Upper extremity nerve lesions
(diagnosis, indications, surgical techniques)

University of São Paulo Medical School - São Paulo, Brazil

Objective: Revision and questioning of orthodox principles regarding the conduction of nerve impulse. Design: Retrospective study with clinical analysis of results. Site: Hospital das Clínicas (HCFMSP), public university institution with research programs and tertiary attention to health. Group members: Author and a team of residents and trainees. Operation: Direct suture of nervous stumps utilizing auxiliary technical procedures - joint-flexion, nerve transposition, tendon transplants, bone shortening. Measurement: Clinical evaluation and objective tests for tactile and stereognostic function recovery (Weber Test). Results: Variable, depending on preoperative conditions: type of lesion, time elapsed since injury. Conclusions: Neuorrhaphy should be the procedure of choice even for long term lesions, although the expected results may be less favourable. Periodical evaluation from 24 hs. postoperative, checking for early undefined signals of nervous function recovery. Association of specific drugs for chemical biophysics of the nerve.

INTRODUCTION

Upper extremity nerves are often injured. Epidemiological studies of these accidents, their effects on manual labor and the inherent socio-economical and psychological aspects, are very important.1 The mechanization of modern life both in the cities and in rural areas, the use of machinery and tools at home, in the factories and in the fields, the sophistication of modern transport and the invasion of homes by electrical and electronic appliances have contributed in a great scale to the increase in the accident rate.

A high price is being paid for this improvement in the standard of living. Preventive measures and campaigns, especially at work, have slightly improved the situation, although the “Zero accident” slogan still remains utopic.

The only alternative, therefore, is the improvement of treatment procedures in order to eliminate or at least minimize long term effects.

Peripheral nerve surgery has been practiced for nearly a century but only during the last fifty years has there been a major development in this branch of surgery.

Paradoxically, the great contributors to this development have been the wars.

Soon after the end of World War II, the return to the USA of “avalanches of injured and crippled soldiers”, in the crude but justified words of Bunnell, forced General Norman T. Kirk., at the time Chief of the Health Care Services of the Armed Forces, to request emergency measures to tackle the problem.

Nine special centres were set up to handle these cases.

In 1946, specialized surgeons located in these centres, under the leadership of Bunnell, founded the American Society for Hand Surgery. Similar organizations were quickly...
founded in other countries and Hand Surgery became a specialized branch of medicine throughout the world.

The Brazilian Society for Hand Surgery was founded on June 17th, 1959.

HISTOLOGY

The nerve is formed by neurons and its axons (axocylinders, neurofibriles or nerve fibers) (Fig. 1, 2).

Some nerve fibers are covered by a whitish fatty sheath, the myelin (myelinc or medullary fibers). Others are devoid of this sheath (unmyelinated fibers).

The myelin sheath has minute gaps in its diameter - the nodes of Ranvier (Fig. 1, 2).

The myelin sheath is covered by another sheath (the neurilema or Schwann sheath) with its nuclei (Fig. 1, 2).

Neurofibriles form nervous bundles (funiculi), bound inside the connective tissue (endoneurium), separated from each other by the perineurium. The whole nerve is surrounded by a fibrous sheath, the epineurium (Fig. 2).

ANATOMY AND PHYSIOPATHOLOGY

Nerves are cylindrical whitish structures, variable in size and length, through which nervous impulses flow to the muscular, glandular and other nervous cells.

In the upper extremities the nerves connect the central nervous system to the distal parts (hands), through afferent

Figure 1 - Neuron - Courtesy Goffi, F.S.

1. nervous cell
2. axon
3. myelin sheath
4. Schwann sheath
5. Schwann nuclei
6. Ranvier's node
7. dendrites

Figure 2 - Nerve - Courtesy Goffi, F.S.

1. epineve (epineurum)
2. endoneve (endoneurum)
3. perineve (perineurum)
4. axon
5. myelin sheath
6. Schwann sheath
7. Schwann nuclei
8. Ranvier's node
and efferent stimulation, from the sensory organs to the cortex. For this purpose these nerves are mixed, with motor and sensitive fibers in variable proportions, and also with a varying topography along its course.4,5

Traumatic lesions to the nerves of the wrist are very frequent and are usually associated with vascular lesions.6,7

The trauma may be slow and progressive, constant or intermittent, causing traumatic neuritis.8-10 The most frequent are the carpal tunnel syndrome (median nerve),11-14 the ulnar neuritis in the epitrochleo-olecranean groove generally in the valgus elbow15 and other sites.

