Host status of different crops for *Meloidogyne ethiopica* control

Edriana A. Lima¹, Jean K. Mattos¹, Antônio W. Moita², Rui Gomes Carneiro³ & Regina M.D.G. Carneiro⁴

¹Departamento de Agronomia, Universidade de Brasília, 79919-970, Brasília, DF, Brazil; ²EMBRAPA Hortaliças, 70359-970, Brasília, DF, Brazil; ³Instituto Agronômico do Paraná - IAPAR, 860001-970, Londrina, PR, Brazil; ⁴EMBRAPA Recursos Genéticos e Biotecnologia, 70849-979, Brasília, DF, Brazil

Author for correspondence: Regina M.D.G. Carneiro, e-mail: recar@cenargen.embrapa.br

ABSTRACT

Two greenhouse experiments were carried out to characterize the resistance or susceptibility reactions of 52 species of plants to *Meloidogyne ethiopica* and their possible adverse effect on nematode population under greenhouse conditions. Tested plants with Reproduction Factor less than one (RF<1.0) were rated as non-hosts or resistant, including: peanut (*Arachis hypogaea*) ‘Cavalo Vermelho’, forage pigeon peas (*Cajanus cajan*) ‘IAPAR 43’ and ‘PPI 832’, *Crotalaria grandiflora*, *C. apiocline*, *C. spectabilis*, dwarf velvet bean (*Mucuna deeringiana*), castor bean (*Ricinus communis*) ‘IAC 80’, sorghum (*Sorghum bicolor*) ‘SARA’, cowpea (*Vigna unguiculata*) ‘Espaço 10’ and ‘Australian’, black oat (*Avena strigosa*) ‘IAPAR 61’, ryegrass (*Lolium multiflorum*) ‘Italian’, forage radish (*Raphanus sativus var. oleiforus*) IPR116 and rye (*Secale cereale*) IPR 69. The first 11 are summer plants and the last four winter plants. The other 37 species/cultivars tested were good hosts or susceptible. Some crop succession systems alternating summer and winter non-host plants are suggested for field experiments to validate these greenhouse results.

Keywords: antagonistic plants, crop rotation, nematode management, root-knot nematode.

RESUMO

Reação de diferentes culturas para controlar *Meloidogyne ethiopica*

Palavras chave: plantas antagônicas, rotação de culturas, manejo de nematóides, nematóide de galhas.

INTRODUCTION

Meloidogyne ethiopica Whitehead 1968 was described from a single egg mass culture on tomato (*Lycopersicon esculentum*) from the Mlalo region, Lushoto District, Tanga Province, Tanzania, where cowpea (*Vigna unguiculata*) was given as a host. At the same time, Whitehead (1968) studied specimens of this species sent from Zimbabwe and from South Africa. Later on, it was re-collected from the Mlalo region of Tanzania on bean (*Vicia faba*), black wattle (*Acacia mearnsii*), cabbage (*Brassica oleracea*) cv. Capitata, pepper (*Capsicum frutescens*), potato (*Solanum tuberosum*), pumpkin (*Cucurbita sp.*) and tobacco (*Nicotiana tabacum*) (Whitehead, 1969). O’Bannon (1975) found *M. ethiopica* in two locations in Ethiopia on lettuce (*Lactuca sativa*), soybean (*Glycine max*), sisal (*Agave sisalana*) and the weeds *Ageratum conyzoides, Datura stramonium* and *Solanum nigrum*. Carneiro et al. (2003) detected *M. ethiopica* in Brazil parasitizing kiwi plants (*Actinidia deliciosa*) in Rio Grande do Sul state, and grapevine (*Vitis vinifera*) in Casablanca, Chile. The species was re-described from this new material and compared with the type description and with another population from Kenya (Carneiro et al., 2004). Biochemically, the esterase phenotype E3 (Rm: 0.9, 1.15, 1.35) is species-specific and it is the most useful character for differentiating *M. ethiopica* from other root-knot nematode species (Carneiro et al., 2004).
Host status of different crops for *Meloidogyne ethiopica* control

