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ABSTRACT: The knowledge of correlations between multiple characteristics in plant 
breeding leads to more effective selection strategies. The path analysis allows refining 
these correlations and partitioning them into direct and indirect effects on the main variable. 
The path analysis becomes more effective when based on predicted genotypic values 
rather than phenotypic values. The objective was to evaluate correlations between the main 
agronomic characteristics of grapevine cultivation and their direct and indirect effects on 
yield per plant to improve selection strategies to reach superior progenies. A randomized 
complete block design was installed using four cultivars and two rootstocks, five repetitions, 
and plots of four plants. Data from three crop seasons were analyzed from a mixed model 
and genetic correlations were subject to the path analysis. A high and positive significant 
correlation was found between average fruit production and the number of clusters per 
plant. On the other hand, the average production per plant showed a low correlation to 
cluster width and height per grapevine. Wider and higher berries tend to increase berry 
fresh mass and therefore increase the contents of soluble solids and reducing sugars. 
Among the features, the number of clusters per plant has the strongest direct effect on fruit 
production in grape cultivars. Berry fresh mass, berry length, and berry width were indirectly 
influenced by the number of clusters and showed high heritability compared to yield and 
number of clusters. These characteristics could be used in indirect selection.
Keywords: Vitis spp., correlation, genotypic values, mixed models, tropical vitiviniculture

Best linear unbiased prediction in combination with path analysis in 

Cinthia Souza Rodrigues2* , Mara Fernandes Moura1 , Geovani Luciano de Oliveira3 , Marlon Jocimar Rodrigues da Silva4 , 
Marco Antonio Tecchio4

1Instituto Agronômico/Centro Avançado de Pesquisa 
e Desenvolvimento de Frutas, Av. Luiz Pereira dos 
Santos, 1500 – 13214‑820 – Jundiaí, SP – Brasil.
2Instituto Agronômico/Centro de Fibras e Grãos, Av. 
Theodureto de Almeida Camargo, 1500 – 13075‑630 – 
Campinas, SP – Brasil.
3Universidade Estadual de Campinas/Centro de 
Biologia Molecular e Engenharia Genética, Av. Cândido 
Rondom, 400 – 13418‑900 – Campinas, SP – Brasil.
4Universidade Estadual Paulista “Júlio de Mesquita 
Filho”/Faculdade de Ciências Agronômicas, Av.  
Universitária, 3780 – 18610‑034 – Botucatu, SP – Brasil.
*Corresponding author <cinthia.rodrigues@iac.sp.gov.br>

Edited by: Thiago Libório Romanelli

Received October 11, 2022
Accepted March 22, 2023

Introduction

Plant breeding programs seek improvements in 
agronomic features of interest. In this regard, multiple 
characteristics are simultaneously considered during the 
evaluation. Correlation studies aim to understand the 
relationship between such characteristics, which may 
result in genetic enhancement in future generations 
or the selection of a genotype of interest (Cargnin, 
2019; Moreira et al., 2019). Thus, the selection for a 
main feature with low heritability and/or measuring 
difficulties can be performed based on one or more 
characteristics of moderate to high heritability, allowing 
the breeder to advance the use of indirect selection, 
saving time and effort (Diniz and Oliveira, 2019).

The correlation estimates a connection between 
pair of variables, regardless of their causes. However, 
the correlation allows estimating only the magnitude 
and the sense of linear association between two features, 
which may not represent their actual association, since 
a high or low relation may result either from the biased 
of a third characteristic or a set of characteristics (Cruz 
et al., 2012). For that reason, more detailed studies about 
relationships between characteristics become crucial, 
such as the path analysis developed by Wright (1921), 
which allows a better analysis of the coefficients that 
determine the influence that one characteristic has 
on another. The path analysis allows to unfold biased 
correlations into direct and indirect effects of features on 

the main variable, generating more accurate estimates of 
cause and effect (Lombardi et al., 2015). 

The results of the path analysis become more 
effective when based on predicted genotypic values 
rather than phenotypic ones. The use of components of 
variance estimated by maximum restricted likelihood 
(REML) and by predicted genotypic values by the best 
linear unbiased prediction (BLUP) leads to more precise 
and accurate inferences, increasing accuracy of the 
analysis and efficiency of breeding programs (Olivoto et 
al., 2017), since the phenotypic values are corrected to 
the environmental effects and weighed by the character 
heritability through BLUP (Butler et al., 2017).

