-
GSD) on the estimation of these attributes? c) Is it 
possible to develop low-cost and intuitive automated 
computer routines to analyze ortho-photomosaics?

Therefore, this study aimed to develop and 
validate a method to use aerial images (obtained with an 
RGB sensor of on-board UAV) by automated routines to 
evaluate biometric attributes of a ‘Tahiti’ acid lime crop 
under formation. 

Materials and Methods

Study site

We selected a commercial plantation (8.96 ha, spaced 3 
m × 6 m and planted on 15 Jan 2019) of ‘Tahiti’ acid lime 
(Citrus latifolia, Tanaka). An experimental site of 1.68 ha 
with a mean slope of 2.5 % was marked (15°3’48.61” S, 
43°47’41.56” W, altitude 459 m) to develop the computer 
routine (Figure 1). 

Collecting biometric attributes

The experimental site consisted of 24 rows of 39 plants 
row–1, totaling 866 plants with 70 planting failures. Field 
evaluations occurred on 14 and 15 May 2020 to measure 
the following plant biometric attributes (ground truth): 
height (hp), measuring the distance (perpendicular) 
from the highest leaf to the plant root collar, ground 
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level; and crown diameter, in the same direction (Dl), 
perpendicular to the row (Dr), both obtained using a 
millimeter tape measure (positioned at half of the height 
of the plant under evaluation). The plant volume was 
then estimated according to the formula presented by 
Rodrigues et al. (2019), Eq. (1):    
 
V

D
hpm= ∏2

3 4

2

  (1)

where: V is the volume (m3) of the crown, and Dm is the 
diameter (m) of the crown, obtained from the arithmetic 
mean of (Dl) and (Dr).

Collecting and processing the geodetic and 
aerophotogrammetric data

Eleven support points were set up: five ground control 
points (GCP) for the absolute orientation of the 
aerophotogrammetric block, and six checkpoints (CP) to 
control quality (accuracy), both systematically distributed 
within the area of   interest (Figure 1), according to 
recommendations of Aasen et al. (2018). The respective 
points were georeferenced by a Geodesic Receiver, with a 
mean positional accuracy (sigma 95 %) of less than 3 cm 
(planimetry) and 4 cm (altimetry).

Flight planning considered a quadcopter-type UAV 
(DJI Phantom 4 Adv), equipped with a 20-megapixel RGB 
sensor, 13.2 mm × 8.8 mm in size, with a focal length of 
9.1561 mm. Three flight altitudes [60 m (F60), 90 m (F90) 
and 120 m (F120)] were defined to get a reference scale, 
that is, the ground sample distance (GSD).

The flight included a horizontal buffer of 60, 120, 
and 180 m added to the area surrounding   the experimental 
site for F60, F90, and F120 flights, respectively. This 
procedure ensured a minimum overlap of nine images 
point–1 and minimized the rolling shutter effect and 
variations in the UAV pitch angle (Tu et al., 2020). This 
procedure can also reduce false matching and increase 
point cloud accuracy (AGISOT LLC, 2020), improving 
quality of the ortho-photomosaic (Shi et al., 2016).

The flights were planned along the same orientation 
of the rows, as recommended by Tu et al. (2020). Finally, 
the compass was calibrated and the flights carried out 
on 19 May 2020, between 11h00 and 12h00 to minimize 
the shading effects on the images, taking into account 
various flight parameters and RGB sensor settings (Table 
1), as recommended by Fawcett et al. (2019), Seifert et al. 
(2019), Shi et al. (2016), and Wang et al. (2019). During 
flight F120, the lighting conditions remained unstable 
(partly cloudy).

The images collected were imported into the 
Agisoft Metashape® software for geoprocessing (Structure 
from Motion-SfM) and then the Digital Surface Model 
(DSM), Digital Terrain Model (DTM) and Classic Ortho-
photomosaic (COM-RGB) were generated. Two processes 
were carried out for each flight, one with and one without 
ground control points (GCP). For the aerophotogrammetric 
blocks geoprocessed using GCP, the following quality was 
obtained (RMSE-X,Y, and Z) for the six checkpoints at 
each flight altitude: a) F60: [X,Y] = 4.6 cm and [Z] = 6.2 
cm; b) F90: [X,Y] = 4.9 cm and [Z] = 5.9 cm; c) F120: 
[X,Y] = 4.5 cm and [Z] = 6.0 cm.