Tomato cv. *Rutgers*, tobacco cv. NC95, pepper cv. California Wonder, watermelon (*Citrullus vulgaris*) cv. Charleston Gray are good hosts, whereas cotton (*Gossypium hirsutum*) cv. Deltapine 61 and peanut (*Arachis hypogaea*) cv. Florunner are non-hosts, which makes *M. ethiopica* present the same reaction in differential host plants as *M. incognita* race 2 (Carneiro et al., 2004). Glasshouse tests with important crops for Brazil's Rio Grande do Sul state revealed that rice (*Oryza sativa*) cv. BR 410, soybean cv. Cristalina, peach (*Prunus persica*) cv. Capdeboq and grapevine (*Vitis labrusca*) cv. Niágara Rosa are good hosts, whereas wheat (*Triticum aestivum*) cv. BR4, apple (*Malus domestica*) rootstocks cvs Maruba and M7, pear (*Pyrus calleryana*) rootstock, strawberry (*Fragaria ananassa*) cvs Dover and Vila Nova, raspberry (*Rubus idaeus*) cv. Tupi, mulberry (*Morus nigra*) cv. Batu, blueberry (*Vaccinium myrtillus*) cv. Powderblue and grapevine (*Vitis rupestris*) cv. Rupestris du Lot are non-hosts (Carneiro et al., 2003). *M. ethiopica* was detected also on soybean in São Paulo state, and on tomato and yacon (*Polymnia sonchifolia*) in the Federal District, Brazil (Carneiro & Almeida, 2005). The species was probably introduced in Brazil through Chile, where it has caused serious economic problems to grapevine (Carneiro et al., 2007). Brazil has 67,800 ha of grapevine areas, located mainly in the South, Southeast and Northeast regions, which have brought in increasing amounts of foreign currency (Agriannual, 2004). The presence of this nematode in Brazil can represent a serious risk to local grapevine production. In Chile, control has been done exclusively with chemicals (Carneiro et al., 2007), which are often associated with environmental problems (Ferraz & Freitas, 2004).

Crop rotation with antagonistic resistant or non-host plants is an important and efficient method to control root-knot nematodes, allowing the use of nematicides to be kept to a minimum. It improves physical, chemical and biological conditions of soils, the control of weeds, pests and diseases and also brings additional benefits by avoiding exposure to climatic agents that cause soil erosion (Dersch & Calegari, 1992). As no information is available about *M. ethiopica* control using management techniques, in this work we aimed to characterize the reaction of 52 crops in relation to *M. ethiopica* under greenhouse conditions. It is expected that our results may support future recommendation of crop succession schemes designed to provide effective control of the nematode without nematicide applications.

MATERIALS AND METHODS

The summer and winter plant species/cultivars evaluated in greenhouse experiments are listed in Table 1. Seeds of each plant species were sown in 300 cm³ plastic pots containing a mixture of sterilized (120°C) substrate (58.5% sand, 7% silt and 34.5% clay) and the seedlings were thinned to one per pot prior to nematode inoculation. *Jatropha curcas* was sown pre-germinated.

Nematode inoculum used in the experiment was originally collected from kiwi from Farroupilha, Rio Grande do Sul State, identified by esterase phenotype (Carneiro et al., 2003, 2004) and multiplied for 90 days on tomato plants cv. Santa Cruz. Eggs and second-stage juveniles (J2) were extracted using the 0.5% Na OCl method (Boneti & Ferraz, 1981). A suspension (5mL) containing 5,000 eggs/J2 (initial nematode density, IP), was poured into 5 small 3.5-4.5 cm-deep holes surrounding the root system. Fifty days after plant inoculation, the roots were removed from the pots and carefully washed, weighed and colored (B-phloxin; 0.015mg/L) for 20min and rated for root galling and egg mass on a 0-5 scale (Taylor & Sasser, 1978). Eggs were then extracted with 1% NaOCl as described previously. Final number of eggs (FP) for each plant was calculated and the reproductive factor (RF = FP/IP) determined. Host suitability was designated as follows: RF ≥ 1.0, good host or susceptible, RF < 1.0, poor host or resistant and RF = 0, immune (Oostenbrink, 1966). The experiments were arranged in a randomized block design with 32 (summer plants) and 20 (winter plants) treatments, tomato plants used as controls and eight replications. Data were transformed in Log_{10}(x+1) prior to analysis of variance and treatments were compared using Scott-Knott test (1974). The statistical analysis was used to differentiate the host status of different plants: immune, resistant, moderately resistant, susceptible and highly susceptible.

