Interactions between foliar diseases: Concepts and epidemiological approaches

Waldir C. Jesus Junior¹, Trazilbo J. Paula Júnior², Miller S. Lehner³ & Bernhard Hau⁴

¹Departamento de Produção Vegetal, Universidade Federal do Espírito Santo, 29500-000, Alegre, ES, Brazil; ²EPAMIG, Vila Gianetti 47, 36570-900, Viçosa, MG, Brazil; ³Programa de Pós-graduação em Genética e Melhoramento, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil; ⁴Institut für Pflanzenkrankheiten und Pflanzenschutz, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany

Author for correspondence: Waldir C. Jesus Junior, e-mail: wcintra@cca.ufes.br

ABSTRACT
This review deals with the phenomenon of plant disease interactions. The epidemiological implications of foliar diseases occurring simultaneously on the same crop are important because the establishment of disease management strategies depends on the knowledge of disease interactions. We discuss some concepts and the terminology related to the interaction studies and present related examples with special emphasis on interacting wheat diseases.

Key words: crop loss, disease dynamics, multiple diseases.

INTRODUCTION

The occurrence of two or more pathogens simultaneously on the same host is frequent in many production systems (Zadoks & Schein, 1979; Kranz & Jörg, 1989). This situation may be even more recurrent in many tropical areas, where environmental conditions are mostly favourable to the occurrence of diseases during all periods of the year. Little is known about the combined effects of diseases on crop yield and only a few epidemiological studies on this subject have been carried out. Estimates of disease effects on yield are usually made assuming that each disease acts independently. Interactions of diseases can increase crop damage and complicate the identification of primary causes of diseases and their control. The interactions may alter the occurrence and speed of epidemics. Weber et al. (1994), for instance, concluded for the two wheat pathogens Septoria nodorum and Erysiphe graminis that wherever the two pathogens occur together, neither their dynamics, nor the influence of external factors could be understood, if interspecific interactions are neglected. Interactions may have significant implications for assessing crop losses, diagnosing the causes of these losses and for selecting appropriate management strategies, as well as for forecasting, modelling and simulations of epidemics (Waller & Bridge, 1984; Bassanezi et al., 1998). Estimates of yield losses caused by several diseases made by adding of single disease yield-loss models are likely to be inaccurate if interactions are occurring (Zhou et al., 2000). Interactions may be important because the expected benefit from the control of one pathogen depends on the level of the other pathogens (Johnson et al., 1986) and therefore multiple diseases can significantly alter economic decision criteria in comparison to single disease occurrence (Pinnschmidt, 1991). According to Newton et al., (2010), new approaches in agronomy, crop protection and breeding could be achieved by understanding the population dynamic balance between the organisms of the phyllosphere as an ecological system.

The objectives of studies in multiple-disease situations usually can be divided into understanding (i) the population dynamics of interacting diseases and (ii) the combined effect on crop yield or yield loss. Once the specific effects of combined pathogens are understood, the question shifts towards how to manage a crop grown under combined infection conditions (Johnson, 1990). The examples of interactions presented in literature are mainly dealing with their effects on yield. Epidemiological aspects of these interactions in terms of changes in the component analysis have rarely been studied (Zadoks & Schein, 1979; Weber et al., 1994). Here some aspects related to the dynamics and to crop losses of the interactions between diseases caused by aerial pathogens are discussed. The discussion will be restricted to the relationships between two or more aerial pathogens on the same host. Cross-protection and biological control will be not emphasized, although in these cases some kind of interactions can occur between the organisms involved.

TERMINOLOGY

Terms like interaction, association, interference and interrelationship have been used to describe relationships among diseases. In many cases these terms are used in an
improper manner (Wallace, 1983; Sikora & Carter, 1987). According to Wallace (1983), the various etiological agents can influence each other in their effects on the plant; that is, they interact. Consequently, the effect of the contribution of different pathogens on the same host may not be purely additive. As diseases can interact in their dynamics and/or in their effects on crop loss, it is necessary to classify the interactions for both aspects. Sometimes there is no significant interaction between two diseases with respect to yield, although one disease affects the development of the other (Simkin & Wheeler, 1974). For a given combination of pathogens, the type of interaction may change under different conditions or during successive stages in their life histories. Mixtures of synergistic and antagonistic interactions, creating usually unpredictable biological and epidemiological consequences, are likely to occur in plants, as Syller (2012) observed for interacting viruses.

Interactions concerning the disease dynamics

Several terms have been proposed to qualitatively describe interactions while quantitative methods seem to be used scarcely. The interactions between two and more diseases on a common host may produce antagonistic or protective, mutually exclusive, additive, or synergistic effects in the host (Damsteegt et al., 1993). An interaction between different pathogens can be antagonistic or protective when one inhibits or reduces the development of another (Latch & Potter, 1977). A mutually exclusive interaction occurs when the development of all involved pathogens is reduced (Jedlinski & Brown, 1965). An interaction is additive when the development of one pathogen is not altered in the presence of another and vice versa (Gordon & Schmitthenner, 1969). When there is some enhancement in the development of one or more interacting pathogens, the interaction is called synergistic (Beute, 1973).

In ecology, one population can influence a second one in different ways, whereby the effect can be positive (+), negative (-) or neutral (0). On the other hand, the second population can also affect the first one. Odum (1953) defined in an ecological sense that populations of two species may interact theoretically in six basic ways, corresponding to the six combinations of 0, +, and -, as follows: 00 (neutralism), -- (competition), ++ (mutualism or protocooperation), +0 (commensalism), -0 (amensalism), and + (parasitism or predation). Although many types of direct effects of an organism on another can occur, indirect effects through the host plants seem to explain most of the cases of interacting diseases (Waller & Bridge, 1984). Sometimes it is even not clear whether there are any antagonistic or synergistic effects of interacting pathogens, like with Alternaria porri and Stemphylium vesicarium which often occur together in the same purple leaf blotch lesion on Allium species (Suheri & Price, 2000). In some cases the interactions between two diseases may not be detectable due to clear differences in time of disease onset or low disease levels, like for anthracnose (Colletotrichum sublineolum) and leaf blight (Exserohilum turcicum) on sorghum in Kenya (Ngugi et al., 2000).

In situations involving the simultaneous occurrence of aerial pathogens on the same plant, terms “interactions between diseases” and “interactions between pathogens” are practically similar. However, approaches involving this subject should focus on the interactions between diseases, since, in many cases, there are indirect effects mediated by the host.

Interactions concerning crop losses

Similar to the definition of interactions with respect to disease dynamics, the interactions related to yield or yield loss are termed in different ways although the terms seem to be clearer. There are three outcomes of combined effects of diseases on crop loss (Waller & Bridge, 1984): the combined loss is equal to (no interaction, additive), more than (greater-than-additive, synergistic, positive interaction), or less than (less-than-additive, antagonistic, negative interaction) the sum of yield losses from individual diseases alone. According to the literature survey of Johnson (1990), studies of the effects of multiple pest and diseases on crop yield mostly report antagonistic interactions, which may result from competition between pathogen populations or from stimulation of active defence mechanisms in the host. Reports of synergistic interactions are relatively rare (Johnson, 1990). The synergistic interactions seem to operate through effects on host resistance permitting a pathological succession rather than by direct mutual synergism of pathogens (Waller & Bridge, 1984).

EXAMPLES OF DISEASE INTERACTIONS

Some data concerning interactions between aerial diseases are presented in the Tables 1, 2 and 3. In some pathosystems, the determination of the type of interaction concerning dynamics aspects and/or crop loss was demonstrated. Criteria utilized to classify the interactions in terms of dynamics and crop loss were made considering three categories – antagonistic, synergistic and additive interactions.

It is important to emphasized that two plant pathogens can interact as antagonists “in vitro”, however the diseases as a result of their infections on the same host can present an additive effect. Thus, it is not appropriate to do generalizations.

