Genetic alterations in Ki-ras and Ha-ras genes in Juvenile Nasopharyngeal Angiofibromas and Head and Neck Cancer

Discipline of Oncology, Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil

INTRODUCTION

Head and neck tumors are the sixth commonest tumors in the world and account for approximately 10% of all malignant tumors. In Brazil, metropolitan areas such as São Paulo show one of the highest incidences of head and neck tumors in the world. Only in India is the risk of oral cancer greater than in São Paulo. It has been estimated that in the state of São Paulo in 1990 there were 6800 new cases of tumors from oral cavity, pharynx and larynx.

Juvenile Nasopharyngeal Angiofibroma (JNA) is a benign neoplasm of the nasopharynx and accounts for 0.5% of all head and neck tumors. It is a highly vascular neoplasm that affects almost exclusively adolescent males, although some authors have reported its occurrence in females. This preferential occurrence in males suggests a hormonal influence, which has not yet been clearly established as the presence of androgen and/or estrogen receptors in tumoral tissues of JNA patients is controversial.

Ras gene mutations have been associated to a wide range of human solid tumors and the overall frequency of mutations has been estimated to be 15%.
ras, Ha-ras and N-ras) are structurally related and code for a protein (p21) known to play an important role in the regulation of normal signal transduction and cell growth. Activation of ras genes is due to point mutations within codons 12, 13, 59 and 61, which take part in the p21 active site.

The frequency of ras mutations is different from one type of tumor to another, suggesting that point mutations might be carcinogen-specific. Mutations of the ras gene family are a common event in the development and progression of adenocarcinoma of the pancreas (90%), colon (50%), thyroid (50%), bladder (50%) and lung (30%).

Regarding head and neck cancer, most of the authors have found ras mutations in less than 5% of the tumors from western world patients, although Nunez et al. (1992) and Anderson et al. (1994) found ras mutations in 36.3% (8/22) and 22% (6/27) of the tumors, respectively. Similar frequencies (35%) of Ha-ras mutations have only been reported in oral squamous cell carcinomas from India. A high frequency of ras mutations has also been found in carcinogen-induced tumors in animal models. Whereas activating

Table 1 - Associations of Ha-ras overexpression and clinicopathological characteristics in patients with head and neck squamous cell carcinomas

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Categories</th>
<th>n</th>
<th>Negative</th>
<th>Positive</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>≤ 50 years</td>
<td>12</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 50 years</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>0.64</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>26</td>
<td>11</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0.28</td>
</tr>
<tr>
<td>Tumor site</td>
<td>Oral cavity</td>
<td>16</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oropharynx</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypopharynx</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Larynx</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.26</td>
</tr>
<tr>
<td>Lymph node status</td>
<td>Negative</td>
<td>19</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>13</td>
<td>5</td>
<td>8</td>
<td>0.42</td>
</tr>
<tr>
<td>Histologic grade</td>
<td>I</td>
<td>15</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>0.96</td>
</tr>
<tr>
<td>Tumor stage</td>
<td>II</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>19</td>
<td>8</td>
<td>11</td>
<td>0.73</td>
</tr>
<tr>
<td>Status</td>
<td>Alive, well</td>
<td>23</td>
<td>14</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recurrence or death</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>0.01</td>
</tr>
<tr>
<td>Tobacco consumption</td>
<td>Smoker</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-smoker</td>
<td>23</td>
<td>10</td>
<td>13</td>
<td>0.58</td>
</tr>
<tr>
<td>Alcohol consumption</td>
<td>Yes</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>18</td>
<td>8</td>
<td>10</td>
<td>0.43</td>
</tr>
</tbody>
</table>

1 Negative, patients without Ha-ras overexpression; Positive, patients with tumors with Ha-ras overexpression.
2 Chi-square and Fisher's exact tests.
3 UICC TNM staging system.
4 WHO classification.
ras mutations appear to be an infrequent event in head and neck tumors from the western world, studies using immunohistological staining and RT-PCR (Reverse Transcriptase-Polymerase Chain Reaction) have demonstrated that overexpression is a common event in those tumors.19,20 However, the exact mechanism accounting for ras overexpression is unknown and its association with existing prognostic factors is not clear yet.

When it comes to JNA, little is known about the molecular basis of this disease and only recently Giardiello et al. (1993),21 reported a high incidence of JNA in patients with FAP (Familial Adenomatous Polyposis) suggesting that somatic mutations of APC (Adenomatous Polyposis Coli) gene might be associated to JNA development. This hypothesis led us to investigate whether other genes associated with sporadic colon carcinomas such as Ki-ras oncogene are also associated with JNA.