Table 1 – Parameters and settings used for flight planning.
Flight Parameters F60 F90 F120
Flight altitude (Hv) 60 m 90 m 120 m
Ground Sample Distance (GSD)  1.64 cm 2.47 cm 3.83 cm
Overlap (Frontal/Side) 80 % / 80 % 80 % / 80 % 80 % / 80 %
Flight speed  4.7 m s–1  7.1 m s–1 9.5 m s–1

Area overflown (with buffer) 3.61 ha 6.49 ha 9.97 ha
Number of images* 197 143 134
Number of images** 217 165 162
Flight duration** 9 min 40 s 7 min 35 s 7 min 23 s
RGB Sensor Settings***
ISO 100 100 100
Diaphragm F/2.8 F/2.8 F/2.8
Exposure Time < 1/640 < 1/640 < 1/640
*Flight Planning; **Carried out in the field; ***Ev = –0.3; Phto: single shot; 
White Balance: sunny; Style: landscape; Image Size: 3/2; Mechanical Shutter: 
on; Camera Focus: ∞; Peaking Threshold: standard.

Figure 1 – Location of the experimental site (Matias Cardoso, Minas Gerais), checkpoints (CP), and ground control points (GCP) distributed within 
the area of   interest.
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Implementing the automated routine

An automated routine (FindCITRUS-V1) was developed 
to estimate the biometric attributes of the plants, 
consisting of three processing phases: i) Estimation of 
Plant Biometric Attributes; ii) Statistical Analysis, and 
iii) Statistical Report Map (SRM).

Estimating plant biometric attributes – Phase I

Phase I was implemented using the Graphical Modeler 
of the QGIS 3.10.7-A software and started with the 
(mandatory) input of COM-RGB, DTM and DSM 
(Figure 2). The vegetation index (VI) of the Tract is 
then obtained using the VARIgreen metric proposed by 
Gitelson et al. (2002). The Digital Height Model (DHM) 
is determined based on differences between the DSM 
and DTM, representing the relative height (rh) of each 
object (natural and/or artificial elements) above the 
surface. Pixels with an rh value   of less than 45 cm were 
considered zero, due to the presence of objects, such as 
boxes and tools, as well as plant cover (between crop 
rows), 

The next process is to combine (multiplying) a 
geometric product (DHM) with a spectral product (VI 
of the Tract), where the result is used as the input to 
the r.recode algorithm. The use of r.recode allows to 
establish a threshold (analyzing the histogram) with a 
zero value, in which lower values   were classified (and 
vectored) as ‘non-crown area’ and larger values   as 
‘possibly crown area’; the areas classified as ‘possibly 
crown’ were extracted and smoothed. The area (m2) was 
also calculated for the geometry of each feature. Final 

extraction of the crown area was only possible using a 
threshold (which can be changed by the user) to reduce 
undesirable polygons (noise). In our study, a value of 
0.10 m2 was adopted. Once the crown geometry was 
defined for each plant, the zonal statistics (arithmetic 
mean) of VI raster for the Tract (1°) was extracted to 
generate the Plant VI (3°b). 

The next step was to obtain the crown centroid of 
each plant, followed by a filter that allowed to reduce 
False Positives (FP) when necessary thereby obtaining 
the geographical location of the plants. The FP Filter was 
implemented using the Delaunay algorithm (available 
from QGIS) to calculate the area, length, and azimuth 
of each edge of the triangular mesh. Next, a cut-off 
threshold was established to filter the unwanted edges 
with the consequent removal of any unwanted points, 
that is, FP.