CASE STUDY: RESULTS OBTAINED FROM PUBLISHED STUDIES ON WHEAT DISEASES

Most of the cases of interaction between foliar diseases reported in the literature is related to wheat. This crop can be infected by many pathogens singly or simultaneously. Although wheat is a crop of temperate regions, it has been cultivated in many tropical areas, which may contribute to increase the frequency of interaction cases. In Brazil, for
TABLE 1 - Selected examples of interactions related mainly to disease dynamics.

<table>
<thead>
<tr>
<th>Host</th>
<th>Involved pathogens</th>
<th>Authors</th>
<th>Type</th>
<th>Comments of the authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>Colletotrichum destructivum, C. dematium f. sp. truncata, C. trifolii</td>
<td>Graham et al., 1976</td>
<td>Antagonism</td>
<td>Seedlings simultaneously inoculated with C. trifolii and C. destructivum or C. trifolii and C. dematium f. sp. truncata were significantly less damaged than those inoculated with C. trifolii alone. Although TCV coat protein accumulates to a similar level in singly or doubly infected plants, CMV coat protein is significantly decreased in doubly infected plants, which develop symptoms similar to those of TCV infection alone.</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>Cucumber mosaic virus (CMV), Turnip crinkle virus (TCV)</td>
<td>Yang et al., 2010</td>
<td>Antagonism</td>
<td></td>
</tr>
<tr>
<td>Barley</td>
<td>Bromovirus (BMV), Tobacco mosaic virus (TMV)</td>
<td>Hamilton & Nichols, 1977</td>
<td>Synergism</td>
<td>BMV functioned as a helper virus in TMV infection of barley.</td>
</tr>
<tr>
<td>Barley</td>
<td>E. graminis f. sp. hordei, barley yellow dwarf virus (BYDV)</td>
<td>Potter & Jones, 1981</td>
<td>Not clear</td>
<td></td>
</tr>
<tr>
<td>Barley</td>
<td>Erysiphe graminis f. sp. hordei, Puccinia hordei</td>
<td>Kiessling & Hoffmann, 1985a,b</td>
<td>Antagonism</td>
<td></td>
</tr>
<tr>
<td>Barley</td>
<td>Puccinia hordei, Septoriaavenae f. sp. tritica</td>
<td>Shearer et al., 1978</td>
<td>Synergism</td>
<td></td>
</tr>
<tr>
<td>Barley</td>
<td>Pyrenophora teres, Rhynchosporium secalis</td>
<td>Cherif et al., 2007</td>
<td>Antagonism</td>
<td>Under low epidemic conditions, net blotch and scald developments were usually independent, but positively associated for tolerant lines for both diseases. Under high epidemic conditions, competition effects were obtained for susceptible and resistant genotypes.</td>
</tr>
<tr>
<td>Barley</td>
<td>Pyrenophora teres, Rhynchosporium secalis, barley yellow dwarf virus (BYDV)</td>
<td>Varughese & Griffiths, 1983</td>
<td>Antagonism</td>
<td></td>
</tr>
<tr>
<td>Celery</td>
<td>Septoria apiicola, Celery mosaic virus, Parsnip yellow fleck virus</td>
<td>Ataga et al., 1999</td>
<td>Antagonism</td>
<td>Inoculation with viruses decreased blight on leaves inoculated later with S. apiicola.</td>
</tr>
<tr>
<td>Citrus</td>
<td>Geotrichum candidum, Penicillium digitatum</td>
<td>Morris, 1982</td>
<td>Synergism</td>
<td>Synergism was greatest in mature fruit and occurred over a wide range of spore concentrations of G. candidum and P. digitatum.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Uromyces appendiculatus, Colletotrichum lindenmuthianum</td>
<td>Yanwood, 1977</td>
<td>Synergism</td>
<td>Rust predisposes bean plants to foliar infection of C. lindenmuthianum in anthracnose-resistant bean varieties.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Uromyces appendiculatus, Colletotrichum lindenmuthianum</td>
<td>Kiel & Hau, 2000</td>
<td>Antagonism</td>
<td>Final severity of anthracnose was reduced after a pre-inoculation with rust, although the time of the pre-inoculation did not influence the progress curve of anthracnose. Plants infected with virus presented reduced final fungal disease severities.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Uromyces appendiculatus</td>
<td>Bassaneti et al., 1998</td>
<td>Antagonism</td>
<td></td>
</tr>
<tr>
<td>Common bean</td>
<td>Pseudocercospora griseola, Bean line pattern mosaic virus (BLPMV)</td>
<td>Dalla Pria et al., 1994</td>
<td>Antagonism</td>
<td>Plants infected with BLPMV presented a lower severity of rust.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Uromyces appendiculatus, Bean line pattern mosaic virus (BLPMV)</td>
<td>Dalla Pria et al., 1994</td>
<td>Antagonism</td>
<td></td>
</tr>
<tr>
<td>Common bean</td>
<td>Uromyces appendiculatus</td>
<td>Finke et al., 1986;</td>
<td>Additive</td>
<td>No antagonistic or synergistic interactions were observed on separate trifoliolate leaves.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Xanthomonas axonopodis pv. phaseoli</td>
<td>Defaria & Hagedom, 1986</td>
<td>Antagonism</td>
<td>Pre-infection of bean seedlings with the virus reduced the rust pustule size in 25%.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Uromyces appendiculatus, Bean common mosaic virus (BCMV)</td>
<td>Zaiter et al., 1990</td>
<td>Antagonism</td>
<td>Pre-infection of bean seedlings with BCMV did not affect the reaction to the bacteria.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Xanthomonas axonopodis pv. phaseoli, Bean common mosaic virus (BCMV)</td>
<td>Zaiter et al., 1990</td>
<td>Additive</td>
<td></td>
</tr>
<tr>
<td>Common bean</td>
<td>Uromyces appendiculatus</td>
<td>Dalla Pria et al., 1994</td>
<td>Antagonism</td>
<td></td>
</tr>
</tbody>
</table>
Involved pathogens