Compression may be inside the nerve (interstitial neuritis), as in the Hansen disease16, in the Déjérine-Sottas disease17 and many others.

The brachial plexus, located in the lateral side of the neck and supra-clavicular region, is formed by roots from the cervix (C5) to the first dorsal (T1).4,9

Trunks and nerves of the brachial plexus on its way down and outwards to the distal part of the limb form a net with an X-like figure, with its center under the clavicle, in the so-called costo-clavicular or cervicoaxillary canal, the isthmus of the brachial plexus. In addition to the nerves, the subclavian artery and vein run through this canal.

This narrow passage is part of the mobile osteoarticulare compound of the shoulder blade and first rib.

Under certain circumstances, with alterations of the position of certain components, this passage becomes even narrower under strain creating a critical situation in its inner structure.

Abnormal structures (cervical ribs)18 are sometimes present in this region, mega-apophysis, ligaments, muscles, fibrous bands and/or spondylosis,9 disk lesions and others which may compress the brachial plexus causing cervico-brachialgies and/or vascular problems.

Brachial plexus may be pushed downwards by external traction, such as a bad posture and/or the carrying of heavy loads.

Age, due to the weakening of the body structures, may cause the shoulder to fall. In a similar manner, the flaccidity of the chest and abdominal muscles, obesity or the increase in the weight of the abdominal and pelvic tumors and pregnancy are frequent internal factors.

In some cases the plexus lesion may be iatrogenic, due to awkward obstetrical manoeuvres when the head of the foetus is pulled downwards during childbirth (obstetrical paralysis).20

Gunshot or stab wounds of the plexus present no major problem, except if extensive and in a site of difficult access.

However, lesions due to violent traction, such as those caused by falls on the head with trunk rotation (motorcycle accidents), may represent a serious problem. The traction, strain, tearing and avulsion of the roots require very complex procedures.21

DEGENERATION - REGENERATION

Following injury, the process of degeneration in the distal stump (wallerian degeneration) and regeneration in the proximal stump begins.2

Between the nerve stumps scar tissues are formed which make repair incomplete and disorganized. In the proximal stump an intumescence is formed, a neuroma. In the distal stump a larger one is formed the glioma or neuroglioma.

Occasionally between the two stumps some axons are able to get through the scar tissue barrier and a partial repair of the nerve occurs.

Axons regeneration takes place distalwards, quicker in the first three weeks (3 to 5 millimetres/day) slowing down later to 1 millimetre/day, giving an average repair rate of 1 to 2 millimetres/day.

CLASSIFICATION OF LESIONS

Interruption, physiologic block, concussion, contusion, compression and other denominations were used to describe lesions to the nerves, creating confusion and complicating treatment procedures.22

As the nerves are comprised of many elements, each with its own specific function, a classification became necessary to organize the lesions according to their effects on the main structures.

The classification proposed by Seddon with the objective Greek terminology suggested by Cohen is the following:

- Neurotmesis
- Axonotmesis
- Apraxia.

Some authors include Neurostenosis when there is internal axon compression. (Fig. 3)15,23 Neurotmesis means complete division (nerve transection).

Axonotmesis means division of the axons, with no damage to the Schwann sheath.

Apraxia (neurapraxia) is just a functional lesion.
DIAGNOSIS

Diagnosis must be the result of a long and thorough clinical examination. Laboratory and other tests, such as X-ray, electromyography, electro-neuromyography, computed tomography, magnetic resonance and others may be requested later, if necessary.

Obvious lesions constitute no problem. But the association for instance, of congenital anomalies in hands or forearms with cervical lesions may preclude diagnosis. Functional and structural high compressions, permanent or intermittent, may mimic lesions to the elbow, forearm and hand; whereas distal lesions such as carpal tunnel or Guyon canal syndromes may cause damage to the elbow, arm and shoulder.