Once each plant is located [x,y], Voronoi Polygons 
are created to give the spatial distribution of the occupied 
area (m2 per plant). Another Delaunay Triangulation was 
then implemented following the logic above. However, 
edges outside the normal spacing between plants are 
filtered out by the cut-off threshold, that is, it identifies 
any lines that represent planting failures, allowing 
estimating the number of seedlings to be replanted.

Furthermore, location of the geometry that 
represents the crown area of   each plant allowed the 
application of zonal statistics to the DHM raster, 
obtaining the maximum value for relative height, 
considered as plant height (h

DHM
, 5°a) derived from the 

DHM. As an alternative, the routine allows only the 
DSM to be used to estimate plant height (h

DSM
, 5°b). 

In this case, a mask is defined from the plant location 

Figure 2 – Workflow of the first phase of FindCITRUS-V1. The grey trapezia represent the inputs, the white rectangles represent algorithms, and 
the remaining polygons (colored) are the outputs, shown by ordinal number. Classic ortho-photomosaic (COM-RGB), digital terrain model (DTM), 
digital surface model (DSM), vegetation index (VI), and digital height model (DHM).
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(radius of 50 % of the spacing between plants, i.e., 1.5 
m) and a zonal statistic, giving maximum (H

m a x
) and 

minimum (H
m i n

) values of each absolute altitude. The 
value h

DSM
 is obtained from the difference between both 

values. Finally, the respective volumes (V) are estimated 
from DHM (V

DHM
, 6°a) and DSM (V

DSM
, 6°b). 

Statistical analysis - Phase II

This phase consisted of the Descriptive Statistical 
Analysis of all biometric attributes estimated previously 
(Phase I). The routine was implemented (by a script) into 
the Python 3.6 terminal of QGIS, using the following 
libraries: gdal, math, matplolib, numpy, pandas, seaborn, 
and scipy. The layers (vector and raster) were read 
using the QgsVectorLayer and QgsRasterLayer classes. 
Values   were then extracted from the attribute tables 
(vector layer) using the getFeatures instance. Finally, 
the DataFrames were built and the descriptive statistics 
were obtained.

Statistical Report Map (SRM) - Phase III

This phase consisted of the development of a simple 
and intuitive report, known as the SRM, containing the 
following information: Registry (Property, Owner, and 
Technician in charge), Cartographic, and Geospatial 
Biometric Attribute Maps (associated to the Descriptive 
Statistics of Phase II). For that purpose, a further script 
was developed again in the Python 3.6 terminal of QGIS, 
using the following libraries: Reportlab, Matplotlib, and 
Geopandas.

Data analysis

The statistical analysis was carried out using the 
estimated biometric attributes (predicted value) and 
those measured in the field (ground truth) to obtain a 
workflow to acquire aerophotogrammetric data and 
validate the FindCITRUS-V1 routine. The Python 
3.6 terminal of QGIS was again used to develop the 
customized routines, including the following libraries: 
matplolib, numpy, pandas, sklearn, scipy.stats, seaborn, 
and statsmodels. 

Delimiting and estimating the crown projection 
area, plant height, and volume

The methodology described by Jing et al. (2012) and 
Dong et al. (2020) was used to identify and delimit 
the crown areas. First, plant crowns were delimited 
(photointerpretation and manual vectoring in QGIS) 
thereby obtaining a reference geometry (RG). Next, 
polygons that represent plant crowns, considered here 
as Extracted Geometry (EG), were extracted using the 
computer routine. Both were analyzed into six categories 
(Ema: number of matched tree crowns, Enm: number of 
near-match tree crowns, Eme: number of merged tree 

crowns, Esp: number of split tree crowns, Emi: number 
of missed tree crowns and Ewr: number of wrong tree 
crowns). Accuracy (Producer Accuracy – PA) was 
estimated from Eq. (2), where Ema represents the total 
number of matched tree crowns in EG, Ee represents 
the EG total number, and Ewr represents the wrong EG 
number.