<table>
<thead>
<tr>
<th>Host</th>
<th>Involved pathogens</th>
<th>Authors</th>
<th>Type</th>
<th>Comments of the authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common bean</td>
<td>Xanthomonas axonopodis pv. phaseoli, Bean common mosaic virus (BCMV)</td>
<td>Hedges, 1944; 1946a; 1946b; Panzer & Nickeson, 1959</td>
<td>Synergism</td>
<td>A synergistic effect of the two pathogens was observed only late in the growing season.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Uromyces appendiculatus, Tobacco mosaic virus (TMV)</td>
<td>Wilson, 1958</td>
<td>Antagonism</td>
<td>Leaves infected with TMV presented resistance to rust, apparently due to inhibition of uredospore germination; leaves infected with rust presented resistance to TMV infection.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Uromyces appendiculatus, Tobacco necrosis virus (TNV)</td>
<td>Kutzner et al., 1993</td>
<td>Antagonism</td>
<td>Preinoculation with rust induced resistance against the virus.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Pseudomonas phaseolicola, Achromobacter sp.</td>
<td>Maino et al., 1974</td>
<td>Synergism</td>
<td>The number of lesions incited by P. phaseolicola increased from 2-to nearly 4-fold when inocula were mixed with Achromobacter sp.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Pseudomonas phaseolicola, P. marginalis, P. fluorescens, Achromobacter sp.</td>
<td>Maino et al., 1974</td>
<td>Antagonism</td>
<td>The number of lesions of P. marginalis and P. fluorescens decreased when the pathogens were mixed with Achromobacter sp.</td>
</tr>
<tr>
<td>Cucumber and muskmelon</td>
<td>Erysiphe cichoracearum or Sphaerotheca fuliginea and Mycosphaerella melonis</td>
<td>Bergstrom et al., 1982</td>
<td>Synergism</td>
<td>Powdery mildew effectively predisposed the plants to M. melonis.</td>
</tr>
<tr>
<td>Cucumber</td>
<td>Cucumber vein yellowing virus (CVYV), Cucurbit yellow stunting disorder virus (CYSDV)</td>
<td>Gil-Salas et al., 2012</td>
<td>Synergism</td>
<td>Co-infection with CVYV and CYSDV leading to synergism.</td>
</tr>
<tr>
<td>Cucumber</td>
<td>Sphaerotheca fuliginea, Tobacco necrosis virus (TNV)</td>
<td>Conti et al., 1990</td>
<td>Antagonism</td>
<td>Preinoculation with TNV enhances peroxidase activity and lignification in cucumber, as a resistance response to S. fuliginea.</td>
</tr>
<tr>
<td>Cucumber</td>
<td>Erysiphe polyphaga, Cucumber mosaic virus (CMV)</td>
<td>Blumer et al., 1955</td>
<td>Antagonism</td>
<td>A distinct antagonism between the pathogens was observed.</td>
</tr>
<tr>
<td>Faba bean</td>
<td>Uromyces vicieae-fabae, Bean yellow mosaic virus, Bean leaf roll virus (BLRV)</td>
<td>Omar et al., 1986</td>
<td>Antagonism</td>
<td>Prior infection with viruses decreased pustule density on leaves subsequently infected with U. vicieae-fabae.</td>
</tr>
<tr>
<td>Faba bean</td>
<td>Botrytis fabae, B. cinerea, Bean yellow mosaic virus (BYMV), Bean leaf mottle virus (BLRV)</td>
<td>Omar et al., 1986</td>
<td>Synergism</td>
<td>Prior infection with viruses increased host susceptibility to subsequent infection by B. fabae and B. cinerea.</td>
</tr>
<tr>
<td>Gladiolus</td>
<td>Cursularia trifoli f. sp. gladioli, Cucumber mosaic virus (CMV), Tobacco ring spot virus (ToRSPV)</td>
<td>Beute, 1973</td>
<td>Synergism</td>
<td>The severity of Cursularia was increased by infection by viruses.</td>
</tr>
<tr>
<td>Groundnut</td>
<td>Cercospora arachidicola, Phoma arachidicola</td>
<td>Cole, 1982</td>
<td>Not clear</td>
<td>Cercospora leaf spot was not influenced by the amount of web blotch. The correlation matrices also showed the greater dependence of web blotch on Cercospora leaf spot.</td>
</tr>
<tr>
<td>Maize</td>
<td>Helminthosporium maydis race 0, Maize dwarf mosaic virus (MDMV)</td>
<td>Stevens & Gudauskas, 1982; 1983</td>
<td>Synergism</td>
<td>MDMV-infected plants were more susceptible to H. maydis than virus-free ones. H. maydis sporulated more abundantly on MDMV-infected leaves and the inoculum potential was greater than that of conidia produced on MDMV-free leaves.</td>
</tr>
<tr>
<td>Maize</td>
<td>Pseudonocorospora philippinensis, P. sorghi, Maize streak virus (MSV)</td>
<td>Damsteeg et al., 1993</td>
<td>Additive</td>
<td>Neither pathogen affected the establishment of the other. Reduction in height, fresh weight and leaf area were greater (thought not significant) with pathogen combinations than with single pathogens.</td>
</tr>
<tr>
<td>Maize and sorghum</td>
<td>Helminthosporium maydis race 0, Maize dwarf mosaic virus (MDMV)</td>
<td>Benival & Gudauskas, 1974</td>
<td>Synergism</td>
<td>There was a positive association between MDMV infection and H. maydis susceptibility.</td>
</tr>
<tr>
<td>Nicotiana spp.</td>
<td>Helper tobamoviruses, Satellite tobacco mosaic virus (STMV)</td>
<td>Valverde et al., 1991</td>
<td>Antagonism</td>
<td>Yield of TMV was reduced in 32-48% by co-infection with STMV.</td>
</tr>
<tr>
<td>Nicotiana benthamiana</td>
<td>Tobacco necrosis virus (TNV), Turnip crinkle virus (TCV)</td>
<td>Xi et al., 2010</td>
<td>Antagonism</td>
<td>Accumulation of TNV (+)RNA as well as capsid protein in mixed infection were considerably lower than that of singly infected plants. There were also a slight reduction in the levels of TCV (+)RNA and capsid protein in doubly infected plants, which displayed the concentration of both viruses decreased in dually infected plants.</td>
</tr>
<tr>
<td>Host</td>
<td>Involved pathogens</td>
<td>Authors</td>
<td>Type</td>
<td>Comments of the authors</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>---------</td>
<td>------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Nicotiana benthamiana</td>
<td>Tobacco mosaic virus (CMV), Tobacco necrosis virus (TNV)</td>
<td>Xi et al., 2007</td>
<td>Synergism</td>
<td>Mixed infections of N. benthamiana plants by CMV and TNV exhibit a synergistic interaction and result in symptom enhancement.</td>
</tr>
<tr>
<td>Nicotiana benthamiana</td>
<td>Abutilon mosaic virus (AbMV), Tobacco mosaic virus (TMV), Tomato mosaic virus (ToMV)</td>
<td>Pohl & Vege, 2007</td>
<td>Synergism</td>
<td>Both tobamoviruses exerted a negative effect on the DNA virus, resulting in a decrease in AbMV accumulation and significantly reduced infectivity in N. benthamiana. A striking synergistic enhancement in pathogenicity occurred with respect to stunting and necrosis.</td>
</tr>
<tr>
<td>Nicotiana benthamiana</td>
<td>Potato virus X (PVX), Potato virus Y (PVY), Plum pox virus (PPV)</td>
<td>Pacheco et al., 2012</td>
<td>Synergism</td>
<td>In comparison to single infections, co-infection of N. benthamiana with PVX and PVY or PPV resulted in increased systemic symptoms.</td>
</tr>
<tr>
<td>Nicotiana benthamiana</td>
<td>Tomato rugose mosaic virus (ToRMV), Tomato yellow spot virus (ToYSV)</td>
<td>Alves Júnior et al., 2009</td>