RESULTS

Differences were observed among summer and winter plants to *M. ethiopica* evaluated in terms of root galling and egg mass index numbers (Tables 2 and 3). But galls and egg masses were not correlated on all good or poor hosts based on RF. Sometimes plants with RF ≥ 1.00 showed no galls or egg masses. Then, the galling and egg-mass indexes were not a reliable indicator of nematode multiplication rates because the root symptoms caused by *M. ethiopica* on different plants were sometimes variable and difficulty to quantify. Based on these findings, the best variables are the number of eggs/g of roots and the reproductive factor (RF) (Tables 2 and 3).

Eleven of the 32 summer plants evaluated were poor hosts (resistant): *Arachis hypogaea* (peanut ‘Cavalão Vermelho’), *Cajanus cajan* (forage pigeon pea ‘PPI 832’ and ‘Dwarf’ pigeon pea ‘IAPAR 43’), *Crotalaria apioclce*, *C. grantiabana*, *C. spectabilis*, *Mucuna deeringiana* (‘Dwarf’ velvet bean) and *Vigna unguiculata* (‘Australian’ and ‘Espace 10’cowpeas). *Ricinus communis* (castor bean ‘IAC 80’) and *Sorghum bicolor* (Sorghum ‘SARA’) were considered non-hosts (immune) to *M. ethiopica* (RF =0.0) (Table 2). *Carthamus tinctorius* (safflower), *Cltioria ternatea* (butterfly pea), *Crotalaria juncea*, *C. lanceolata*, *C. okokelvka* (rattlepods), *Dahlstedtia pentaphylla* (timbó), *Eucalypta mexicana* (teosinte grass), *Glycine wightii* (cooper), *Mucuna aterrima* (‘Black’ velvet bean) and *Oryza sativa* (‘Pelotas’ rice) were considered moderately resistant (Table 2).
TABLE 1 - Summer and winter plants for host status to *Meloidogyne ethiopica*