In the present study, we investigated a possible association between Ki-ras and Ha-ras mutations within codons 12, 13, 59 and 61 and the development of head and neck tumors and JNA, by using PCR-SSCP (Polymerase Chain Reaction-Single Strand Conformation Polymorphism) analysis. The relative levels of Ha-ras gene mRNA transcripts were also examined in head and neck tumors by Northern blot analysis.

METHODS

Tissue samples. Tumor samples were obtained from 60 head and neck patients under surgery at Hospital A.C. Camargo and from 28 patients with Juvenile Nasopharyngeal Angiofibroma (JNA) submitted to surgery at Hospital das Clínicas, Faculty of Medicine, University of São Paulo, São Paulo, Brazil. Normal tissue was also obtained from 12 out of the 28 patients with JNA and from all the 60 patients with head and neck cancer. Tumors consisted of squamous cell carcinomas of the head and neck, 28 localized in the oral cavity, 10 in the oropharynx, 8 in the hypopharynx and 14 in the larynx. Ages of the head and neck tumors patients at the time of operation ranged from 27 to 80 years, median 58. The study included a total of 52 males and 8 females. All the JNA patients were males and the age at the time of operation ranged from 11 to 23 years. DNA samples from one colorectal tumor and one endometrial tumor that had already been analyzed for ras gene mutations were used as positive controls for the SSCP analysis.

DNA and RNA extraction. Tissue was ground to a powder using a Frozen Tissue Pulverizer (Termovac). For DNA extraction the powder was resuspended in 1ml of lysis buffer (10mM Tris-HCl, pH 7.6, 1mM EDTA (ethylenediaminetetraacetic acid), 0.6% SDS
(sodium dodecyl sulfate)) and 100 µg/ml proteinase K, and incubated at 37°C overnight. High molecular weight DNA was extracted with phenol-chloroform and precipitated with ethanol. For RNA extraction tissue powder was homogenized in a solution containing guanidine isothiocyanate (4M guanidine isothiocyanate, 25mM sodium citrate pH 7.0, 0.5% sarcosyl and 100mM β-mercaptoethanol) and extracted as described by Chomczynski and Sacchi (1987).

Northern blot analysis. Ten micrograms of total RNA from tumors and normal samples were denatured with formaldehyde-formamide, separated by electrophoresis on a formaldehyde 1% agarose gel, and transferred to nylon filters. Northern blot filters were hybridized under stringent conditions with a 32P-labeled Ha-ras 6.6Kb BamHI fragment (the probe was labeled using the random oligonucleotide priming technique) for 24 hours. Filters were washed twice at room temperature in 2x SSC (sodium chloride/sodium citrate)/0.1% SDS for 10 minutes and twice at 50°C for 30 minutes in 0.1x SSC/0.1% SDS and then exposed to Kodak X-Omat XAR film with an intensifying screen at -70°C for 2 or 5 days.

PCR-SSCP (Polymerase Chain Reaction Single-Strand Conformation Polymorphism) analysis. DNA sequences containing codons 12-13 and 59-61 of the Ha-ras and Ki-ras genes were amplified using oligonucleotide primers described by Ichikawa et al. (1994). PCR reactions were performed in 25µl volume using 50-100ng of genomic DNA template, 1μM of each primer, 1.5mM MgCl2, 200μM of each deoxynucleotide triphosphate, 0.1μCi of [α32P-dCTP] (Amersham, specific activity, 3000Ci/mmol), 50mM KCl, 10mM Tris-HCl pH 8.0, and 0.5 unit of Taq DNA polymerase (Pharmacia, NJ, USA). The reactions were performed with an automated Thermal Cycler - Perkin Elmer 580 as follows: 35 cycles of denaturation for 1 minute at 94°C, annealing for 1 minute at 55°C and extension for 1 minute at 72°C. Amplified products (1µl) were diluted 10-fold in a buffer containing 95% formamide, 20mM EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol, heated at 83°C for 10 minutes and applied (3µl/ lane) on 6% polyacrylamide non-denaturing gels containing 2.5, 5.0 and 10% glycerol. Electrophoresis was performed at 13W for 4 - 6 hours at room temperature with two

![Figure 2 - Representative autoradiographs of direct DNA sequence of 12 and 13 codons of Ki-ras gene in Juvenile Nasopharyngeal Angiofibromas (JNA). One mutation in codon 13 was detected in the colorectal tumor sample used as a positive control for PCR-SSCP analysis. The arrow indicates the alteration observed (GGC to AGC; Gly to Ser). N: DNA from normal tissue; T: DNA from tumoral tissue.](image)
cooling fans. Band shift mobility was detected by autoradiography of dried gels using Kodak X-O mat XAR film with an intensifying screen for 5 to 48 hours at -70°C.