This study aimed to evaluate the correlations between 
the main agronomic characteristics of vine cultures and 
their direct and indirect effects on average production by 
the plant of promising grapes varieties for processing using 
the path analysis based on genotypic values via BLUP.

Materials and Methods

Study site

The experiment was conducted at the Centro de 
Seringueira e Sistemas Agroflorestais of the Instituto 
Agronômico (IAC) in Votuporanga, São Paulo State, 
Brazil (20°15’ S, 50°30’ W, 483 m altitude). According 
to the Köppen classification, the climate in the region is 
humid tropical (Aw) (Beck et al., 2018). 
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The vineyard was implanted in Aug 2013. The 
plants were spaced in 2.0 m × 1.1 m and sustained in 
an espalier system with a unilateral cordon. Cultural 
practices followed the recommendations for regional 
viticulture, with daily micro-sprinklers irrigation, and 
installation of polyethylene screens. For all seasons, 
vines were cane pruned to leave one to two nodes, as 
well as the usual cultivation practices in the region. 
Subsequently, 5 % hydrogen cyanamide was applied to 
the buds to induce and standardize the sprouting.

Treatments and experimental design

The experimental design was randomized blocks in plots 
with four cultivars grafted onto two rootstocks, totaling 
eight cultivar/rootstock combinations. Five replicates 
with four plants per plot were used. The treatments 
consisted of the cultivars Isabel Precoce (Isabella 
mutation), BRS Carmem (Muscat Belly A × H 65.9.14), 
BRS Cora (Muscat Belly A × H. 65.9.14), and IAC 138-
22 Máximo (Seibel 11342 × Syrah) grafted on the most 
commonly used rootstocks IAC 766 ‘Campinas’ (106-8 
Mgt × Vitis caribaea) and IAC 572 ‘Jales’ (V. caribaea 
× 101-14 Mgt). All the cultivars are grapes intended 
for juice production, with IAC 138-22 Máximo used for 
juice and wine productions.

Three production cycles were evaluated in the first 
halves of three years: cycle 1 - from Mar 2017 (pruning) 
to June 2017 (harvest); cycle 2 - from Mar 2018 (pruning) 
to June 2018 (harvest); cycle 3 - from Mar 2019 (pruning) 
to July 2019. In all pruning events, four to six buds per 
branch were kept.

Evaluated variants 

The components evaluated were as follows: cluster fresh 
mass (CM), berry fresh mass (BM), rachis fresh mass 
(RM), cluster length (CL) and width (CW), berry length 
(BL) and width (BW), total soluble solids (SS) expressed 
in °Brix, titratable acidity (AT) expressed in tartaric acid 
percentage, pH, maturation index (MI), and reducing 
sugars content (RS) in glucose percentage. At harvesting, 
the number of clusters per vine (NCV) was measured 
and the production (kg) per vine was obtained (Yield) 
through plant mass. 

For the evaluation of the physical characteristics of 
clusters, rachis, and berries, ten representative clusters 
were used per experimental plot, and in each cluster, 
ten berries were collected from the upper, middle, and 
lower parts of the clusters (3:4:3), totaling 100 berries 
per plots size. Following the physical analysis, the same 
berries from each cluster were smashed to obtain grape 
must determine SS, AT, pH, MI, and RS in triplicates.

An analytically accurate scale was used to measure 
CM, BM, and RM (in g). A graduated measuring ruler 
with a length of 30 cm was used to quantify CL, CW, BL, 
and BW (in cm). SS was determined by an Atago® digital 
refractometer using the juice extracted from the grape 

pulp. RS was determined according to the colorimetric 
method proposed by Somogyi-Nelson (Nelson, 1944), 
which is based on an analytical glucose curve at the 
absorbance of 510 nm. AT was obtained by titration of 
0.1 N NaOH to the equivalence point of pH = 8.2 as 
indicated by a color change, the MI corresponds to SS/
AT ratio, and the pH was determined by a potentiometer 
Micronal brand, model B274. 