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name/cultivar</th>
<th>Scientific name</th>
<th>Common name/cultivar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arachis hypogaea L.</td>
<td>Peanut ‘Cavalo Vemelho’</td>
<td>Lupinus albus L.</td>
<td>White lupin ‘Forest’</td>
</tr>
<tr>
<td>Avena sativa L.</td>
<td>White oat ‘IAPAR 126’ (*)</td>
<td>Lupinus angustifolius L.</td>
<td>Blue lupin ‘IAPAR 24’ (*)</td>
</tr>
<tr>
<td>Avena strigosa Schreb.</td>
<td>Black oat ‘IAPAR 61’ (*)</td>
<td>Medicago sativa L.</td>
<td>Alfalfa (*)</td>
</tr>
<tr>
<td>Brassica napus L.</td>
<td>Rapeseed ‘Can 420’ (*)</td>
<td>Mucuna aterrima (Piper & Trary) Holland</td>
<td>Velvet bean (black)</td>
</tr>
<tr>
<td>Cajanus cajan (L.) Millsp.</td>
<td>Forage pigeon pea ‘PPI 832’</td>
<td>Mucuna cinerea Piper and Tracy</td>
<td>Velvet bean (grey)</td>
</tr>
<tr>
<td>Cajanus cajan (L.) Millsp.</td>
<td>Forage pigeon pea ‘PPI 832’</td>
<td>Mucuna de eringiana (Bort)Merr.</td>
<td>Velvet bean (dwarf)</td>
</tr>
<tr>
<td>Canavalia ensiformis (L.) DC.</td>
<td>Jack-bean</td>
<td>Mucuna puriens (L.) DC.</td>
<td>Velvet bean (green)</td>
</tr>
<tr>
<td>Carthamus tinctorius L.</td>
<td>Safflower</td>
<td>Ornithopus compressus L.</td>
<td>Yellow serradella (*)</td>
</tr>
<tr>
<td>Clitoria ternatea L.</td>
<td>Butterfly pea</td>
<td>Oryza sativa L.</td>
<td>Rice ‘Pelotas’</td>
</tr>
<tr>
<td>Crotalaria anguroides Kunth</td>
<td>Rattlepod</td>
<td>Pennisetum glaucum (L.) R. Br.</td>
<td>Pearl millet ADR 500 (*)</td>
</tr>
<tr>
<td>Crotalaria apiolcice L.</td>
<td>Rattlepod</td>
<td>Pisum arvense L.</td>
<td>Forage pea ‘IAPAR 83’ (*)</td>
</tr>
<tr>
<td>Crotalaria grantiana Harvey</td>
<td>Rattlepod</td>
<td>Pisum sativum L.</td>
<td>Pea ‘IAPAR 74’ (*)</td>
</tr>
<tr>
<td>Crotalaria juncea L.</td>
<td>Sunnhemp</td>
<td>Raphanus sativus L. var. oleiferus</td>
<td>Forage radish ‘IPR 116’ (*)</td>
</tr>
<tr>
<td>Crotalaria lanceolata E Mey</td>
<td>Rattlepod</td>
<td>Ricinus communis L.</td>
<td>Castor bean ‘IAC 80’</td>
</tr>
<tr>
<td>Crotalaria okróelkva L.</td>
<td>Rattlepod</td>
<td>Secale cereale L.</td>
<td>Rye ‘IPR 69’ (*)</td>
</tr>
<tr>
<td>Crotalaria spectabilis Roth.</td>
<td>Rattlepod</td>
<td>Setaria italica (L.) Beauv.</td>
<td>Foxtail millet</td>
</tr>
<tr>
<td>Dahlstedtia pentaphylla (Taub.) Burkart</td>
<td>Timbó</td>
<td>Sorghum bicolor (L.) Moench.</td>
<td>Sorghum ‘SARA’ (*)</td>
</tr>
<tr>
<td>Dolichos lablab L.</td>
<td>Hyacinth bean</td>
<td>Tephrosia candida (Roxb) DC.</td>
<td>Tefrosia</td>
</tr>
<tr>
<td>Eleusine coracana (L.) Gaertn</td>
<td>Finger millet</td>
<td>Triticum aestivum L. x Secale cereale L.</td>
<td>Triticale ‘IPR 111’ (*)</td>
</tr>
<tr>
<td>Euchlaena mexicana Schrad</td>
<td>Teosinte grass</td>
<td>Vicia sativa L.</td>
<td>Common vetch (*)</td>
</tr>
<tr>
<td>Fagopyrum esculentum Moench.</td>
<td>Buckwheat ‘IPR 92’</td>
<td>Vicia villosa Roth</td>
<td>Hairy vetch</td>
</tr>
<tr>
<td>Glycine wightii Wight & Arn.</td>
<td>Cooper</td>
<td>Vigna radiata (L.) Wilczek</td>
<td>Mungbean</td>
</tr>
<tr>
<td>Helianthus annuus L.</td>
<td>Hybrid sunflower ‘Hélio 250’ (*)</td>
<td>Vigna umbellata (Thumb) Ohwi & *Ohashi</td>
<td>Ricebean</td>
</tr>
<tr>
<td>Helianthus annuus L.</td>
<td>Sunflower ‘Embrapa 122’ (*)</td>
<td>Vigna unguiculata (L.) Walp</td>
<td>Cowpea ‘Australian’</td>
</tr>
<tr>
<td>Jatropha curcas L.</td>
<td>Barbados nut</td>
<td>Vigna unguiculata (L.) Walp</td>
<td>Cowpea ‘Espace 10’</td>
</tr>
<tr>
<td>Lolium multiflorum Lam.</td>
<td>Italian ryegrass (*)</td>
<td>Zea mays L.</td>
<td>Corn ‘AG 5020’</td>
</tr>
</tbody>
</table>

(*) Winter species/cultivars.

Among 20 winter plants, only four were considered poor hosts (resistant): *Avena strigosa* (black oat ‘IAPAR 61’), *Lolium multiflorum* (‘Italian’ ryegrass), *Raphanus sativus* var. *oleiferus* (forage radish ‘IPR 116’) and *Secale cereale* (rye ‘IPR 69’) (Table 3). Other four plants were considered to be moderately resistant: *Fagopyrum esculentum* (buckwheat ‘IPR 92’), *Medicago sativa* (alfalfa), *Ornithopus compressus* (‘Yellow’ serradella) and *Pennisetum glaucum* (pearl millet ‘ADR 500’).