Direct DNA sequencing. DNA samples from 1 colorectal tumor with Ki-ras mutation detected by SSCP gels, one endometrial tumor with Ha-ras mutation, three JNA samples and three head and neck tumor samples were reamplified and direct DNA sequencing was performed. PCR products obtained were purified using Wizard PCR Preps Kit (Promega Corporation, Madison, USA) in accordance with the manufacturer’s procedures. Purified DNA was submitted to a dideoxy chain termination reaction using a double strand DNA Cycle Sequencing Kit (Pharmacia, USA) for both sense and antisense primers. Sequencing reaction products were denatured and resolved on 6% denaturing urea/polyacrylamide gels. Gels were fixed for 15 minutes in a 10% methanol/10% acetic acid solution, dried and exposed to X-ray film overnight.

Statistical Methods. Analysis of statistical correlations between Ha-ras overexpression and the clinicopathological characteristics of the patients were performed by the χ^2 test and Fisher’s Exact test for frequency data in contingency tables.

RESULTS

Tumor DNA from 60 patients with head and neck cancer and from 28 patients with Juvenile Nasopharyngeal Angiofibromas (JNA) were examined for the occurrence of point mutation in Ha-ras and Ki-ras genes using PCR-SSCP analysis. Representative autoradiographs from SSCP analysis are shown in Fig. 1. No mutations were found in both series of DNA samples analyzed for codons 12, 13, 59 and 61 of the Ha-ras and Ki-ras genes.

Some JNA and head and neck tumor samples were chosen at random and submitted to direct DNA sequencing in order to confirm the absence of mutation within the specific codons of Ha-ras and Ki-ras genes. One colorectal and one endometrial tumor sample were also submitted to direct DNA sequencing, as positive controls of Ki-ras and Ha-ras mutations, respectively. Direct sequencing of both strands of the four amplified PCR products did
not reveal any point mutation in head and neck tumor or JNA samples analyzed. Representative results showing evidence of absence of mutation within codons 12-13 of Ki-ras and Ha-ras genes in JNA and head and neck tumor samples are shown in Figs. 2 and 3. The presence of point mutations within the positive control samples were confirmed on Ki-ras codon 13 (colorectal tumor; GGC to AGC; Gly to Ser) and on Ha-ras codon 12 (endometrial tumor; GGC to GTC; Gly to Val).

In 32 of the head and neck cases where total RNA from normal and tumor samples were available, the relative level of Ha-ras mRNA expression was examined by Northern blot analysis. Representative results of the Northern blot analysis are shown in Fig. 4. Using densitometric scans, Ha-ras mRNA transcripts were found to be overexpressed in 17/32 (53%) of tumor samples relative to the normal sample derived from the same patient. The relative level of Ha-ras overexpression in these tumors ranged from 2- to 15-fold. A probe for 18S ribosomal RNA was used to correct the differences between normal and tumor RNA loading.

To evaluate the contributions of Ha-ras overexpression to the development and/or progression of the head and neck tumors analyzed, clinicopathological characteristics of the cases with Ha-ras overexpression were compared with the characteristics of those cases that showed normal Ha-ras expression. No correlation was observed between Ha-ras overexpression and clinicopathological characteristics of the patients, such as age, histology, site of the tumor, TNM stage or lymph node status (Table 1). Ras overexpression was observed in tumors of patients in all clinical stage but with a trend to be more frequent in stage III tumors. In the present study we found a significant association between ras overexpression and clinical outcome. Recurrence or death due to the disease occurred more frequently in patients with tumors showing high levels of Ha-ras gene (8/17) than in patients with tumors without Ha-ras overexpression (1/15) (p = 0.01).