        
PA

E
E E

ma

e wr

(%) =
−

100      (2)

To validate the size of the Crown Projection 
Area, only the Ema and Enm classes were considered as 
estimated values   (predicted value), compared with 
values   measured in the field (ground truth), that is, a 
circular area. The heights measured in the field (hp) 
were compared with the estimated values, that is, the 
heights derived from the DHM (h

DHM
) and those derived 

from the DSM (h
DSM

). The values   of ‘true volumes’ (V) 
were calculated from Eq. (1) and then compared to the 
volumes derived from the DHM (V

DHM
) and DSM (V

DSM
). 

The data were submitted to the Kolmogorov-Smirnov 
test of normality. The Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE) were then determined.

Identifying and counting individuals (plants and 
planting failures)

The following performance measurements and metrics 
were applied, according to Oliveira et al. (2020): 
sensitivity (Sb), algorithm capacity to detect acid lime 
plants; specificity (Sp), algorithm effectiveness to identify 
‘non-acid lime plants’; general accuracy (Ac), overall 
performance measurement of the proposed method; 
producer accuracy (Pacc), and percentage of identified 
acid lime plants; used to determine the performance of 
the method proposed.

Results and Discussion

Delimiting and estimating the crown projection 
area

As a result of SfM geoprocessing, the ground sample 
distances (GSDs) of the classic ortho-photomosaics 
(COMs-RGB) for each flight (F) and combination of 
flights (both with and without control points) were: F60 
[1.59 cm and 1.57 cm], F90 [2.42 cm and 2.41 cm], and 
F120 [3.21 cm and 3.22 cm]. The GSDs of the Digital 
Surface Model (DSM) and Digital Terrain Model (DTM) 
were double the GSDs of the ortho-photomosaics. 

The ground control points (GCP) did not increase 
accuracy (PA) in the geometric delimitation of the 
crowns of the plants evaluated (Table 2). No significant 
differences were found and this can be explained by the 
SfM processing technique applied to the aerial images to 
reconstruct the 3D surfaces, later generating the digital 
elevation models and ortho-photomosaic. Snavely et al. 
(2008) highlight that the SfM process initially estimates 
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the relative location of objects, being the absolute 
location (georeferenced) just one option in this process 
of referencing (Sanz-Ablanedo et al., 2018).

Snavely et al. (2008) also state that most problems 
for a 3D reconstruction can only be solved using 
the relative position of the objects. Szeliski (2010) 
presents details of the mathematical modelling of 3D 
reconstruction. Currently, most software programs 
available for processing images acquired by UAV 
are based on the SfM technique (Ferrer-González et 
al., 2020). This approach, unlike traditional digital 
photogrammetry, solves the collinearity equations 
without the need for any control points, providing a 
sparse point cloud in an arbitrary coordinate system and 
a complete camera calibration (Agisoft, 2020).

Regarding the map scale (or GSD), lower PA 
values   were found at greater GSDs, especially from 

F120. In the process of delimiting the crown projection, 
the geometric product and the spectral product are 
combined, the latter is hampered by the variation in 
lighting conditions during flight F120 (Figures 3A and 
3B). This helped to reduce delimitation accuracy, since 
the shading effect can cause noise in the image (Yeom et 
al., 2019), reduce the contrast between objects (Tu et al., 
2020), and consequently, reduce point cloud accuracy 
(Dandois et al., 2015). 

Similarly, the use of GCP did not result in 
significant differences in the estimating process of 
the Crown Projection Area. Correlation magnitude 
remained the same (with or without GCP). However, 
when abstracting from flight altitude only, a reduction 
can be seen in the values   for RMSE, MAE and r as the 
map scale is reduced, that is, GSD increases (Table 2).

In general, the average values   for RMSE and MAE 
can be understood from the methods used to estimate 
the area, for instance, circular geometry (ground truth) 
and irregular polygon (predicted value) (Figure 3B). 
When the map scale is increased, image detail increases 
(Seifert et al., 2019) and, consequently, geometric 
description of the actual shape of the crown projection is 
improved, resulting in greater differences (ground truth 
- predicted value), that is, higher RMSE and MAE values.

The field measurements (ground truth) to calculate 
the crown projection area consider only two diameter 
samples (Dl and Dr), whereas using the proposed 
methodology, irregular polygons are more consistent 
with reality and theoretically more accurate than the 
values   obtained manually, simplifying crown geometries 
as circular in shape. 