DISCUSSION

Since there is little reported research on non-host plants related to control of *M. ethiopica* in cropping sequences or crop rotation, the discussion was based on data about other root-knot nematode species and races. In this work, sorghum cv. SARA was immune to *M. ethiopica*. Similar results were observed by Carneiro et al. (1998) for *M. javanica* and *M. incognita*. In field conditions, Rodríguez-Kábana et al. (1991) observed that rotation of soybean with sorghum increased productivity and was effective in controlling various nematodes, among them *M. arenaria*. Castor bean was also immune to *M. ethiopica*. This plant was used as an organic amendment in some experiments, and it was effective in improving plant growth and reducing nematode population levels (Ritzinger & McSorley, 1998). *Crotalaria apiolcice*, *C. grantiana* and *C. spectabilis* were efficient to reduce *M. ethiopica* populations. Several research works using *Crotalaria* spp. (rattlepods) to control *Meloidogyne* spp. have been published (Ferraz & Freitas, 2004). *C. grantiana* is also resistant to *M. incognita* races 1, 2 and 4 (Silva & Carneiro, 1992). *C. spectabilis* was resistant
TABLE 2 - Host status of different summer plants/cultivars for *Meloidogyne ethiopica*

<table>
<thead>
<tr>
<th>Name</th>
<th>Number of eggs/ g of fresh root</th>
<th>Gall index (GI)*</th>
<th>Egg mass index (EMI)*</th>
<th>Reproduction factor (RF)</th>
<th>Status***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arachis hypogaea 'Cavalo Vermelho'</td>
<td>356.97b</td>
<td>0.00</td>
<td>0.00</td>
<td>0.32a**</td>
<td>R</td>
</tr>
<tr>
<td>Cajanus cajan ‘IAPAR 43’</td>
<td>1.42a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03a</td>
<td>R</td>
</tr>
<tr>
<td>Cajanus cajan PPI 832</td>
<td>6.00a</td>
<td>1.00</td>
<td>0.38</td>
<td>0.03a</td>
<td>R</td>
</tr>
<tr>
<td>Canavalia ensiformis</td>
<td>709.61c</td>
<td>3.37</td>
<td>1.00</td>
<td>6.22c</td>
<td>S</td>
</tr>
<tr>
<td>Carthamus tinctorius</td>
<td>198.13b</td>
<td>5.00</td>
<td>1.75</td>
<td>2.67b</td>
<td>MR</td>
</tr>
<tr>
<td>Clitoria ternatea</td>
<td>370.02b</td>
<td>3.62</td>
<td>0.00</td>
<td>1.36b</td>
<td>MR</td>
</tr>
<tr>
<td>Crotalaria anaguroides</td>
<td>167.01b</td>
<td>1.25</td>
<td>2.00</td>
<td>6.40c</td>
<td>S</td>
</tr>
<tr>
<td>C. apiocice</td>
<td>2.68 a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02a</td>
<td>R</td>
</tr>
<tr>
<td>C. graminiana</td>
<td>73.05 a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.28a</td>
<td>R</td>
</tr>
<tr>
<td>Crotalaria juncea</td>
<td>620.37c</td>
<td>1.37</td>
<td>1.75</td>
<td>3.71b</td>
<td>MR</td>
</tr>
<tr>
<td>C. lanceolada</td>
<td>603.81c</td>
<td>1.37</td>
<td>2.12</td>
<td>3.50b</td>
<td>MR</td>
</tr>
<tr>
<td>C. okraevka</td>
<td>86.79a</td>
<td>1.50</td>
<td>2.00</td>
<td>2.70b</td>
<td>MR</td>
</tr>
<tr>
<td>C. spectabilis</td>