<td>Antagonism/Synergism</td>
<td>ToYSV establishes a systemic infection and reaches a higher concentration earlier than ToRMV in both hosts. ToRMV negatively interferes with ToYSV during the initial stages of infection, but once systemic infection is established this interference ceases.</td>
</tr>
<tr>
<td>Orchids</td>
<td>Cymbidium mosaic virus (CyMV), Odontoglossum ringspot virus (ORSV)</td>
<td>Pearson & Cole, 1986; 1991</td>
<td>Not clear</td>
<td>The mean values also suggest that mixed infections were less serious than single infection by CyMV, but again the differences are not statistically significant.</td>
</tr>
<tr>
<td>Pea</td>
<td>Bean yellow mosaic virus (BYMV), Cucumber mosaic virus (CMV)</td>
<td>Blaszczak & Milchert, 1980</td>
<td>Synergism</td>
<td>Mixed infection caused a little more severe disease symptoms and somewhat greater decreases of plant weight than CMV alone.</td>
</tr>
<tr>
<td>Peanut</td>
<td>Tomato spotted wilt virus (TSWV), Peanut mottle virus (PMV)</td>
<td>Hoffmann et al., 1998</td>
<td>Additive</td>
<td>Dual infection did not cause greater symptom severity than infection with either virus alone.</td>
</tr>
<tr>
<td>Pepper</td>
<td>Cucumber mosaic virus (CMV), Pepper mottle virus (PMV)</td>
<td>Murphy & Kyle, 1995</td>
<td>Synergism</td>
<td>When plants were coinfected with PMV and CMV, antigen accumulation of PMV was no longer restricted temporally or spatially.</td>
</tr>
<tr>
<td>Pepper</td>
<td>Helper viruses (Tobacco mosaic virus – TMV-U2, Pepper mild mottle virus – PMMV) and Satellite tobacco mosaic virus (STMV)</td>
<td>Rodríguez-Alvarado et al., 1994</td>
<td>Synergism</td>
<td>Presence of STMV in coinfection with TMV-U2 caused increased chlorosis relative to the mosaic caused by TMV-U2 alone. Increased chlorosis was observed when TMV-U5 and PMMV were used as helper viruses.</td>
</tr>
<tr>
<td>Pepper</td>
<td>Pepper huasteco virus (PHC), Pepper golden mosaic virus (PepGMV)</td>
<td>Méndez-Lozano et al., 2003</td>
<td>Antagonism</td>
<td>In terms of symptom expression, antagonism was observed.</td>
</tr>
<tr>
<td>Peanut</td>
<td>Tomato virus Y (PVY), Tobacco mosaic virus (TMV)</td>
<td>Sherwood et al., 1988</td>
<td>Synergism</td>
<td>TMV and PVY inoculated together caused severe stunting and systemic necrosis.</td>
</tr>
<tr>
<td>Ryegrass</td>
<td>Puccinia coronata, Ryegrass mosaic virus (RMV), Barley yellow dwarf virus (BYDV)</td>
<td>Latch & Potter, 1977; Ross, 1968; 1969; Hobbs et al., 2003</td>
<td>Antagonism/ Additive</td>
<td>Two isolates of RMV suppressed the amount of crown rust emerging on leaves by up to 75% compared with virus-free plants. Severity of rust infection on BYDV infected plants generally did not differ significantly from that on virus-free plants.</td>
</tr>
<tr>
<td>Soybean</td>
<td>Cercospora sojina, Coleotrotichum truncatum</td>
<td>Kunwar et al., 1985</td>
<td>Antagonism</td>
<td>In mixed infection, hyphae of C. sojina were more abundant than those of C. truncatum.</td>
</tr>
<tr>
<td>Soybean</td>
<td>Cowpea mosaic virus (CPMV), Bean pod mottle virus (BPMV), Soybean mosaic virus (SMV)</td>
<td>Anjos et al., 1992</td>
<td>Synergism</td>
<td>Plants dually infected with SMVand either CPMV or BPMV showed greatly increased symptoms severity over that induced by the individual viruses.</td>
</tr>
<tr>
<td>Soybean</td>
<td>Soybean mosaic virus (SMV), Bean pod mottle virus (BPMV)</td>
<td>Quinones et al., 2003</td>
<td>Synergism</td>
<td>Mixed virus infection on soybean with SMV and BPMV was reported to produce higher percentages of seed coat mottling than that caused by SMV alone, but not always.</td>
</tr>
<tr>
<td>Soybean</td>
<td>Soybean mosaic virus (SMV), Phomopsis spp.</td>
<td>Koning et al., 2001; 2003</td>
<td>Synergism</td>
<td>SMV infection predisposes soybean seed to Phomopsis spp. Seed infection and may induce seedcoat mottling.</td>
</tr>
<tr>
<td>Sugar beet</td>
<td>Beet necrotic yellow vein virus (BNYVV), Beet soilborne mosaic virus (BSBMV)</td>
<td>Wisler et al., 2003</td>
<td>Antagonism</td>
<td>BNYVV may suppress BSBMV in mixed infections.</td>
</tr>
<tr>
<td>Host</td>
<td>Involved pathogens</td>
<td>Authors</td>
<td>Type</td>
<td>Comments of the authors</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------------------------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Sugar beet</td>
<td>Cercospora beticola, Beet yellows virus (BYV)</td>
<td>Crane & Calpouzos, 1969</td>
<td>Synergism</td>
<td>In the virus-fungus treatment, the average number of Cercospora lesions increased 53%, while the average number of dead leaves increased 260% when compared to the treatment with fungus alone. For replication of CMV in sweet potato, a factor was required that was provided by the presence of SPFMV.</td>
</tr>
<tr>
<td>Sweet Potato</td>
<td>Cucumber mosaic virus (CMV), Sweet potato feathery mottle virus (SPFMV)</td>
<td>Cohen et al., 1988</td>
<td>Synergism</td>
<td></td>
</tr>
<tr>
<td>Tobacco</td>
<td>Pepper huasteco virus (PHC), Pepper golden mosaic virus (PepGMV)</td>
<td>Méndez-Lozano et al., 2003</td>
<td>Synergism</td>
<td>In terms of symptom expression, synergism was observed.</td>
</tr>
<tr>
<td>Tobacco</td>
<td>Potato virus X (PVX), Potato virus Y (PVY)</td>
<td>Hoffmann-Wolf et al., 1990</td>
<td>Synergism</td>
<td>All the combinations of the viruses strains produced the same typical synergistic symptom.</td>
</tr>
<tr>
<td>Tobacco</td>
<td>Pepper veinal mottle virus (PVMV), Potato virus Y (PVY)</td>
<td>Marchoux et al., 1993</td>
<td>Synergism</td>
<td>In the presence of PVY, PVMV migrated systemically into the upper leaves of the tobacco plants.</td>
</tr>
<tr>
<td>Tobacco</td>
<td>Potato virus X (PVX), Potato virus Y (PVY)</td>
<td>Goodman & Ross, 1974</td>
<td>Synergism</td>
<td>Enhancement of the viruses amount occurs only in cells invaded by the two viruses within a relatively short period of time and the maximum enhancement results when critical stages in the replication cycle of each virus coincide.</td>
</tr>
<tr>
<td>Tobacco</td>
<td>Tobacco etch virus (TEV), Tobacco vein mottling virus (TVMV)</td>
<td>Madden et al., 1987</td>
<td>Additive</td>
<td>Neither virus had a consistent inhibitory effect on increase of the other.</td>
</tr>
<tr>
<td>Tobacco</td>
<td>Erysiphe cichoracearum, Tobacco mosaic virus (TMV), Tobacco necrosis virus (TNV)</td>
<td>Marte et al., 1993</td>
<td>Antagonism</td>
<td>TMV or TNV induced systemic resistance to subsequent inoculation with the powdery mildew fungus.</td>
</tr>
<tr>
<td>Tomato</td>
<td>Potato virus Y (PVY-SON41), Cucumber mosaic virus (CMV-Fny and CMV-LS)</td>
<td>Mascia et al., 2010</td>
<td>Synergism</td>
<td>Mixed infection with the SON41 strain of PVY-SON41 increased accumulation of RNAs of strains Fny and LS of CMV-Fny and CMV-LS, respectively, and enhanced disease symptoms.</td>
</tr>
</tbody>
</table>

