The development of the postnephrectomy arteriovenous fistula (PNAVF) between the renal vessels stumps is rare. Here we present a case report of PNAVF, and review the diagnosis, treatment and prevention. The most common clinical features include a loud murmur over the previous nephrectomy scar, and heart failure resistant to common medical treatment. A 58-year-old white woman was admitted to the hospital for a complete evaluation of an unexplained congestive heart failure with no response to common medical treatment. She had had a right nephrectomy for pyonephrosis 13 years before. The diagnosis of PNAVF was suspected because over the right lumbar region a definite trill was palpated, and on auscultation a harsh, machinery-like murmur was heard. The diagnosis was confirmed by aortogram and selective renal arteriography. In May 1989, the right arteriovenous was excised through a right subcostal transperitoneal approach. The renal vessel stumps were individually ligated and sutured separately close to aorta and vena cava. The patient's postoperative course was entirely uneventful in the following seven years. We conclude that during nephrectomy, the renal vessels should be ligated separately, and the transfixation in mass of the stumps avoided to prevent arteriovenous fistula.


CASE REPORT

R.S., a 58-year-old white woman, was admitted to the Beneficência Portuguesa Hospital with an unexplained congestive heart failure nonresponsive to common medical treatment. The patient had undergone a right nephrectomy 13 years earlier for pyelonephrosis, and had been presenting symptoms of gallbladder lithiasis with surgical indication.

Upon physical examination, blood pressure was 150/80 mmHg and the cardiac rate was 96 bpm. A trill was palpated over the right lumbar region and a loud, continuous machinery-like murmur was heard upon auscultation over the right flank. Eletrocardiography revealed left ventricular hypertrophy and arrhythmia, and chest roentgenograms showed a minimal cardiomegaly and slight vascular congestion. All laboratory tests were within normal limits.

With a suspicion of a systemic arteriovenous fistula, a percutaneous transmembral abdominal aortogram and a
selective renal arteriography were performed. Arteriographic studies revealed a dilated right renal artery with a diameter of 10 mm. At a point 3 cm from its aortic origin, the contrast medium coursed through a winding channel and entered the inferior vena cava, and a large arteriovenous fistula between the renal artery and vena cava at the site of previous right nephrectomy was revealed. The inferior vena cava proximal to the renal vessels stumps was dilated and had a maximum diameter about 40 mm (Fig. 1).

On May 3, 1989, correction of the fistula was carried out through a right subcostal transperitoneal incision. A pulsating mass about 2 cm in diameter was found near the right renal vessel stumps. The renal vessel stumps were isolated, ligated and divided. The sac (fistula) was individualized and removed. The renal artery and vein stumps were individually ligated with 2-0 silk, and sutured separately with monofilament polypropylene close to aorta and vena cava respectively. The retroperitoneum was closed, and the cholecystectomy was carried out.

The patient’s postoperative course was entirely uneventful. The murmur and trill disappeared after the procedure. The patient was discharged from the hospital five days later on May 8 without any complications. In March 1996, the patient was asymptomatic and clinical examinations revealed no sign of heart failure. Blood pressures, analytic tests and pulse were within normal limits, and the cardiomegaly was reduced. An abdominal ultrasonography was within normal limits, except for the absence of the gallbladder, right kidney and arteriovenous fistula (postoperative status).

DISCUSSION

Renal arteriovenous fistula can be idiopathic, congenital or acquired. Postnephrectomy renal arteriovenous fistulas are rare complications that may develop over a period of time ranging from days to 35 years. In 800 renal transplants performed at the University of Minnesota, this complication has occurred only twice, and may well have been caused by simultaneous ligation of renal artery and renal vein.

Factors considered to be of etiologic significance in the development of postnephrectomy arteriovenous fistula include: mass ligation of the renal pedicle, especially when transfixation sutures are used; nephrectomy for tuberculosis of the kidney; postoperative infection in the nephrectomy bed, and; renal carcinoma. The mechanism of fistula formation was clear in some of the cases. Those which developed following nephrectomy were likely due to ligation in mass of vessels, with subsequent necrosis of the wall and perforation. Similar changes occurred after direct trauma. In congenital lesions, the large vessels made up the fistula.

Among the cases of hypernephroma, there frequently existed both a connection of large artery to the vein due to tumor invasion, and large communicating vascular spaces within the partially necrotic tumor. In the remaining cases, the initial lesion probably was an arterial aneurysm which eventually eroded the wall of the vein to form the connection, but this condition is rare.

Figure 1 - Percutaneous retrograde abdominal aortogram demonstrates dilated right renal artery, winding stump of the renal vein, and opacification of inferior vena cava.

Figure 2 - Percutaneous retrograde renal arteriogram demonstrates dilated right renal artery, tortuous stump of the renal vein, and opacification of inferior vena cava.
The literature has recorded more frequent involvement of the right postnephrectomy renal arteriovenous fistula because of the anatomic disposition of the right kidney and a short renal vein pedicle. Two-thirds of the cases are found on the right side; removal of the kidney is technically more difficult on this side.2,7,12,13

Like all peripheral arteriovenous fistula, they create a high venous return, an increase in cardiac output, and sometimes, an increase in systolic blood pressure. This leads to a reduction in peripheral resistance and a decrease in diastolic blood pressure. If the heart cannot compensate for this shunt while trying to meet increased tissue demands, the output of cardiac failure will naturally result.4

Postnephrectomy renal arteriovenous fistula must be suspected in all patients with a history of previous nephrectomy when congestive heart failure and a high cardiac output state are present, especially if resistant to common medical treatment.2,14 The clinical presentation of this syndrome is very impressive because many patients have symptomatic congestive heart failure, high cardiac output, hypertension and continuous abdominal murmur.4

With the clinical manifestations of an increased cardiac output, hyperthyroidism, anemia, beriberi heart disease, Paget’s disease and an intracardiac shunt as mentioned should be considered in the differential diagnosis. The pertinent clinical features of these various conditions will not be discussed at this time but a complete physical examination, fluoroscopy of the chest, and a few laboratory studies will usually suffice to distinguish the various disorders.

The duplex scan ultrasound, helical. 3-D (spiral) computer tomography and magnetic resonance angiographic images are alternative imaging modalities for the aorta and its branches, but definitive diagnosis is made by abdominal aortogram and selective renal arteriogram in case of the PNAVF.1,2,4,14-16

Treatment can be accomplished through embolization or occlusion of the fistula through angiographic techniques, but the possibility of pulmonary embolism exists. Most surgeons prefer surgical excision and ligation of the fistula.17-19 In our patient, we preferred surgical procedure to treat the arteriovenous fistula and the gallbladder lithiasis at the same time. We concluded that during nephrectomy, the renal vessels should be ligated separately, and the transfixation in mass avoided in order to prevent the arteriovenous fistula.

REFERENCES