DISCUSSION

Our results show no evidence of mutations within codons 12, 13, 59 and 61 of Ki-ras and Ha-ras either in Juvenile Nasopharyngeal Angiofibroma (JNA) or in head and neck tumors from a group of Brazilian patients. No data is available about Ki-ras and Ha-ras mutations related to the development of JNA but when it comes to head and neck tumors, our data are in accordance with other studies that show low rates of ras mutations (less than 5%) in head and neck tumors from western populations. Yarbrough et al. (1994) analyzed 51 samples from head and neck squamous cell carcinomas and found no evidence of Ki-ras, Ha-ras and N-ras mutations within codons 12, 13 and 61. Irish and Bernstein (1993) obtained similar results, not finding Ki-ras mutations within codons 12 and 13. In addition, Kiaris et al. (1995) found ras gene mutations in only 1.7% of the samples analyzed, when studying a larger panel of squamous cell carcinomas of the head and neck. On the other hand, Nunez et al. (1992) and Anderson et al. (1994) found ras mutations in 36.3% (8/22) and 22% (6/27) of the samples analyzed, respectively, although these discrepancies might be due to geographical differences. Interestingly, this frequency of oral squamous cell carcinomas harboring activating ras mutations is similar to that found in India and Taiwan, where betel quid chewing is thought to be the initiating agent. A high frequency of ras mutations has also been found in carcinogen-
induced tumors in animal models. 18

Although ras mutations do not appear to play a major role in head and neck tumors from Caucasian patients, several studies including ours have revealed that ras overexpression is a frequent event in these tumors. 13,19,20 The implication of this finding is still unclear. The same situation is observed in breast cancer in which ras gene mutations are rare 16 but overexpression has been reported in about 60% of the tumors analyzed. 27,28 In both types of tumors, ras gene amplification is a rare event and the overexpression observed may be due to another activation mechanism of gene expression. 30,32,33 Iwasaka et al. 1993 33 proposed that Ha-ras overexpression in HPV transfected cell lines might be due to loss of tumor suppressor gene function or direct integration of HPV DNA sequences in close proximity to cellular oncogenes. In addition, Anderson et al. 1994 30 found Ha-ras overexpression associated with HPV infection in 11% of oral squamous cell carcinomas suggesting that viral infection might be associated with ras overexpression.

In the present study, no correlations were observed between Ha-ras overexpression and clinicopathological characteristics of the patients. However, Ha-ras overexpression was associated with poor prognosis, in accordance with the results reported by Azuma et al. 1987. 31 On the other hand, using a different technical approach, Field et al. 1992 32 and Klaris et al. 1995 33 also reported that overexpression is a frequent event in squamous cell carcinomas of the head and neck, but found an association with a favorable prognosis. These differences regarding the prognostic value of ras overexpression in head and neck cancer may be mainly due to the use of small series of patients with heterogeneous composition. Further studies examining larger series of patients are required to clarify whether there is an association between Ha-ras overexpression and clinical outcome.

REFERENCES

AC KNOWLEDGEMENTS

This work was partly supported by grants from CNPq/PACT 62.0097/94 and FAPESP - process 95/2224-3; 96/0048-6

RESUMO

Contexto: Mutações nos genes ras têm sido associadas a diversos tumores sólidos humanos. Membros da família de genes ras (Ki-ras, Ha-ras e N-ras) são estruturalmente relacionados e codificam para uma proteína (p21) que desempenha papel importante na regulação da transdução de sinal e crescimento celular. Objetivos: Estudar a ocorrência de mutações nos genes Ki-ras e Ha-ras. Também estudamos a expressão do gene Ha-ras em 32 dos tumores de cabeça e pescoço. Tipo de estudo: Série de casos. Participantes: 60 tumores de cabeça e pescoço e 28 nasoangiofibromas obtidos através de cirurgia. Local: Hospital A. C. Camargo e Hospital das Clínicas da Universidade de São Paulo, respectivamente. Teste diagnóstico: Pela técnica de PCR-SSCP examinamos a ocorrência de mutações nos genes Ki-ras e Ha-ras. O nível relativo do mRNA de Ha-ras em 32 dos tumores de cabeça e pescoço foi examinado por Northern blot. Resultados: Nenhum dos tumores de cabeça e pescoço nem os nasoangiofibromas apresentaram evidência de mutação nos codons 12, 13, 59 e 61 dos genes Ki-ras e Ha-ras; contudo, 17 (53%) dos tumores, onde a expressão gênica pode ser examinada, demonstraram níveis aumentados do mRNA de Ha-ras quando comparados com o tecido normal do mesmo paciente. Conclusões: Nossos resultados demonstram, pela primeira vez, que mutações nos genes Ki-ras e Ha-ras não estão associadas ao desenvolvimento dos nasoangiofibromas e confirmam trabalhos anteriores que demonstram que mutações que ativam o gene ras estão ausentes ou raramente associadas aos tumores de cabeça e pescoço de pacientes ocidentais. A além disso, nossos resultados sugerem que o aumento de expressão de Ha-ras, e não a mutação desse gene, possa ser um fator importante no desenvolvimento e progressão dos tumores de cabeça e pescoço.