Statistical analysis

The joint analysis of crop seasons from 2017, 2018, and 
2019 was analyzed according to the following mixed 
linear model described:

Y = Xr + Zg + Wi + e

where: Y is the data vector; r is the vector of plot 
effects within different seasons (fixed); g is the vector of 
genetic values effects (random), where σg

2 corresponds 
to genetic variance; i is the vector effects of cultivars × 
seasons interaction (random), where σi

2 is the variance 
of cultivars × seasons interaction; e is the vector of 
random errors, where σe

2 the variance of errors. X, Z, 
and W represent the incidence matrices that fit r, g, and 
i to the Y data vector.

The estimation of the effects of random effects 
(best unbiased linear prediction - BLUP) of the model 
was carried out by the equation system of Henderson 
(1975). The residual maximum likelihood (REML) 
method was used to estimate the variance components 
( σg

2 , σi
2  and σe

2  ), as described by Butler et al. (2017). 
The significance of variance components was 

verified by the likelihood ratio test (LRT), according to 
Resende (2007). The genetic correlations between the 
characteristics studied were estimated based on the 
predictions of genetic values, and each characteristic 
was used to calculate broad sense heritability values and 
selective accuracy. The statistical analysis was carried 
out applying R version 3.6.3 using Imer functions and 
ranef from lme4 library to estimate and predict the 
mixed model.

For the path analysis, the genetic correlation 
matrix of the explanatory variables was verified in 
relation to multicollinearity. The test used was the 
assessment of the condition number (CN) as proposed 
by Montgomery and Peck (1981), which examines the 
ratio between the highest and lowest eigenvalues of the 
correlation matrix. Multicollinearity is considered low 
when CN < 100, moderate to high if 100 < CN < 1000, 
and severe if CN >100. When severe multicollinearity 
was identified, a constant k was added to the main 
diagonal of the correlation matrix, similar to the ridge 
regression method (Carvalho and Cruz, 1996).

The adequate value regarding constant K was 
determined by examining the ridge (Hoerl and Kennard, 
1970), which was obtained by plotting the estimated 
parameters (path coefficients) as a function of K values 
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within the range of 0 < K < 1. The smallest K value 
capable of stabilizing most estimates of path coefficient 
was used. Therefore, path analysis was used to analyze 
all variables, considering a characteristic yield per vine 
as a basic variable and the other variables as independent 
or explanatory. GENES computational program (Cruz, 
2013) was applied for the path analysis.

Results and Discussion

The treatments, constituted of different grape cultivar/
rootstock combinations for processing, showed 
significant differences by the likelihood ratio test (LRT) 
for CM, CL, CW, BM, BL, BW, RM, RM/CM, SS, AT, 
and RS (Table 1). Essential characteristics, such as the 
number of clusters per vine (NCV) and average fruit 
production per vine, did not differ genetically among the 
grapevine cultivars evaluated, which proceeded in low 
estimates of heritability. These results point to the need 
to investigate and select based on the features that are 
less influenced by the environment and that affect fruit 
production, allowing indirect genetic progress. 

The interaction of the cultivars × seasons affected 
almost all characteristics evaluated, except for BL. In 
other words, the cultivars did not show similar behavior 
in different seasons for this feature (Table 1). The 

presence of the genotype × environment interaction 
makes the selection process difficult and may alter the 
estimates of several parameters, such as heritability, 
genetic variance, and even correlation. Correlation is a 
changeable parameter; thus, it might be underestimated 
if one of the characteristics offers slight variation due 
to low environmental control or a strong interaction 
between genotypes × seasons (Lira et al., 2017). 
Therefore, evaluating the genotypes in different seasons 
is essential for a more liable selection. When genotypes 
are evaluated in a more significant number of places or 
seasons, the effect of environments and genotypes × 
environment is estimated with greater precision, and, 
consequently, the contribution of the genetic effect on 
phenotypic variation is more accurate (Zambiazzi et al., 
2017).

The average yield per vine showed a high and 
positive genetic correlation with the number of clusters 
per vine (0.80) (Figure 1). This result was expected since 
the number of clusters and the cluster mass are directly 
related to the average production of grapevines. Gupta 
et al. (2015) also found a similar result while evaluating 
20 cultivars of table grapes. The authors also observed 
that the average production per vine presented a low 
correlation with the cluster length and width and a high 
correlation with the number of clusters per vine. 