<td>134.28b</td>
<td>1.25</td>
<td>0.00</td>
<td>0.35a</td>
<td>R</td>
</tr>
<tr>
<td>Dahlstedtia pentaphylla</td>
<td>1679.97d</td>
<td>2.75</td>
<td>0.0</td>
<td>1.54 b</td>
<td>MR</td>
</tr>
<tr>
<td>Dolichos lablab</td>
<td>239.98b</td>
<td>1.87</td>
<td>1.74</td>
<td>5.06c</td>
<td>S</td>
</tr>
<tr>
<td>Eleusine coracana</td>
<td>1539.30d</td>
<td>1.75</td>
<td>3.87</td>
<td>12.84c</td>
<td>S</td>
</tr>
<tr>
<td>Euchlaena mexicana</td>
<td>56.25a</td>
<td>3.0</td>
<td>1.17</td>
<td>1.00b</td>
<td>MR</td>
</tr>
<tr>
<td>Glycine wightii</td>
<td>247.78b</td>
<td>1.00</td>
<td>0.00</td>
<td>2.03b</td>
<td>MR</td>
</tr>
<tr>
<td>Jatropha curcas</td>
<td>794.76c</td>
<td>0.13</td>
<td>2.00</td>
<td>4.34c</td>
<td>S</td>
</tr>
<tr>
<td>Mucuna aterrima</td>
<td>216.77b</td>
<td>0.00</td>
<td>0.00</td>
<td>1.95b</td>
<td>MR</td>
</tr>
<tr>
<td>Mucuna cinerea</td>
<td>414.50c</td>
<td>0.00</td>
<td>0.00</td>
<td>4.73c</td>
<td>S</td>
</tr>
<tr>
<td>M. deeringiana</td>
<td>21.89a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.19a</td>
<td>R</td>
</tr>
<tr>
<td>Mucuna puriens</td>
<td>475.27c</td>
<td>2.12</td>
<td>1.75</td>
<td>6.96c</td>
<td>S</td>
</tr>
<tr>
<td>Oryza sativa ‘Pelotas’</td>
<td>107.69b</td>
<td>2.75</td>
<td>2.25</td>
<td>2.06b</td>
<td>MR</td>
</tr>
<tr>
<td>Ricinus communis IAC 80</td>
<td>0.00a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00a</td>
<td>I</td>
</tr>
<tr>
<td>Sorghum bicolor ‘SARA’</td>
<td>0.00a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00a</td>
<td>I</td>
</tr>
<tr>
<td>Tephrosia candida</td>
<td>12229.37d</td>
<td>4.50</td>
<td>3.25</td>
<td>74.19e</td>
<td>HS</td>
</tr>
<tr>
<td>Vigna umbellata</td>
<td>7289.60d</td>
<td>4.13</td>
<td>4.25</td>
<td>43.28e</td>
<td>HS</td>
</tr>
<tr>
<td>Vigna unguiculata ‘Australian’</td>
<td>166.81b</td>
<td>0.00</td>
<td>1.37</td>
<td>0.85a</td>
<td>R</td>
</tr>
<tr>
<td>Vigna unguiculata ‘Espace 10’</td>
<td>164.79b</td>
<td>0.75</td>
<td>1.12</td>
<td>0.76a</td>
<td>R</td>
</tr>
<tr>
<td>Vigna radiata</td>
<td>12897.02d</td>
<td>4.50</td>
<td>4.75</td>
<td>73.97e</td>
<td>HS</td>
</tr>
<tr>
<td>Zea mays AG 50 20</td>
<td>392.72b</td>
<td>2.62</td>
<td>3.00</td>
<td>11.70c</td>
<td>S</td>
</tr>
<tr>
<td>Lycopersicon esculentum</td>
<td>527.30e</td>
<td>5.00</td>
<td>5.00</td>
<td>34.99 e</td>
<td>HS</td>
</tr>
</tbody>
</table>

(*) Gall or egg mass index: 0 = no gall or egg mass, 1 = 1-2 galls or egg masses, 2 = 3-10, 3 = 11-30, 4 = 31-100, 5 > 100 (Taylor & Sasser, 1978).
(**) Distinct letters indicate significant difference by Scott-Knott test (1974), with data transformed to log (x+1).
(***): I = Immune, R = Resistant, MR = Moderately resistant, S = Susceptible, HS = High susceptible.

To *M. javanica, M. incognita* (race 1, 2, 3, 4) and *M. exigua* (Asmus & Ferraz, 1988; Silva et al., 1990; Silva & Carneiro, 1992 and Inomoto et al., 2006).