In general, irrespective of the GCP use, the 
correlation coefficients were greater than 0.83. Further 
details on the data distribution and dispersion from 

Figure 3 – Delimitation (A) and calculation (B) of the crown projection area. Classic ortho-photomosaic (COM-RGB), vegetation index (VI), and 
digital height model (DHM).

Table 2 – Process validation to estimate the crown projection area 
of ‘Tahiti’ acid limes under formation at different flight altitudes and 
ground sample distances (GSD), with and without ground control 
points (GCP), Accuracy (Producer Accuracy – PA), Root-Mean-
Square-Error (RMSE), Mean Absolute Error (MAE), and Correlation 
Coefficient (r).

Flight
Crown Projection Area 

With GCP Without GCP
F60 F90 F120 F60 F90 F120 

GSD (cm) COMRGB 1.59 2.42 3.21 1.57 2.41 3.22

PA (%) 94.97 95.41 85.75 95.30 94.40 88.17
RMSE (m2) 1.54 1.51 1.30 1.59 1.52 1.29
MAE (m2) 1.40 1.365 1.14 1.45 1.37 1.13
r 0.87 0.85 0.83 0.87 0.85 0.83
p-value 2E-256 5E-230 1E-192 1E-255 2E-230 6E-202
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extracting the crown projection area for flights with 
no ground control points or field measurements can be 
seen in Figure 4.

Identifying and counting individuals (plants and 
planting failures)

Identifying the crown center of each plant by the centroid 
algorithm is directly related to accuracy of the previous 
phase (delimiting   the crown projection area), mainly 
to the Ema and Enm values, and such accuracy may be 
degraded by the amount of Esp. However, the FP Filter 
considerably minimized this situation, reducing double 
identification of each plant, increasing process accuracy 
to identify and count individuals. This procedure reduced 
dependence on the previous step with regard to accuracy 
and can be used whenever necessary.

For the combinations shown, the GCP did not 
generally increase the Paac value, either ‘With GCP’ 
(94.4 %) or ‘Without GCP’ (94.8 %); however, when 
analyzing F60 and F90 only, the gains were not significant. 
Accuracy and quality of cartographic products obtained 
with UAV are not restricted to the use of ground control 
points or georeferencing accuracy. Agisoft (2020), Ferrer-
González et al. (2020), and Sanz-Ablanedo et al. (2018) 
state that accuracy and quality are the result of the choice 
and adjustment of several variables, such as aircraft type, 
sensor type, flight planning, amount of frontal and side 
overlap, flight altitude, quality of the image captured, 

modelling and camera calibration, SfM algorithms, and 
configuration of the algorithm parameters, et cetera. 

Another important and relevant factor are the 
surface characteristics in terms of shade texture and 
variations. Surfaces with random textures, with no 
uniform coloring, can facilitate the search for key points 
in the images, improving the SfM processing quality 
(Iglhaut et al., 2019; Remondino et al., 2014).

For all combinations, reduction in flight altitude 
(smaller GSD) increased accuracy to identify and count 
plants. The best performance was for combination 
F60 and ‘Without GCP’ (Table 3). The best result was 
97 % (Sb) for F60, without the use of GCP. However, 
as expected, the main error to identify plants was due 
to FN, which are plants with less height and a smaller 
crown. Data variability (ground truth) is also shown: a) 
average height 1.70 m and coefficient of variation (CV) 
of 22.0 %; b) average (circular) crown area 3.40 m2 and 
CV 39.1 %. Fawcett et al. (2019) shows the heterogeneity 
effect when evaluating biometric attributes in younger 
plantations using an RGB sensor in UAV. The authors 
estimated accuracy when counting plants of the African 
oil palm (Elaeis guineensis) aged two, seven, and ten years 
and found 80.4 %, 98.2 %, and 94.9 % respectively.