See below selected examples for wheat.
Interactions between foliar diseases: Concepts and epidemiological approaches

TABLE 2 - Selected examples of interactions related mainly to crop loss.

<table>
<thead>
<tr>
<th>Host</th>
<th>Involved pathogens</th>
<th>Authors</th>
<th>Type</th>
<th>Comments of the authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>Erysiphe graminis f. sp. hordei, Puccinia hordei</td>
<td>Lim & Gaunt, 1986ab</td>
<td>Synergism</td>
<td>Leaf rust severity after anthesis was most damaging when combined with earlier mildew epidemics. The mean yield after early mildew epidemics (568g/m²) was similar to that after late leaf rust (573g/m²), but greater than that after the combined epidemics (474g/m²).</td>
</tr>
<tr>
<td>Common bean</td>
<td>Bean common mosaic virus (BCMV), Bean rugose mosaic virus (BRMV)</td>
<td>Castillo-Urquiza et al., 2006</td>
<td>Synergism</td>
<td>Single infection of ‘Ouro Negro’ and ‘Novirex’ beans caused a reduction in the total weight of pods per plant of 3.4% and 84.9%, respectively. Mixed infection with BCMV caused a reduction of pod weight per plant of up to 70.1% in ‘Novirex’ and up to 90.8% in ‘Ouro Negro’.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Colletotrichum lindemuthianum, Pseudocercospora griseola</td>
<td>Cameiro et al., 2000</td>
<td>Additive</td>
<td>No significant differences were observed between plants inoculated with both pathogens and those inoculated with each pathogen separately. There was no interaction on the impact of the photosynthesis, i.e., the presence of rust did not change the impact caused by anthracnose on leaf photosynthesis and vice versa.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Uromyces appendiculatus, Colletotrichum lindemuthianum</td>
<td>Lopes & Berger, 2001</td>
<td>Additive</td>
<td>There was a clear reduction on crop leaf area, light interception, dry matter, RUE and harvest index due to the two pathogens, compared with plants infected with only one pathogen.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Uromyces appendiculatus, Pseudocercospora griseola</td>
<td>Jesus Júnior et al., 2001</td>
<td>Antagonism</td>
<td>There was no interaction on the impact of the photosynthesis, i.e., the presence of rust did not change the impact caused by anthracnose on leaf photosynthesis and vice versa.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Blackeye cowpea mosaic virus (BICMV), Cucumbe mosaic virus (CMV)</td>
<td>Pio-Ribeiro et al., 1978</td>
<td>Synergism</td>
<td>CMV alone reduced yield in 14.2%; BICMV alone in 2.5%; in combination in 86.4%.</td>
</tr>
<tr>
<td>Lettuce</td>
<td>Beet western yellows virus (BWyV), Lettuce mosaic virus (LMV), Cucumber mosaic virus (CMV)</td>
<td>Walkey & Payne, 1990</td>
<td>Synergism</td>
<td>The interaction resulted in a significantly greater yield loss than that caused by the viruses alone.</td>
</tr>
<tr>
<td>Maize</td>
<td>Maize dwarf mosaic virus (MDMV), Maize chlorotic mottle virus (MCMV)</td>
<td>Uyemoto et al., 1981</td>
<td>Synergism</td>
<td>Losses were heaviest on plants receiving the virus combination.</td>
</tr>
<tr>
<td>Oat</td>
<td>Helminthosporium avenae, Barley yellow dwarf virus (BYDV)</td>
<td>Sommerfeld et al., 1993</td>
<td>Additive</td>
<td>No interaction was observed.</td>
</tr>
<tr>
<td>Peanut</td>
<td>Cercospora personata, Puccinia arachidis</td>
<td>Harrison, 1973</td>
<td>Additive</td>
<td>Leaf rust can be nearly as destructive alone as when it occurs in combination with Cercospora leaf spot. Both viruses together rarely caused greater damage than the most damaging virus on its own.</td>
</tr>
<tr>
<td>Ryegrass</td>
<td>Barley yellow dwarf virus (BYDV), Ryegrass mosaic virus (RMV)</td>
<td>Catherall, 1987</td>
<td>Additive</td>
<td>Both viruses together rarely caused greater damage than the most damaging virus on its own.</td>
</tr>
<tr>
<td>Soybean</td>
<td>Pseudomonas glycinea, Septoria glycines</td>
<td>Williams & Nyvall, 1980</td>
<td>Antagonism</td>
<td>P. glycinea alone reduced yield in 17.9%; S. glycines alone in 17.4%; both pathogen together in 14.1%.</td>
</tr>
<tr>
<td>Soybean</td>
<td>Pseudomonas syringae pv. glycinea, Xanthomonas campestris pv. glycines</td>
<td>Hwang & Lim, 1992</td>
<td>Additive</td>
<td>Effects of individual and multiple diseases on yield were not statistically significant.</td>
</tr>
<tr>
<td>Soybean</td>
<td>Pseudomonas syringae pv. glycinea, Septoria glycines</td>
<td>Basu & Butler, 1988</td>
<td>Not clear</td>
<td>The pathogens together were additive in the amount of foliage infection produced when disease levels were relatively low; otherwise the combined effect was not significantly greater than that of S. glycines alone.</td>
</tr>
</tbody>
</table>

See below selected examples for wheat.
<table>
<thead>
<tr>
<th>Host</th>
<th>Involved pathogens</th>
<th>Authors</th>
<th>Type</th>
<th>Comments of the authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>Erysiphe graminis, Puccinia hordei</td>
<td>Simkin & Wheeler, 1974</td>
<td>Antagonism / Additive</td>
<td>Pre-inoculation with either fungus reduced the development of the other. The effects of mildew and rust in reducing grain yield are nearly additive.</td>
</tr>
<tr>
<td>Barley, oat</td>
<td>Erysiphe graminis, Barley yellow dwarf virus (BYDV)</td>
<td>Potter, 1980</td>
<td>Not clear / Additive</td>
<td>Prior infection by BYDV initially suppressed, then subsequently enhanced the amount of powdery mildew. No additional yield loss was caused by mildew infection on BYDV-infected plants.</td>
</tr>
<tr>
<td>Barley, oat</td>
<td>P. recondita f. sp. tritici, P. recondita f. sp. avenae or P. hordei and Barley yellow dwarf virus (BYDV)</td>
<td>Potter, 1982</td>
<td>Not clear</td>
<td>The number of pustules on distal leaf portions was negatively correlated with the amount of yellowing of the leaf areas scored. The latent period of rust on oats was not affected by BYDV. In barley, BYDV reduced the latent period of rust on leaf 5, but not on leaf 4, and reduced it on proximal, but not distal, leaf portions. When infected with both BYDV and rust, yield of oats was reduced by 91%. Depending on the level of the host susceptibility to rust, the reaction of X. axonopodis pv. phaseoli remained confined within the rust pustule or spread beyond the pustule area, causing a necrosis of the entire leaf. Moreover, rust accentuated the damage caused to foliage by X. campestris pv. phaseoli.</td>
</tr>
<tr>
<td>Common bean</td>
<td>Uromyces appendiculatus, X. axonopodis pv. phaseoli</td>
<td>Zaiter et al., 1990</td>
<td>Synergism</td>
<td>Titers of all three viruses increased as a result of co-infection compared with single infections. The overall rate of appearance of BWYV symptoms increased during co-infection with BtMV. Severe stunting, as measured by fresh plant biomass, was observed with mixed infections with BYV and BtMV, compared to single infections of these viruses.</td>
</tr>
<tr>
<td>Pea</td>
<td>Mycosphaerella pinodes, Phoma medicaginis var. pinodella</td>
<td>Le May et al., 2009</td>
<td>Antagonism / Synergism</td>
<td>The presence of the two pathogens on the same host plant organ limited the disease development and their reproduction. Damages caused by the two pathogens, however, increased when plants that had been previously inoculated were inoculated with the other species.</td>
</tr>
<tr>
<td>Sugar beet</td>
<td>Beet yellow virus (BYV), Beet mosaic virus (BtMV), Beet western yellow virus (BWYV)</td>
<td>Wintermantel, 2005</td>
<td>Synergism</td>
<td>E. betae increased virus yellowing. The mutual favouring of disease progress, different in extent according to variety, affected varietal yield below or above average.</td>
</tr>
<tr>
<td>Sugar beet</td>
<td>Erysiphe betae, Beet mild yellowing virus (BMV)</td>
<td>Ahrens, 1981</td>
<td>Synergism / Not clear</td>
<td>Synergism in a tomato cultivar susceptible to both viruses resulted in a rapid death of plants. A pronounced enhancement of ToCV accumulation mediated by TSWV co-infection was observed with no evident egress of ToCV from phloem tissues. No consistent alteration of TSWV accumulation was detected.</td>
</tr>
<tr>
<td>Tomato</td>
<td>Tomato chlorosis virus (ToCV), Tomato spotted wilt virus (TSWV)</td>
<td>Garcia-Cano et al., 2006</td>
<td>Synergism</td>
<td>Plants coinfected by ZYMV and either Fny-CMV (subgroup 1A) or LS-CMV (subgroup II) displayed strong synergistic pathological responses, eventually progressing to vascular wilt and plant death.</td>
</tr>
<tr>
<td>Zucchini, squash, melon</td>
<td>Zucchini yellow mosaic virus (ZYMV), Cucumber mosaic virus (CMV)</td>
<td>Wang et al., 2002</td>
<td>Synergism</td>
<td>Synergism in a tomato cultivar susceptible to both viruses resulted in a rapid death of plants. A pronounced enhancement of ToCV accumulation mediated by TSWV co-infection was observed with no evident egress of ToCV from phloem tissues. No consistent alteration of TSWV accumulation was detected.</td>
</tr>
</tbody>
</table>

*See below selected examples for wheat.
example, wheat is being introduced gradually in the cerrado areas usually under irrigation, which may be favourable to the infection by foliar pathogens.