Table 1 – Genetic parameters for the characteristics: NCV = number of clusters per vine; Yield; CM = cluster mass; CL = cluster length; 
CW = cluster width; BM = berry mass; BL = berry length; BW = berry width; RM = rachis mass; RM/CM; SS = total soluble solids; pH; 
AT = titratable acidity; MI = maturation index; RS = reducing sugar – estimated by the analysis of cultivars assessed in the harvests of 
2017, 2018, and 2019, in Votuporanga, São Paulo State, Brazil.

Parameters NCV YIELD CM CL CW
σg

2 27.98 5.80E‑05 570.35** 0.67** 0.52**
σi

2 110.81** 1.50** 374.39** 0.98** 0.49**
σe

2 33.08 4.26E‑01 268.42 0.78 2.90E‑01
h2 31.67 0.0034 78.19 62.14 73.12
rgg 56.23 0.6 88.42 78.82 85.51
Cve 15.23 17.8 13.77 7.23 7.67E+00
Average 37.76 3.67 119.11 12.2 7.02E+00

BM BL BW RM RM/CM
σg

2 5.348e‑01** 0.045** 0.023** 1.36** 0.653**
σi

2 0.02685** 0.0061 0.0012** 0.26** 0.060 **
σe

2 3.21E‑02 0.0316 1.69E‑03 0.43 0.149
h2 97 90.5 97.47 92 94.5
rgg 98 95 98.7 95.9 97.2
Cve 7.9 9.98 2.72 19.4 13.5
Average 2.53 1.78 1.513 3.389 2.87

SS pH AT MI RS
σg

2 0.36** 2.93E‑04 3.900e‑02** 13.7458 3.189**
σi

2 0.83** 0.008** 0.03971** 20.052** 0.3672**
σe

2 6.49E‑01 3.53E‑03 5.87E‑03 7.542 9.09E‑01
h2 52 9 74 65.39 92
rgg 72.2 30 86 80.8 95.9
Cve 4.72 1.87 7.08 15.6 6.98
Average 3.17 3.17 1.08 17.56 13.67
** and * Significant at 1 and 5 %, respectively, by likelihood ratio test (LRT); σg

2 = genotypic variance between cultivar/rootstock combinations; σi
2 = variance of 

cultivars × season interaction; σe
2 = residual variance; h2 = heritability; rgg = selective accuracy; Cve = coefficient of variation.
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The correlation between CL with CW (0.94) and 
BL with BW (0.91) was highly positive. This means that 
large berries, according to measurements such as length, 
tend to be bigger in other measurements, such as width; 
thus, longer grape clusters tend to be wider (Abiri et al., 
2020). 

The significant and positive correlation reported 
between SS and RS was 0.87 (Figure 1). The fact that 
these features are associated suggests that high SS may be 
used as an indirect measurement to select genotypes with 
high amounts of reducing sugars. Approximately 95 % of 
grapes’ total soluble solids content are free sugars, which 
explains the highly significant correlation between SS and 
RS. However, the sugar content is a crucial characteristic 
of grapes for juice production (Borghezan, 2017).

There was also a high and positive correlation 
between BL and BM (0.95), BW and BM (0.96), BM and 
SS (0.83), BM and RS (0.98), BL and SS (0.79), BW and SS 
(0.87), BL and RS (0.92), and BW and RS (0.96) (Figure 
1). This shows that the larger the berries, the larger their 

fresh mass and the higher the content of soluble solids 
and reducing sugars.

Sugars in ripe berries are present at high contents 
in the flesh, not in the skin (Coombe et al., 1987; Possner 
and Kliewer, 1985). Since most berry weight is located 
in the flesh, the high and positive correlation between 
reducing sugars and berry fresh mass is easily explained. 
Moreover, studies have indicated that the amount of 
sugar per berry was not constant but increased linearly 
with the berry size (Ferrer et al., 2014; Matthews and 
Nuzzo, 2007; Roby et al., 2004). These results were 
similar to our findings and confirmed that the sugar 
content is proportional to the berry size. 

Nevertheless, increases in the sugar content with 
fresh mass may not be enough to avoid a lower SS in 
larger berries. Other studies have already observed an 
inverse correlation between SS and berry mass (Cawthon 
and Morris, 1982; Roby et al., 2004). The sources of 
variation in berry sizes, such as viticultural practices, 
environmental conditions, and grape cultivars, are more 

Figure 1 – Estimates of the correlations between vectors of genotypic average predicted by BLUP. NCV = n° of clusters per vine; Yield; CM 
= cluster mass; CL = cluster length; CW = cluster width; BM = berry mass; BL = berry length; BW = berry width; RM = rachis mass; RM/
CM; SS = total soluble solids; pH; AT = Titratable acidity; MI = Maturation index; RS = reducing sugar. **Significant at 5 % of probability and 
other nonsignificant correlations by the t test.
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critical in determining composition than berry size per se 
(Matthews and Nuzzo, 2007; Ferrer et al., 2014).