Estimating plant height and volume

The ground control points (GCP) did not increase accuracy 
in the process to estimate plant height. In general, the 

Figure 4 – Descriptive statistics of the crown projection area designed by flights without ground control points (GCP).
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values   for RMSE and MAE ‘Without GCP’ were lower 
than ‘With GCP’ (Table 4). 

MDS derived from the SfM processing is also 
subject to systematic and random errors introduced by 
GCP (James et al., 2017). During georeferencing point 
cloud, similarity transformation occurs in some of the 
parameters (translation, rotation, and scale) that can 
only compensate linear models (Agisoft, 2020). The 
authors point out that possible non-linear deformations 
can be removed by optimizing the parameters when 
editing point cloud and by calibrating the camera based 
on GCP coordinates. Nevertheless, the result was not 
sufficient to increase accuracy when using GCP.

On the other hand, the map scale had a direct 
influence on estimates of plant height, that is, lower 
GSD values   provided better accuracy (lower RMSE 
and MAE) and greater correlation levels. Low-altitude 
flights significantly increase point cloud density, which 
improves 3D surface reconstruction (Seifert et al., 2019; 
Torres-Sánchez et al., 2018). Better results were achieved 
with F60, mainly for ‘Without GCP’. The data derived 
from the UAV and SfM processing tend to underestimate 
plant height values (Figure 5A), as reported by Dandois 
et al. (2015). 

Certain factors contributed to underestimating 
plant height values: a) irregular crown architecture 
(Figure 5B), which is still under formation; b) DSM 
resolution (GSD) not compatible with the size of some 

objects, such as branches and leaves, with higher GSD 
values   tending to smooth the surface, reducing crown 
heterogeneity, and consequently reducing accuracy 
(Zarco-Tejada et al., 2014); c) point cloud precision 
(derived from the SfM), which is lower in plant crown 
compared to the terrain surface (Fawcett et al., 2019); 
and d) plant movement during acquisition, possibly due 
to the wind. 

For relative height (DHM) and absolute altitude 
(DSM), better results were obtained with the DSM 
model, for instance, lower values for the RMSE and MAE. 
When using DHM with the methodology in this study 
(DHM = DSM – DTM), DTM is derived from two filters 
in the dense cloud, followed by classification, which 
must have smoothed the values for absolute height and 
consequently DHM and the plant height values (h

DHM
). 

The process of subtracting DTM from DSM is known 
and can result in underestimations by not representing 
the plant apex (Holman et al., 2016). This situation is 
fairly common in data derived from SfM processing and 
explains the systematic underestimation of plant height 
(Castro et al., 2019; Solvin et al., 2020). Based on this 
tendency, our study presented an alternative procedure 
using the developed routine, which succeeded in 
minimizing this effect, that is, when using the DSM 
only, the results were more satisfactory.

When estimating plant volume, the results above 
should be considered, particularly delimitation of the 

Table 3 – Correctly identified plants (TP), correctly identified planting failures (TN), points incorrectly identified as plants (FP), unidentified plants 
(FN), sensitivity in detecting plants (Sb), specificity in identifying non-acid lime plants (Sp), accuracy (Ac) and percentage of correctly identified 
plants (Paac) as measurements of performance in a study of the ‘Tahiti’ acid lime for different flights with and without ground control points 
(GCP).

Flight 
With GCP Without GCP

TP TN FP FN Sb Sp Ac Paac TP TN FP FN Sb Sp Ac Paac
F60 841 70 3 25 0.97 0.96 0.97 97.11 843 70 3 27 0.97 0.96 0.97 97.34
F90 840 70 0 31 0.96 1.00 0.97 97.00 829 70 7 37 0.96 0.91 0.95 95.73
F120 772 70 17 95 0.89 0.80 0.88 89.15 790 70 12 79 0.91 0.85 0.90 91.20

Table 4 – Validation of height and volume in ‘Tahiti’ acid lime plants under formation for different flights with and without ground control points 
(GCP), for the product of both the Digital Height Model (DHM) and the Digital Surface Model (DSM), the Root-Mean-Square-Error (RMSE), Mean 
Absolute Error (MAE) and Correlation Coefficient (r).