Different parts of the wheat plant can be infected by different pathogens at the same time (Bonfig-Picard & Kranz, 1984). These pathogens can naturally interact with each other. Interactions between diseases caused by aerial pathogens on wheat have frequently been demonstrated, mainly with respect to the dynamics of the pathogens. However, even for wheat, the crop that receives the most attention regarding interactions among diseases, there are little multi-disease studies concerning management or epidemiological approaches. Moreover, the observed effects of reported interactions (for instance synergism, antagonism or additive effect) are highly dependent on inoculum concentration, disease levels (Jörg, 1987; Weber et al., 1994), pre-infection by one of the interacting pathogens (Donchev et al., 1980), and climatic conditions (Weber et al., 1994). Cox et al. (2004) have demonstrated the potential of cultivar mixtures for the simultaneous management of tan spot (Pyrenophora tritici-repentis) and leaf rust of wheat (Puccinia triticina).

Johnston (1934) observed that uredospores of Puccinia recondita f. sp. tritici could develop on normally resistant varieties of wheat when the leaves were infected with Erysiphe graminis f. sp. tritici before the rust inoculation. Similarly, Manners & Gandy (1954) reported higher susceptibility to P. recondita of some wheat varieties infected with mildew. However, when mildew severity was high, the rust development was limited. On the other hand, the severity of mildew was significantly reduced on wheat plants previously inoculated with P. recondita, maybe due to biochemical changes in the plants (Donchev et al., 1980).

In many studies, it has been demonstrated that one pathogen is promoted by another. Plants infected with Tilletia caries are more susceptible to P. striiformis (Straib, 1938). In the presence of Ustilago nuda, the damage by P. graminis f. sp. tritici is higher (Hart, 1931 cited by Straib, 1938, Thomas & Chatarth, 1976). Raju et al. (1969) found that the number of pustules of P. recondita was increased in the presence of wheat streak mosaic virus (WSMV). In the same way, the number and the size of lesions caused by Helminthosporium sativum was higher when the plants were infected by WSMV (Adakha & Raychaudhuri, 1975). Wainwright et al., (1986) observed that S. nodorum caused more damage than T. caries. According to Willingale & Mantle (1987) it was evident in the interaction involving Claviceps purpurea and T. caries that invasion by C. purpurea was essentially a displacement phenomenon, which characterize C. purpurea parasitism of healthy ovaries. The establishment of the spachellum and subsequent differentiation to sclerotial tissue was more rapid in bunted rather than non-bunted ovaries.

One pathogen can also inhibit the development of another. Damage caused by Urocystis agropyri is reduced in the presence of T. controversa (Holton & Jackson, 1951). The severity of Helminthosporium blight (H. sativum) was lower in plants infected with U. nuda (Thomas & Chatarth, 1976). Jones & Roane (1982) found that Xanthomonas campestris pv. undulosa reduced germination and the length of germinative tube of spores of S. nodorum. Potter (1982) observed that, in plants infected with barley yellow dwarf virus (BYDV), the severity of P. recondita was lower, although the latent period was not affected. When infected with both BYDV and rust, yield was reduced by 63%. Erasmus & Von Wechmar (1983) observed that wheat plants with brome mosaic virus (BMV) were found less susceptible to P. graminis f. sp. tritici infection than virus-free plants. Adee et al. (1990) found that competition occurred between Pyrenophora tritici-repentis and S. nodorum. Sporulation by Puccinia triticina was reduced substantially by the presence of Pyrenophora tritici-repentis; in contrast, the presence of Puccinia triticina sometimes increased sporulation of Pyrenophora tritici-repentis (Al-Naimi, 2003).

No interaction was observed for the combinations P. striiformis x U. agropyri (Purdy & Holton, 1963) and S. nodorum x S. tritici (Jenkins & Jones, 1981). Hyde (1981) observed no interaction for the combination S. nodorum x P. striiformis regarding seed weights, although the proportion of diseased leaves for the combination was less than the sum of effects of each pathogen occurring alone. Jones et al. (1981) observed that the apparent photosynthetic rate and transpiration rate of flag leaves did not differ statistically in the X. translucens f. sp. undulosa + S. nodorum treatment compared with S. nodorum alone. At lower incubation temperatures, combined inoculation had no effect compared with inoculation with either organism alone.

Van der Wal et al. (1970) and Van der Wal & Cowan (1974) observed synergistic effect on crop losses when they studied the combination P. recondita x S. nodorum. Van der Wal et al. (1970) observed also that on plants infected by P. recondita, the intensity of glume blotch symptoms caused by S. nodorum was greater than on not inoculated plants. They observed also that, in the presence of S. nodorum, the production of uredospores of P. recondita was reduced while the production of teliospores was stimulated. The loss caused by the interacting fungi is significantly larger than the calculated sum of the losses caused by each fungus alone. Wheat plants infected by P. recondita were predisposed to infection by S. nodorum (Van der Wal & Cowan, 1974). According to these authors the effect of both pathogens together on the dry weight of the heads was greater than the sum of the effects of each of the pathogen separately. However, no interaction was observed when the infection by S. nodorum occurred before P. recondita infection (Hyde, 1978). Spadafora & Cole (1987) found an inverse relationship between the severities of P. recondita and S. nodorum.

Broscious et al. (1982) and Bonfig-Picard & Kranz (1984) have observed a competition between populations of S. nodorum and E. graminis f. sp. tritici. Geuting (1984) found that in the presence of S. nodorum the number of
mildew colonies was lower and the colonies were smaller compared to the control plants. The number of conidia/colony was also lower. The latent period of *S. nodorum* was shortened in the presence of *E. graminis* f. sp. *tritici*. Jörg (1987) confirmed under field conditions the results of Geuting (1984), although he found no influence of *E. graminis* on *S. nodorum*. The development of mildew was inhibited in the presence of *S. nodorum* and the effect was more pronounced at high severity of the diseases. Similarly to Geuting (1984), Brokenshire (1974) observed reduced latency duration of *S. tritici* in the presence of *E. graminis*. Resistant plants were susceptible to *S. tritici* in the presence of mildew. There was an inverse relationship, based on individual replicate values, between the pre-inoculation mildew treatments and the latent period of *S. tritici*, but a significant positive correlation for the sporulation index. For this combination, Madariaga & Scharen (1984) observed that in the presence of *S. tritici*, the effect of *P. striiformis* was always reduced by the presence of *M. graminicola*. The two pathogens could colonize the same leaf simultaneously, and the diseased area was similar or smaller than the area affected by each pathogen separately. A smaller amount of leaf tissue was colonized by *P. striiformis* when *M. graminicola* was present. *M. graminicola* acted as a hypostatic parasite.

Weber et al. (1994) observed that, in greenhouse, *S. nodorum* reduced the severity of mildew. On the other hand, under field conditions, *E. graminis* increased the final intensity of *S. nodorum*. The apparent contradiction was explained as a result of different climatic conditions, which allowed secondary infections of *S. nodorum* in the field. Based on the studies of Brokenshire (1974), Geuting (1984) and Jörg (1987), Weber et al. (1994) concluded that these pathogens couldn’t strictly be described as competitors *sensu* Odum (1953). The relation between *E. graminis* and *S. nodorum* is better described, *sensu* Powell (1979), as “predisposition with dominance of the secondary pathogen”, with *E. graminis* as primary, and *S. nodorum* as secondary pathogen (Jörg, 1987; Weber et al., 1994).