In order to avoid mistakes and consequently wrong treatment indications, the diagnosis should be as precise as possible. A properly directed anamnesis and a careful assessment of the patient's general condition and complaints, is very important. We should not forget the patient's psychological profile, the basis of all human behaviour.

TREATMENT INDICATIONS

In the treatment of nerve lesions various techniques and procedures, either alone or combined, must be considered. The general treatment plan will depend on the diagnosis, which, as already mentioned, is not always easy.

Axonotmesis and neurapraxia do not require surgical treatment as there is no damage to the Schwann sheath. However, neurotmesis, with damaged structures, requires surgical treatment.

A conservative treatment, utilizing physical means and technical support may precede, complement or even substitute surgical treatment.

An example of this type of conduct is obstetric palsy, caused by traction of the roots with varying degrees of intensity depending on the extent of the trauma. The best initial approach should be the conservative one, with adequate positioning (elevated hand, abduction of the shoulder and external rotation of the arm). In the majority of cases there is a spontaneous recovery; only when this does not occur should other treatment methods be considered.

The compression of a limb with a non-pneumatic tourniquet can provoke paralysis, i.e. an apraxia (temporary lesion).

Whenever there is a violent localized compression an axonotmesis lesion may occur. Recovery, in these cases, is slow.

SURGICAL TIMING

Primary repair of the nerve is the ideal treatment, but certain conditions must be met; it must be done immediately.

In the prompt treatment of patients with open nerve lesions we must consider the aspects of each case, especially with reference to the time which has elapsed since the injury occurred.

Primary repair is that done soon after the accident, within the first few hours. A typical example is an
iatrogenic lesion caused by the surgeon during an operation, where the conditions are ideal.

As a safety measure we should consider that a primary repair is permissible when:
1. the wound is fresh, clean and regular;
2. the surgeon is well acquainted with the anatomy of the region, is well trained and in good physical and psychological conditions to perform a possibly long and tiring operation;
3. adequate instruments and all necessary equipment are available;
4. the operating theatre is adequate, well equipped and qualified surgical, general anaesthesia and nursing teams are available;
5. the patient is prepared for a long surgery under general anaesthesia;
6. primary repair is obviously obligatory when the nerve is cut accidentally by the surgeon during an operation. All conditions are present and the error has to be corrected at once.

These are the main requirements to avoid unfortunate mistakes, not uncommon even in well developed countries. The well known “classical suture” or the “midnight suture” is one of these mistakes (Fig. 4). These serious mistakes usually occur at the end of a duty stretch, caused by tired and unskilled surgeons.

Primary delayed suture (the “Urgence déferrée” of the French) is the repair performed after the time limit (6 hours), owing to usual difficulties, such as: unavailable full staff, ill-prepared patient, patients with multiple injuries and others. This delayed treatment is justified inasmuch as it allows the correction of certain conditions thus guaranteeing the safety of the patient.

The third week, with the skin in good conditions, when axon regeneration rate is high, is the appropriate time for reparatory surgery. This is the early secondary repair.

Long delayed repair of nerve lesions, sometimes months or years later, should not be condemned. Although expected results, depending on the time elapsed, may be poor, the improvement of local trophic conditions, with healing of ulcers, reduction of edema and the establishment of slight protective sensations, justifies this procedure which is greatly beneficial to the patient (Fig. 5, 6, 7, 8, 9, 10).

SURGICAL NERVE REPAIR TECHNIQUES

Neurolysis is the freeing of the nerve. It can be external, as in the case of scar compression or bone callous.

The compression factor may be inside the nerve, as in interstitial neuritis or lesions in continuity. In these cases internal neurolysis is obtained by “combing” the nerve fasciculi or by excising fibrous tissue through partial epineurium resection (Fig. 11).

![Figure 4 - Median nerve “cross-suture” to Flexor Carpi Radialis. Intensive fibrosis, adherence to finger flexor tendons. SMK](image)

![Figure 5 - Scars and obvious convexity on the inside of the wrist (tender neuroma), thenar amyotrophy, anesthesia in the median nerve area. Injured in 1944, examined on June, 8, 1959 (15 years and 4 months later).](image)
Figure 6 - Active flexion of thumb and fingers

Figure 7 - Large neuroma, about 5 centimeters in length.