DHM DSM
With GCP Without GCP With GCP Without GCP

Plant Height
Flight F60 F90 F120 F60 F90 F120 F60 F90 F120 F60 F90 F120 
RMSE (m2) 0.35 0.42 0.54 0.34 0.36 0.53 0.26 0.32 0.42 0.25 0.27 0.41
MAE (m) 0.29 0.36 0.48 0.28 0.29 0.46 0.19 0.25 0.36 0.18 0.20 0.35
r 0.86 0.85 0.82 0.86 0.84 0.83 0.86 0.84 0.81 0.86 0.84 0.82
p-value 1E-254 6E-238 9E-208 3E-254 1E-236 9E-219 2E-258 4E-235 2E-201 1E-257 7E-237 2E-213

Plant Volume
Flight F60 F90 F120 F60 F90 F120 F60 F90 F120 F60 F90 F120 
RMSE (m3) 2.27 2.32 2.20 2.32 2.22 2.17 2.13 2.18 2.05 2.17 2.07 2.02
MAE (m3) 2.01 2.06 1.97 2.06 1.96 1.94 1.86 1.91 1.81 1.90 1.80 1.78
r 0.89 0.88 0.85 0.89 0.88 0.86 0.89 0.87 0.85 0.89 0.87 0.86
p-value 2E-292 6E-265 4E-213 1E-291 3E-265 3E-228 5E-291 6E-263 2E-213 2E-290 4E-262 4E-229



8

Oliveira et al. Citrus orchard evaluated by UAV

Sci. Agric. v.79, n.5, e20210052, 2022

crown projection area, since the value of this area has 
greater weight Eq. (1) to estimate volume (V) than plant 
height (ph). Therefore, although the values   for RMSE 
and MAE (Table 4) decreased with increased GSD 
values, these metrics do not directly reveal accuracy 
of the method proposed here, except for the correlation 
coefficient (r)

Our results corroborate Dong et al. (2020) in 
terms of the effects of different map scale (three 
flight altitudes) and lighting conditions (as occurred at 
flight F120) on estimating the biometric attributes of 
plants. They also complement recommendations of Tu 
et al. (2020), that is, testing different combinations of 
aerophotogrammetric parameters (Table 1) with other 
sensors (RGB) on different crops (citrus plants). 

The GCP use is only necessary to carry out a 
temporal analysis of the crop of interest, since UAV 
with a navigation receiver does not have a differential 
correction system to provide sub-metric corrections. On 
the other hand, GCP can play an important role in areas 
with homogeneous surfaces, since they can improve the 
self-calibration process of the camera during alignment 
(Agisoft, 2020). Furthermore, 3D SfM models derived 
from aerial images may initially contain deformations or 
systematic errors. The use of ground control points can 
reduce these deformations (Eltner and Schneider, 2015; 
James and Robson, 2014). However, the user needs to be 
careful to the positional quality of the GCP, for instance, 
accuracy of geodetic coordinates, otherwise, when 
inaccurate coordinates are applied in SfM processing, a 
more complex error surface is introduced, rather than 
reducing the initial deformation (Sanz-Ablanedo et al., 
2018).

Quantity and distribution of GCP on the ground 
have already been studied and reported in the literature. 
However, there are certain specific peculiarities in UAV-
based photogrammetry (employing SfM processing) 
and because it mostly uses non-metric cameras and 
self-calibration, some results can be inconclusive or 
even contradictory, as reported Sanz-Ablanedo et al. 

(2018). Theoretically, when more GCP are used and 
well-distributed, the results are better for horizontal 
and vertical accuracy (Agüera-Veja et al., 2017; Ferrer-
González et al., 2020; James et al., 2017; James and 
Robson, 2014).

Sanz-Ablanedo et al. (2018) state that new studies 
reduce GCP dependence for SfM projects. Not using 
GCP saves time, eliminates georeferencing of photo-
identifiable targets in the field, and reduces investments 
in the purchasing or renting a Geodetic Receiver. For 
Fawcett et al. (2019), low-cost alternatives to GNSS 
Receivers and techniques with accuracy less than 10 
cm have proven promising, such as the technology Post 
Processed Kinematic (PPK), which can reduce GCP use 
(Zhang et al., 2019).