On the other hand, there was a high and negative 
correlation between CL and CW with RS, providing 
evidence that the sugar content decreases as cluster 
size increases. Sugar concentration usually increases 
with decreasing fruit load (measured as leaf-to-fruit 
ratio) in many fruits, including grape (Dai et al., 2016). 
In grapevine, Nuzzo and Matthews (2006) showed that 
the rate of sugar accumulation occurred more rapidly in 
berries under a lower fruit load than in those under a 
higher fruit load.

The NCV and BL were correlated, although in 
opposite directions, suggesting that the more grape 
clusters a plant produces, the smaller the size of 
cluster berries. A negative correlation may be found 
between the production components, mainly because 
of competition between these components during plant 
development in each crop cycle. As stated by Leão et al. 
(2020), the negative correlation between the number of 
clusters and berries length arises from the competition 
for photoassimilates and unbalance in the source/drain. 

The maturation index (MI), essential to define fruit 
flavor, presented a higher correlation to acidity (–0.92) than 
soluble solids content. These results indicate that fruits 
with the best flavor are readily selected based on acidity 
alteration. Acidity, however, is crucial for the industrial 
sector since it prevents deterioration by microorganisms 
and allows more flexibility to add sugar (Morgado et al., 
2010). On the other hand, the selection to increase the SS/
AT ratio is desirable to obtain fruits with good acceptance 
for table grapes (Ribeiro and Freitas, 2020).

There was also a negative correlation between 
BM with RM (–0.95), BW with RM (–0.93), BL with 
RM (–0.84), RM with SS (–0.76), and RM with RS 
(–0.93) (Figure 1), indicating that both variables move 
in opposite directions. A close-ratio between these 
characteristics could either facilitate gene introgression 
or make it more difficult, since a strong selection for 
a desirable characteristic may favor the presence of 
another undesirable germplasm characteristic (Dicenta 
and Garcia, 1992).

For the path analysis, the multicollinearity 
diagnosis showed NC = 4037.6, leading to severe 
multicollinearity (NC > 100). To minimize the adverse 
effects of multicollinearity, the ridge regression method 
was applied in which a constant (k) is added to the 
diagonal elements of the X’X matrix. The k value is 
the lowest value capable of stabilizing most estimators 
of the path coefficients (Viotto Del Conte et al., 2020). 
From there, a value k = 0.1269 is adopted, and all 
variables were used. In this analysis, the determination 
coefficient (R2) was 0.91, and the residual variable effect 
was 0.298, indicating a suitable model adjustment to 
explain the genetic effects related to the variables under 
analysis (Figure 2A).

Some methodologies can be used to mitigate 
problems caused by multicollinearity, such as the 

elimination of variables with interrelationships and 
the ridge regression method. There is difficulty in 
discarding variables because a variable that is not 
necessarily more economically important may better 
explain the primary variable (Bizeti et al., 2004; 
Viotto Del Conte et al., 2020). Additionally, it may be 
required to discard many variables. Therefore, the ridge 
regression method becomes an efficient method to avoid 
the multicollinearity effect and to include and analyze 
all variables.

The number of clusters per vine variable (NCV) 
provided the most significant maximum direct effect 
on grape production (0.599) and low indirect effects 
regarding the average production of grapes (Figure 2B). 
In other words, NCV presented a more relevant direct 
effect than the residual one and may be considered the 
most determining variation of grapevine production. In 
plant breeding, finding correlated variables with a high 
direct and favorable effect on the primary variable is 
desirable. In this study, the number of clusters per vine 
was the feature most correlated to grape production, 
with the most strongly direct effect on this feature 
(Figure 2A), confirming the relevance of this variable in 
the selection process to increase grape production.