Figure 8 - Excision of neuroma, displacement of the nervous stumps and conventional epineural suture, after elbow and wrist flexion of 90°. Operated on June 27, 1959, (15 years and 4 months after injury).

In the nerve transsection, the suture (neurorrhaphy) using the conventional approach, consists of the loosening of the stumps and suture of the epineurium. The normal topography of the nerve should be maintained as far as possible. A non-tension suture should be done in the epineurium, with separate stitches.

Figure 9 - Protective tactile sensation in median nerve area, with slight amyotrophy of short thumb abductor. Examined on July 7, 1967, approximately 10 years after nerve suture.

Figure 10 - Strong flexion of thumb. Examined on July 7, 1969, more than 10 years after operation.

Figure 11 - Neurolysis techniques - Courtesy Goffi, F.S. A- Lateral excision of intraneural neuroma
B- Excision of deep diffuse neuroma
thus avoiding fibrosis between the nerve stumps (some authors do not agree with this procedure). The objective is to allow a wrapping which may serve as a guide to the progression of the axons during regeneration.

Before proceeding with the neurorrhaphy, the stumps are sectioned to allow suture in healthy tissue, the aspect is similar to a telegraphic cable, with minimum alterations in the internal topography of the nerve (Fig. 12).

In the case of neuroma fusiform or intraneural, the resection of the neuroma is also performed, trying to maintain as much as possible of the healthy part of the nerve. The resection of lateral neuroma may be done apart from the neuroma with suture only of the area of the lesion.

The suture threads may be of various types, but should be innocuous, very fine, monofilaments and mounted on cylindrical atraumatic needles. The glycolic acid threads, number 8 to 10/0, have now substituted the old materials (silk, nylon, steel, tantalum and even human hair) (Fig. 13, 14).

Possibly, instead of the suture of the epineurium, fixation of the stumps may be done with adhesives.

Delicate instruments and gentle manipulation of the nerve stumps are of great importance. Atraumatic technique, refraining from nipping the nerve with forceps, is only permitted on neuromas to be excised. The nerve may, under certain circumstances, be gently manipulated by the surgeon's fingers (Fig. 15).

In October 1952, assisting Pulveraft in an operation, we did for the first time that which we now do on a routine basis: a delicate massage on the suture line of the nerve, with the thumb and index fingers, similar to rolling a cigarette between the fingers. He approved the technique and named it "Abreu's manoeuvre" (Fig. 15a, 15b).

Nerve grafts are used to fill large gaps, allowing a "non-tension suture".

The suture technique is the same as that for neurorrhaphy (Fig. 16).

When nerve and graft have different diameters, grafts are joined in bundles with stitches - "cable graft".

In these cases, instead of suture with threads, especially in brachial plexus lesions an adhesive (fibrine...
Simultaneous muscle or musculotendinous transplants are sound procedures to replace or

ALTERNATIVE TECHNIQUES

Simultaneous muscle or musculotendinous transplants are sound procedures to replace or
reinforce muscular function. Nerve function recovery is never complete.

Nerve transection with 2 or more centimetres gap is a challenge to the surgeon, who must face a dilemma: graft or bone shortening and direct suture.

Both approaches have advantages and disadvantages.

The graft allows a non-tension nerve suture but creates two barriers to axon progression, and the defect in donor area must be considered.

Bone resection allows direct non-tension suture of the nerve. A less important tissue (bone) is sacrificed on behalf of a more important one (the nerve). A few centimetres shortening of an upper limb represents no problem.

For median and radial cases the resection is done at the diaphysis of the humerus, with immediate osteosynthesis in the cases of the radial, median and ulnar nerves (Fig.18).

For ulnar cases, an easier technique is used: transposition of the nerve from the epitrochleo-olecranean groove, shortens the course of the nerve. This technique can easily compensate for the loss of a two or more centimeters.

In severe and extensive lesions to the forearm, arthrodesis of the wrist with bone resection or resection of the first row of carpal bones are indicated.