Tatineni et al. (2010) studied the double infection of wheat cultivars with *Triticum mosaic virus* (TriMV), the type member of the *Potyviridae* genus, and *Wheat streak mosaic virus* (WSMV), the type member of the *Tritimovirus* genus, both of the family *Potyviridae*. They found that double infections in wheat cvs. Arapahoe and Tomahawk induced disease synergism with severe leaf deformation, bleaching, and stunting, with an increase in accumulation of both viruses over single infections at 14 days post inoculation.

QUANTIFYING INTERACTIONS

Interactions in disease dynamics

As mentioned above, the interactions between pathogens or diseases can be of various natures, for instance characterised as competition, symbiosis, parasitism, etc. Independent of the kind of interactions, the effect is reflected in changes of the disease progress curves compared to the situation in which each disease is occurring alone. Some research has been published showing the effect of the pre-infection of one disease on a second disease. A detailed study for this approach to interactions was presented by Bassanezi et al. (1998) who investigated the effect of pre-infection with *Bean line pattern mosaic virus* (BLPMV) on some elements of *Uromyces appendiculatus* and *Phaeoisariopsis griseola* over a wide range of temperatures. Other studies have applied the de Wit replacement series technique to investigate the outcome of competitive interactions between two plant pathogens using the conidial production (Adee et al., 1990; Nolan et al., 1999). In order to compare epidemics of interacting diseases, the area under the disease progress curve have been calculated and analysed using analyses of variance (Savary & Zadoks, 1992a).

In many publications the disease dynamics of single diseases is modelled, but only a few examples have been published in which the progress of epidemics in a multiple disease situation has been quantified and modelled. This approach will be discussed in more detail, starting with the classical Lotka-Volterra competition model. Madden et al. (1987) applied the classical Lotka-Volterra competition equations to model the disease progress curves of the disease incidence of tobacco etch virus (TEV) and tobacco vein mottling virus (TVMV). The model is based on the assumption that the disease progress curves are logistic functions if one disease would be there alone. The competition model is given by the following system of differential equations for the disease severity or incidence of two diseases y_1 and y_2 given as proportions with values between 0 and 1:

$$\frac{dy_1}{dt} = r_1 y_1 (1 - \frac{y_1 + a_{12} y_2}{K_1})$$

$$\frac{dy_2}{dt} = r_2 y_2 (1 - \frac{y_2 + a_{21} y_1}{K_2})$$

(1)

The parameters r_1 and r_2 are the apparent infection rates and K_1 and K_2 the maximum disease levels of both diseases in absence of the other disease. The two parameters a_{12} and a_{21} are the coefficients of competition. The coefficient a_{12} indicates the competitive effect of disease 2 on disease 1. The system of differential equations (eq. 1) can be re-arranged to point out the mutual effects of the diseases on each other:

$$\frac{dy_1}{dt} = r_1 (1 - a_{12} y_2 / K_1) y_1 (1 - y_1 / [K_1 (1 - a_{12} y_2 / K_1)])$$

$$\frac{dy_2}{dt} = r_2 (1 - a_{21} y_1 / K_2) y_2 (1 - y_2 / [K_2 (1 - a_{21} y_1 / K_2)])$$

(2)

The new system (eq. 2) clearly shows that the actual apparent infection rate and the actual maximum disease level of each disease are linearly decreasing with increasing severity of the other disease. Moreover, the reducing effect is identical to the rate and the capacity.

In the example of Madden et al. (1987) the dynamics of two tobacco virus diseases TEV (*Tobacco etch virus* = 1) and TVMV (*Tobacco vein mottling virus* = 2) occurring...
at the same time in tobacco fields were modelled. Disease incidence progression was quantified by fitting the Lotka-Volterra equations (eq. 1), resulting in the following parameters for the data set in 1984 B without insecticide usage: \(r_1 = 0.223 \text{/day}, \ r_2 = 0.261 \text{/day}, \ K_1 = 0.175, \ K_2 = 1.00, \ a_{a\downarrow} = 0.06 \text{ and } a_{a\downarrow} = 1.67. \) From eq. 2 it can be concluded that the actual rate and the maximum disease level of TVMV are reduced by 0.34% when the disease incidence of TVMV increases 1%. The reduction of TVMV is 1.67% per 1% increase of TEV. Due to the interaction modelled as competition, the maximum disease levels of both diseases are reduced.

Ngugi et al. (2001) used the Lotka-Volterra equations (eq. 1) to simultaneously describe the disease progress curves of sorghum anthracnose (caused by Colletotrichum sublineolum) and leaf blight (caused by Exserohilum turcicum). In most cases the competition coefficients were not significantly different from 0 so they concluded that interactions between both diseases did not occur.

Although the Lotka-Volterra competition equations have been successfully applied in these examples, the general disease progression resulting from the model may not reflect interacting plant disease epidemics in a real situation. The equations allow a decrease in disease intensities, which is not possible without regarding changes of the host plant. Even under adverse conditions to the pathogen and the disease, the leaf area covered by disease symptoms cannot decrease and thus the disease levels in the worst case remain constant. Thus it is logical to demand that in the Lotka-Volterra equations the changes of the disease severity must be equal or greater than 0 (\(dy/dt \geq 0 \) and \(dy/dt \geq 0 \)). This can be achieved by introducing the maximum function max(0; \(x \)) which is zero if \(x \) is below 0. The Lotka-Volterra equations can then be replaced by the following model:

\[
\begin{align*}
\frac{dy_1}{dt} &= \max(0; r_1 y_1 (1 - [y_1 + a_{a\downarrow} y_2] / K_1)) \\
\frac{dy_2}{dt} &= \max(0; r_2 y_2 (1 - [y_2 + a_{a\downarrow} y_1] / K_2))
\end{align*}
\] (3)

It must be pointed out that this more biological approach has a disadvantage as the equilibrium values of the interacting diseases are not fixed, like in the original Lotka-Volterra model, but depend on the initial disease values.

Weber (1996) used this approach to describe disease progress curves of wheat powdery mildew (\(E. graminis \) f. sp. tritici) and leaf blotch disease (\(S. nodorum \)) and their interactions. In addition to this change of the Lotka-Volterra equations, he introduced a promoting effect as possible interaction between diseases, thus going beyond a competition model. For the interactions between \(E. graminis \), a biotrophic pathogen, and \(S. nodorum \), a perthotrophic fungus (which initiates infection as a biotroph but spends most of its life cycle as a necrotrroph), he assumed an inhibiting effect of \(S. nodorum \) on \(E. graminis \) and a disease-promoting effect of \(E. graminis \) on \(S. nodorum \). This led to the following model for the interactions between the diseases whereby \(y_1 \) and \(y_2 \) represent the disease severities (as proportions) of powdery mildew and \(S. nodorum \) leaf blotch, respectively:

\[
\begin{align*}
\frac{dy_1}{dt} &= \max(0; r_{m1} y_1 (1 - y_2 / K_2 - a_{a\downarrow} y_2)) \\
\frac{dy_2}{dt} &= r_S y_2 (1 - y_2 / K_2 + a_{a\downarrow} y_1)
\end{align*}
\] (4)

Again, \(r_{m1} \) and \(r_S \) are infection rates, \(K_{m1} \) and \(K_S \) the maximum severity levels of mildew and \(S. nodorum \) leaf blotch, respectively, without mutual influences. The interaction term \(a_{a\downarrow} (> 0) \) gives the influence of mildew on \(S. nodorum \) disease, and the coefficient \(a_{a\downarrow} (> 0) \) the influence of \(S. nodorum \) leaf blotch on mildew. Here the \(S. nodorum \) disease is modelled adversely to mildew, as a competitor for infection places. However, the effect of mildew is incorporated as a factor delaying the density regulation of \(S. nodorum \) disease by the positive of sign. The function max prevents a decline of the mildew growth rate which can be biologically interpreted as the exclusion of the overgrowing of mildew lesions by \(S. nodorum \) leaf blotch.