Direct positive effects of low magnitude were 
observed for CM, RM, CL, SS, RS, and maturation 
indexes. These values were below the residual (Figure 
2A). In comparison, direct negative smaller effects 
were found in CW, BM, BW, BL, RM/CM, and AT. This 
low magnitude indicates a small contribution of these 
variables to grape production. 

It is known that yield per grapevine is a polygenic 
characteristic greatly influenced by the environment, 
which makes the direct increase of grape production a 
real challenge (Fanizza et al., 2005; Houel et al., 2015; 
Muñoz-Espinoza et al., 2016). Thus, it is essential to 
consider the variables that indirectly influence the 
increase in fruit production, mainly the variables with 
more significant heritability and easiness of evaluation. 
Berry mass, berry length, berry width, rachis mass, 
RM/CM, SS, and reducing sugar indirectly influenced 
fruit production through NCV. (Figure 2B). These 
characteristics exhibited high heritability in comparison 
to yield and NCV and could be used in the indirect 
selection in breeding programs aiming at increasing fruit 
production per plant.

Conclusion

The number of clusters per vine demonstrated a higher 
correlation and direct influence on fruit production in 
the grapevine. On the other hand, berry fresh mass 
and length and width were indirectly influenced by 
the number of clusters for the production variable of 
grapevine. However, these variables presented higher 
heritability and may be an excellent selective strategy 
to obtain indirect gains in the production of grapes for 
juice production.
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Ísis’ as affected by the rootstock under semi-arid tropical 
conditions. Scientia Horticulturae 263: 109114. https://doi.
org/10.1016/j.scienta.2019.109114

Lira EG, Amabile RF, Fagioli M, Montalvão APL. 2017. Genetic 
parameters, phenotypic, genotypic and environmental 
correlations and genetic variability on sunflower in the 
Brazilian Savannah. Ciência Rural 47: e20160719. https://
doi.org/10.1590/0103-8478cr20160719

Lombardi GMR, Nunes JAR, Parrella RAC, Teixeira DHL, Bruzi 
AT, Durães NNL, et al. 2015. Path analysis of agro-industrial 
traits in sweet sorghum. Genetics and Molecular Research 
14: 16392-16402. https://doi.org/10.4238/2015.December.9.8

Matthews M, Nuzzo V. 2007. Berry size and yield paradigms 
on grapes and wines quality. Acta Horticulturae 754: 423. 
https://doi.org/10.17660/ActaHortic.2007.754.56

Montgomery DC, Peck EA. 1981. Introduction to Linear 
Regression Analysis. John Wiley, New York, NY, USA.

Moreira FF, Hearst AA, Cherkauer KA, Rainey KM. 2019. 
Improving the efficiency of soybean breeding with high-
throughput canopy phenotyping. Plant Methods 15: 139. 
https://doi.org/10.1186/s13007-019-0519-4 

Morgado MAD, Santos CEM, Linhales H, Bruckner CH. 2010. 
Phenotypic correlations in physicochemical characteristics of 
Passion fruits. Acta Agronómica 59: 457-461 (in Portuguese, 
with abstract in English).

Muñoz-Espinoza C, Di Genova A, Correa J, Silva R, Maass A, 
González-Agüero M, et al. 2016. Transcriptome profiling of 
grapevine seedless segregants during berry development 
reveals candidate genes associated with berry weight. BMC 
Plant Biology 16: 104. https://doi.org/10.1186/s12870-016-
0789-1

Nelson N. 1944. A photometric adaptation of the somogyi 
method for the determination of glucose. Journal of Biological 
Chemistry 153: 375-380. https://doi.org/10.1016/S0021-
9258(18)71980-7

Nuzzo V, Matthews MA. 2006. Response of fruit growth and 
ripening to crop level in dry-farmed Cabernet Sauvignon 
on four rootstocks. American Journal of Enology 
and Viticulture 57: 314-324. https://doi.org/10.5344/
ajev.2006.57.3.314