Bone resection is a routine technique in limb reimplantation.

DISCUSSION

In the surgical recovery of the nerves of upper limbs, two factors assume great importance: microsurgery and new materials for the fixation of nerve stumps.

The use of microsurgery, with the aid of magnifying glasses and microscopes allows a clear view of the fine structures of the nerve and consequently a more precise reconstitution.

The fixation of the nerve stumps also improved greatly with the use of new suture threads, monofilaments, delicate, resistant and innocuous (many are reabsorbed by the body), attached to delicate cylindrical needles.

In the plexus, in cases of severe lesions of difficult access, it is often necessary to use adhesives which make the reparation of the nerve stumps easier.

CONCLUSIONS

With the facilities created by microsurgery, we have seen remarkable work done by determined surgeons whose enthusiasm has been boundless, a true saga challenging nature.

Nerve graft is being widely used, replacing the conventional techniques - neurorraphy, plain suture.

But nerve graft, besides the problems inherent to the donor site, has another more serious problem - the second suture, a new barrier to be overcome by the axon in regeneration.
Interfascicular (or interfunicular) sutures and grafts are unrealistic. The task of repairing the minute, specific and peculiar structures is notable due to its details, a real Chinese art. Optical magnification of those delicate structures with the aid of lenses, microscopes and computers has become routine. Highly skilled surgeons, well trained medical and paramedical staff at specialized hospitals, the instruments, equipments and implements available enable the conduct of surgical operations using state-of-the-art technology, real high tech surgery. Unfortunately, however, despite all the means available, the recovery of the nerve function has been only partial, not complete. This fact is recognized by many specialists and recorded in medical literature. Microsurgery, introduced in the sixties, is indispensable for the repair of vessels and microstructures of other parts of the body, such as the brain, spinal cord, eyes, ears and others. It is invaluable for the reconstruction of very fine nerves of the upper limbs, in the intraneural neurolysis or in grafts located in difficult sites such as in the brachial plexus. Microsurgery is greatly dependent on the surgeon’s visual acuity. Nevertheless, microsurgery should not be considered, as has been the case so far, as a miraculous resource, capable of solving all problems.

In our opinion, one that we have been expressing for a long time, this current approach is not the right one; it seems they have come to a “dead-end track” away from the “main road”.

For a long time we have been questioning our patients, from the first day after the operation. “I feel my finger (or hand) better”, is the invariable reply. Vascular, sympathetic or nerve reaction? We have come to the conclusion that, as with split electrical cords when put together, “the current flows”. We firmly believe that sectioned nerves should be repaired, regardless of the time which has elapsed since the lesion, even if bone shortening is required in severe cases.

We insist in conventional epineural non-tension sutures. The main steps of the operation are: Displacement and freeing of the nerve stumps, slight traction on the nerve, if necessary, adequate flexion of the neighbouring joints, rerouting of the nerve to reduce the gap as in the ulnar nerve in the elbow.

Clinical observation has led us to question the current nerve regeneration dogmas. Research in the biomedical sciences area and the like should be increased and conducted in greater depth.

Thus we suggest the maintenance of the conventional techniques with direct suture of the nerve, associated, if necessary, to alternative procedures, complemented with new data originating in current clinical studies in the areas of basic sciences (histoneurophysiopathology, chemical biophysics and related disciplines).

With this global view of the problem, we must meditate on the depth and wisdom of the words written more than one hundred years ago but which still apply today:

“There is dead medical literature, and there is a lion one. The dead is not all ancient, and the live is not all modern”.

OLIVER WENDELL HOLMES (1809 - 1894)

ACKNOWLEDGEMENTS

Our sincere thanks to Heloisa Abreu Dib, whose dedication and professionalism made this work possible.

RESUMO

REFERENCES

35. Davis L. Neurological surgery through the years of World War II. In Abst Surg Gynec Obst, 1949,89(1),1-23.

1506

69. Naffziger HC. Method to secure suture of peripheral nerves. J. Orthopedic Surgery, 1921, 3 (7):348-349.

79. Naffziger HC. Method to secure suture of peripheral nerves. J. Orthopedic Surgery, 1921, 3 (7):348-349.