Among the four *Mucuna* species tested in this work, only dwarf velvet bean (*Mucuna deeringiana*) was a poor host of *M. ethiopica*. Similar results were observed for *M. incognita* (Resende et al., 1987 and *M. arenaria* (Ritzinger & McSorley, 1998). Velvet bean has a good antagonistic response, whether aerial parts were incorporated in the soil or not, due to release of toxic substances during decomposition (Moraes et al., 2006; Inomoto et al., 2006; Asmus & Ferraz, 1988). Without soil incorporation mass, green and black mucunas and velvet bean were not effective in controlling *M. javanica* and *M. incognita* (Resende et al., 1987; Asmus & Ferraz, 1988; Lopes et al., 2005).

Resistance to *M. ethiopica* was observed in both cultivars of pigeon pea (*Cajanus cajan*) tested, and similar results were observed for *M. javanica* and *M. incognita* races 1, 2 and 3 (Costa et al., 1998, Silva & Carneiro, 1992; Costa & Ferraz, 1990; Inomoto et al., 2006). Cowpea (*Vigna*...
The same results were observed in four major Meloidogyne species in cowpea ‘Mississippi Silver’ (Hare, 1967). The resistance in this cultivar was shown to be inherited as a single dominant gene. The same gene was also found in the cultivars Iron and Colossus (Fery & Dukes, 2006a). ‘Italian’ ryegrass were also resistant to race 1 and 3 of M. incognita, M. javanica and M. paranaensis (Carneiro et al., 2006b). Timper et al. (2006) concluded that rye was a poor host for M. incognita and when used as a cover crop did not increase root galling on cotton.

Considering the results obtained in these experiments, we can suggest field experiments, planting successions of different summer and winter plants: A. sativa var. oleifera, Raphanus sativus var. oleifera, L. multiflorum ‘Italian’, L. perenne ‘Forest’, L. angustifolius L. ‘APR 24’, M. sativa, O. compressus, P. glaucu, P. arvensis ‘IVAP 83’, P. sativum ‘IVAP 74’, R. sativus var. oleifera, S. cereale ‘IPR 116’, V. sativa, V. villosa ‘OSTSSAT’. These plant sequences should be adapted to different regions and areas where M. ethiopica is a major agricultural problem. Since different regions have different agronomic realities, we can suggest field experiments, planting successions of different summer and winter plants: A. sativa var. oleifera, Raphanus sativus var. oleifera, L. multiflorum ‘Italian’, L. perenne ‘Forest’, L. angustifolius L. ‘APR 24’, M. sativa, O. compressus, P. glaucu, P. arvensis ‘IVAP 83’, P. sativum ‘IVAP 74’, R. sativus var. oleifera, S. cereale ‘IPR 116’, V. sativa, V. villosa ‘OSTSSAT’. These plant sequences should be adapted to different regions and areas where M. ethiopica is a major agricultural problem. Since different regions have different agronomic realities, field experiments should be undertaken to show how these successions will be established to maintain M. ethiopica below the threshold population in the field.

TABLE 3 - Host status of different winter plants/cultivars for Meloidogyne ethiopica