In terms of operational yield in the field, 
considering only the interval used for recording images 
during the flights, an effective field capacity of 22.4 
ha h–1 (F60), 51.3 ha h–1 (F90) and 81.0 ha h–1 (F120) 
was obtained. Regarding SfM processing, Torres-
Sánchez et al. (2018) state that lower flight altitude 
(lower GSD) increases the number of captured images 
and requires greater storage and processing time to 
generate the aerophotogrammetric products (Castro et 
al., 2019).

Performance of the FindCITRUS-V1 automated 
routine

In terms of computer processing time, using a Laptop 
with a Linux operating system (Ubuntu 18.04-bionic), 
i7-4500U CPU (4 core, 1.80 GHz, L2 cache 4096 KB), 16 
GB RAM and SSD Kingston SA 400S3, GPU (GeForce 
GT 740M), the analysis of the test site required 11 min 
42 s [F60], 4 min 38 s [F90], and 2 min 21 s [F120]. 
The attributes under evaluation are presented as Maps 
and Descriptive Statistics: Tract VI (VARI green), VI per 
plant, Identified Plants and Seedlings for Replanting, 
Digital Height Model (DHM), Crown Projection Area, 
and Plant Volume (Figure 6). 

Figure 5 – Descriptive statistics for plant height (A), for an RGB sensor in a UAV at a height of 60 m, in the digital surface model (DSM) without 
ground control points (GCP) and field measurements (FIELD) and irregular crown architecture (Figure B).
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The information is grouped into a personalized 
layout, with registry (Property, Assessed Tract, and 
Owner) and cartographic (DSM, DTM, and Ortho-
photomosaic) information, resulting in the Statistical 
Report Map (SRM). The report is generated in PDF 
format on a one-plant scale, which provides valuable 
information to monitor quality of ‘Tahiti’ acid lime 
orchards under formation, including statistical metrics 
associated to biometric attributes, which allow 
identification of management zones with different 
characteristics, providing greater assertiveness 
(Ampatzidis et al., 2019; and Ok and Ozdarici-Ok, 2017). 
It also allows creating high-resolution time series that 
can assist in irrigation management (Yeom et al., 2019).

The results are sufficient to define a method 
to obtain aerophotogrammetric data (using an RGB 
sensor in a UAV) that can be used to monitor quality 
of ‘Tahiti’ acid lime orchards under formation. The use 
of GCP is not necessary during the SfM geoprocessing 
stage and the map scale has strong correlation with the 
estimation quality of the attributes under evaluation. 
Moreover, our study brings the following contributions: 
(i) an automated and calibrated routine, using aspects 
of aerial photogrammetry and computer vision; (ii) 
routine estimations of various biometric attributes of 
the plant, analyzing them using descriptive statistics, 
also presenting them in a report (SRM) that can be used 
to analyze the quality of citrus groves under formation; 
(iii) routine requires minimal user intervention (a 
graphic and intuitive environment), allowing default 
parameters to be modified when necessary; (iv) routine 
was developed and could be used in a single open-source 

piece of software, QGIS; (v) routine presents excellent 
performance with ortho-photomosaics derived from 
RGB channels, that is, low-cost sensor that is easy to 
operate (Yao et al., 2019); (vi) assistance in phenotyping 
plants in the field; (vii) the method also provides the 
user (researchers, consultants, and producers) with a 
new tool to evaluate citrus orchards (in the formation 
process); and (viii) it is easily adapted to other perennial 
crops, such as mango, avocado, and coffee, among 
others. 

Conclusion

The use of GCP during the SfM geoprocessing stage 
does not increase accuracy of estimating the biometric 
attributes under evaluation. The map scale (GSD size) 
is strongly correlated to the estimation quality of the 
attributes under evaluation, especially plant height. The 
routine developed shows high accuracy and excellent 
computational performance, in addition to an intuitive 
environment and is easily adapted to perennial crops.
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