https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1590/S1516-89132004000500001
https://doi.org/10.1590/S1516-89132004000500001
https://doi.org/10.1051/ctv/20173202126
https://doi.org/10.1051/ctv/20173202126
https://doi.org/10.4025/actasciagron.v41i1.42
https://doi.org/10.4025/actasciagron.v41i1.42
https://doi.org/10.21273/JASHS.107.6.1097
https://doi.org/10.1093/jxb/38.11.1789
https://doi.org/10.4025/actasciagron.v35i3.21251
https://doi.org/10.4025/actasciagron.v35i3.21251
https://doi.org/10.3389/fpls.2016.00649
https://doi.org/10.1590/0001-3765201920180387
https://doi.org/10.1590/0001-3765201920180387
https://doi.org/10.1007/s00122-005-2016-6
https://doi.org/10.1007/s00122-005-2016-6
https://doi.org/10.5958/0976-1926.2015.00042.X
https://doi.org/10.5958/0976-1926.2015.00042.X
https://doi.org/10.2307/2529430
https://doi.org/10.1186/s12870-015-0588-0
https://doi.org/10.2307/1267351
https://doi.org/10.1016/j.scienta.2019.109114
https://doi.org/10.1016/j.scienta.2019.109114
https://doi.org/10.1590/0103-8478cr20160719
https://doi.org/10.1590/0103-8478cr20160719
https://doi.org/10.4238/2015.December.9.8
https://doi.org/10.17660/ActaHortic.2007.754.56
https://doi.org/10.1186/s13007-019-0519-4
https://doi.org/10.1186/s12870-016-0789-1
https://doi.org/10.1186/s12870-016-0789-1
https://doi.org/10.1016/S0021-9258(18)71980-7
https://doi.org/10.1016/S0021-9258(18)71980-7
https://doi.org/10.5344/ajev.2006.57.3.314
https://doi.org/10.5344/ajev.2006.57.3.314


8

Rodrigues et al. Correlation and path analysis in grape

Sci. Agric. v.81, e20220218, 2024

Olivoto T, Nardino M, Carvalho IR, Follmann DN, Ferrari M, 
Szareski VJ, et al. 2017. REML/BLUP and sequential path 
analysis in estimating genotypic values and interrelationships 
among simple maize grain yield-related traits. Genetics and 
Molecular Research 16: gmr16019525. https://doi.org/10.4238/
gmr16019525

Possner DRE, Kliewer WM. 1985. The localization of acids, 
sugars, potassium, and calcium into developing grape berries. 
Vitis 24: 229-240. https://doi.org/10.5073/vitis.1985.24.229-240

Resende MDV. 2007. Software Selegen-REML/BLUP: Statistical 
System and Computerized Genetic Selection via Mixed Linear 
Models. Embrapa Forests = Sistema Estatístico e Seleção 
Genética Computadorizada via Modelos Lineares Mistos. 
Embrapa Florestas, Colombo, PR, Brazil (in Portuguese).

Ribeiro BS, Freitas ST. 2020. Maturity stage at harvest and storage 
temperature to maintain postharvest quality of acerola fruit. 
Scientia Horticulturae 260: 108901. https://doi.org/10.1016/j.
scienta.2019.108901

Roby G, Harbertson JF, Adams DA, Matthews MA. 2004. 
Berry size and vine water deficits as factors in winegrape 
composition: anthocyanins and tannins. Australian Journal 
of Grape and Wine Research 10: 100-107. https://doi.
org/10.1111/j.1755-0238.2004.tb00012.x

Viotto Del Conte M, Carneiro PCS, Resende MDV, Silva FL, 
Peternelli LA. 2020. Overcoming collinearity in path analysis 
of soybean [Glycine max (L.) Merr.] grain oil content. Plos One 
15: e0233290. https://doi.org/ 10.1371/journal.pone.0233290

Wright S.1921. Correlation and causation. Journal of Agricultural 
Research 20: 557-585.

Zambiazzi EV, Bruzi AT, Guilherme SR, Pereira DR, Lima JG, 
Zuffo AM, et al. 2017. Estimates of genetics and phenotypics 
parameters for the yield and quality of soybean seeds. Genetics 
and Molecular Research 16: 1-12. https://doi.org/10.4238/
gmr16039801

https://doi.org/10.4238/gmr16019525
https://doi.org/10.4238/gmr16019525
https://doi.org/10.5073/vitis.1985.24.229-240 
https://doi.org/10.1016/j.scienta.2019.108901
https://doi.org/10.1016/j.scienta.2019.108901
https://doi.org/10.1111/j.1755-0238.2004.tb00012.x
https://doi.org/10.1111/j.1755-0238.2004.tb00012.x
https://doi.org/ 10.1371/journal.pone.0233290
https://doi.org/10.4238/gmr16039801
https://doi.org/10.4238/gmr16039801