<table>
<thead>
<tr>
<th>Common name</th>
<th>Number of eggs/g of fresh roots (**)</th>
<th>Gall index (GI)*</th>
<th>Egg mass index (MEI)*</th>
<th>Reproduction factor (RF)**</th>
<th>Status ***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avena sativa ‘IAPAR 126’</td>
<td>235.35b</td>
<td>3.25</td>
<td>3.13</td>
<td>6.16c</td>
<td>S</td>
</tr>
<tr>
<td>Avena strigosa ‘IAPAR 61’</td>
<td>98.24a</td>
<td>2.37</td>
<td>2.50</td>
<td>0.28a</td>
<td>R</td>
</tr>
<tr>
<td>Brassica napus ‘Can 420’</td>
<td>1442.72d</td>
<td>2.12</td>
<td>3.50</td>
<td>12.06c</td>
<td>S</td>
</tr>
<tr>
<td>Fagopyrum esculentum ‘IPR 92’</td>
<td>593.75c</td>
<td>2.87</td>
<td>1.13</td>
<td>3.90b</td>
<td>MR</td>
</tr>
<tr>
<td>Helianthus annuus ‘EMBRAPA 122’</td>
<td>2466.67d</td>
<td>4.50</td>
<td>3.75</td>
<td>20.68d</td>
<td>HS</td>
</tr>
<tr>
<td>Helianthus annuus ‘Helio 250’</td>
<td>2912.52d</td>
<td>4.00</td>
<td>4.24</td>
<td>25.49d</td>
<td>HS</td>
</tr>
<tr>
<td>Lolium multiflorum ‘Italian’</td>
<td>12.29a</td>
<td>1.00</td>
<td>1.12</td>
<td>0.37a</td>
<td>R</td>
</tr>
<tr>
<td>Lupinus albus ‘Forest’</td>
<td>12312.84e</td>
<td>5.00</td>
<td>4.87</td>
<td>43.30e</td>
<td>S</td>
</tr>
<tr>
<td>Lupinus angustifolius L. ‘APR 24’</td>
<td>2715.46d</td>
<td>3.87</td>
<td>3.87</td>
<td>25.44d</td>
<td>S</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>156.68b</td>
<td>0.00</td>
<td>0.00</td>
<td>2.30b</td>
<td>MR</td>
</tr>
<tr>
<td>Ornithopus compressus</td>
<td>135.69b</td>
<td>0.00</td>
<td>0.00</td>
<td>1.09b</td>
<td>MR</td>
</tr>
<tr>
<td>Pennisetum glaucu ‘ADR 500’</td>
<td>208.69b</td>
<td>0.00</td>
<td>2.00</td>
<td>1.03b</td>
<td>MR</td>
</tr>
<tr>
<td>Pismum arvensis ‘IVAP 83’</td>
<td>7989.34d</td>
<td>3.62</td>
<td>4.12</td>
<td>25.97d</td>
<td>HS</td>
</tr>
<tr>
<td>Pismum sativum ‘IVAP 74’</td>
<td>20315.96a</td>
<td>4.62</td>
<td>4.87</td>
<td>45.22e</td>
<td>HS</td>
</tr>
<tr>
<td>Raphanus sativus var. oleifera</td>
<td>5.10a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09a</td>
<td>R</td>
</tr>
<tr>
<td>Secale cereale ‘IPR 69’</td>
<td>91.99a</td>
<td>3.62</td>
<td>2.62</td>
<td>0.63a</td>
<td>R</td>
</tr>
<tr>
<td>Setaria italica</td>
<td>4220.70d</td>
<td>1.12</td>
<td>2.50</td>
<td>15.13e</td>
<td>S</td>
</tr>
<tr>
<td>Triticum aestivum x Secale cereale: ‘IPR 111’</td>
<td>551.64c</td>
<td>3.50</td>
<td>2.50</td>
<td>6.32c</td>
<td>S</td>
</tr>
<tr>
<td>Vicia sativa</td>
<td>3325.67d</td>
<td>4.75</td>
<td>4.37</td>
<td>36.58e</td>
<td>HS</td>
</tr>
<tr>
<td>Vicia villosa ‘OSTSSAT’</td>
<td>464.02b</td>
<td>1.34</td>
<td>4.25</td>
<td>7.16c</td>
<td>S</td>
</tr>
<tr>
<td>Lycopersicon esculentum</td>
<td>2083.52c</td>
<td>5.00</td>
<td>5.00</td>
<td>28.00d</td>
<td>HS</td>
</tr>
</tbody>
</table>

(*) Gall or egg-mass index: 0 = no gall or egg mass, 1 = 1-2 galls or egg masses, 2 = 3-10, 3 = 11-30, 4 = 31-100, 5 > 100 (Taylor & Sasser, 1978).

(**) Distinct letters indicate significant difference by Scott-Knott test (1974), with data transformed to log10(x+1).

(*** *) I = Immune, R = Resistant, MR = Moderately resistant, S = Susceptible, HS = High susceptible.
REFERENCES

Agrianual (2004). São Paulo SP, FNP.

Hare WW (1967) A combination of disease resistance in a new cowpea Mississippi Silver Phytopathology 57:460. (Abstract)

Received 26 June 2008 - Accepted 8 May 2009 - TPP 8075
Associate Editor - invited: Vicente P. Campos