To show the similarity to the Lotka-Volterra equations, Weber’s system (eq. 4) can be re-arranged resulting in the following equations (eq. 5):

\[
\begin{align*}
\frac{dy_1}{dt} &= \max(0; r_{m1} (1 - a_{a\downarrow} y_2) y_1 (1 - y_2 / [K_{m1} (1 - a_{a\downarrow} y_2)])) \\
\frac{dy_2}{dt} &= r_S (1 + a_{a\downarrow} y_1) y_2 (1 - y_2 / [K_s (1 + a_{a\downarrow} y_1)])
\end{align*}
\] (5)

The effect of \(S. nodorum \) leaf blotch on mildew is reflected in the reduced infection rate as well as in the decreased maximum disease level of mildew. On the other side, increasing mildew severity raises the actual infection rate and the maximum disease level of \(S. nodorum \) disease. The relative changes of the rate and capacity parameter values as a result of the interaction are identical, negative for mildew, but positive for \(S. nodorum \) leaf blotch.

For data of disease progression in 1991, the following parameter values were estimated by Weber (1996): \(r_{m1} = 0.2 \) / day, \(r_S = 0.19 \text{ / day, } K_{m1} = 0.07, \ K_S = 0.334, \ a_{a\downarrow} = 17.13 \text{ and } a_{a\downarrow} = 4.32. \) Thus, an increase of \(S. nodorum \) disease by 1% reduces the mildew parameter values by 4.32%, while a 1% increase of mildew raises the \(S. nodorum \) parameter values by 17.13%. Simulated disease progress curves of both diseases in 1991 are calculated according to the modified Lotka-Volterra equations (eq. 5) and under the assumption of no disease interaction.

In a second model, Weber (1996) assumed that mildew is not changing the maximum disease level of \(S. nodorum \) leaf blotch so that the model can be written as:

\[
\begin{align*}
\frac{dy_1}{dt} &= \max(0; r_{m1} (1 - a_{a\downarrow} y_2) y_1 (1 - y_2 / [K_{m1} (1 - a_{a\downarrow} y_2)])) \\
\frac{dy_2}{dt} &= r_S (1 + a_{a\downarrow} y_1) y_2 (1 - y_2 / K_S)
\end{align*}
\] (6)

In contrast to the previous interaction models, the rate and capacity parameters are now not affected in the same way, as the capacity of \(S. nodorum \) leaf blotch remains unchanged in presence of powdery mildew. Weber (1996)
also fitted this model to the data of disease progression in 1991 and determined the following parameter values: \(r_M = 0.29 / \text{day}, r_S = 0.14 / \text{day}, K_M = 0.066, K_S = 0.40, a_M = 57.83 \) and \(a_S = 3.29 \). When the disease incidence of Septoria leaf blotch increases by 1%, the actual rate and the maximum disease level of mildew are reduced by 3.29%. A 1% increase of mildew increases the rate of Septoria disease by 57.83%, however, without changing the maximum disease level of Septoria leaf blotch.

Following Weber’s approach by assuming that in an interaction the rate and the capacity parameters are affected in the same direction but to a different extent, a general interaction model can be constructed:

\[
\begin{align*}
\frac{dy_1}{dt} &= r_1 (1 - aa_{12} y_2 / K_1) y_1 (1 - y_1 / [K_1 (1 - \beta b_{12} y_2 / K_2)]) \\
\frac{dy_2}{dt} &= r_2 (1 - aa_{12} y_1 / K_2) y_2 (1 - y_2 / [K_2 (1 - \beta b_{12} y_1 / K_1)])
\end{align*}
\]

(7)

The model would be more flexible because of additional parameters. The coefficients \(aa_{12} \) describe the mutual effects on the rates and the \(\beta b_{12} \) on the maximum values. However, to our knowledge this approach has never been tested in explaining disease dynamics.

The models discussed so far describe the interactions of plant disease epidemics without taking into consideration the host plant. Host growth, however, can change the dynamic of diseases, leading for instance to a decrease in disease severity if the host is growing faster than the disease is progressing. Thus the host influences the disease dynamics. On the other hand, a disease can affect host growth in different ways, as classified by Boote et al. (1983). The mutual effects of host and diseases form another important interaction demanding an additional equation in interaction models to account for changes of the host plant. Waggoner (1986) and Jeger (1986) have dealt with analytical models to describe the dynamics of interacting host and disease. Hau & Meier (1998) included the host dynamics when modelling the progression of different leaf diseases (\(U. appendiculatus \), \(P. griseola \) and \(C. lindemuthianum \)) on Phaseolus beans. The coupling of pest and disease models with crop growth models forms an essential element in understanding the interactions among diseases and between diseases and host plants, especially with respect to the combined yield losses caused by several diseases (Boote et al., 1983; Rouse, 1988; Béasse et al., 2000).

Interactions of diseases on yield or yield loss

Compared to the quantification of interactions on the epidemic level, more information is available on the combined effect of multiple attacks on yield loss. A good example is the study of Johnson et al. (1986, 1987), in which the yield reduction in potato caused by early blight (\(A. solani \)), Verticillium wilt (\(V. dahliae \)) and potato leafhopper (\(E. fabae \)) was investigated. The principal conclusion from the field studies was that combined infestations resulted in yield and foliage losses that were less than the sum of losses from solitary infestations of each organism. In another study, Savary & Zadoks (1992a, b, c) analysed the crop losses of groundnut due to a combined attack of rust (\(P. arachidis \)) and late leaf spot (\(C. personatum \)). The overall result indicated that the effects of the two diseases on damage were less than additive. Similarly, injuries caused by rice pathogens, insects and weeds were less than additive in their yield-reducing effects (Savary et al., 2000).

The effects of interacting pathogens on yield loss have been modelled using multiple regression equations (Savary & Zakoks, 1992a; b), analysis of variance of factorial designs (Johnson et al., 1986; 1987), discriminant analysis (Francel et al., 1987), principal component analysis (Savary et al., 2000) or correspondence analysis (Savary & Zadoks, 1992c; Savary et al., 2000).

Empirical yield-loss equations for a complex of diseases are often obtained via multiple regression analyses with yield or yield loss as the dependent variable. Disease parameters, used directly or after a transformation, serve as independent variables. For two diseases, the general equation for the total yield loss (YL) predicted is given as:

\[
YL = b_1 f_1(y_1) + b_2 f_2(y_2) + b_{12} g(y_1, y_2)
\]

The two disease parameters, \(y_1 \) and \(y_2 \), could be disease severities which can be transformed with the functions \(f_1 \) and \(f_2 \). The coefficients \(b_1 \) and \(b_2 \) are the respective damage coefficients for the transformed values of \(y_1 \) and \(y_2 \). The third term is the interaction term of the model depending on the function \(g \) of both disease severities. If the coefficient \(b_{12} \) is equal 0, the diseases reduce yield independent from each other. For \(b_{12} > 0 \) the total yield loss is higher than the sum of the individual yield losses, for \(b_{12} < 0 \) the effects of \(y_1 \) and \(y_2 \) are less than additive.

If the disease parameters represent disease incidence or disease severity at one time in the season, this equation reflects a so-called “single point” or “critical point model”. The disease parameters could also be the areas under disease progress curves (AUDPC). A special case of this equation would be the well-known linear regression equation with an interaction term involving the multiplication of the disease parameters:

\[
YL = b_1 y_1 + b_2 y_2 + b_{12} y_1 y_2
\]

For the application of this model as a critical point model, the disease severities of both diseases at a certain point in time of the season must be known. These disease levels are a result of the dynamics of epidemics of the two interacting diseases. Thus the understanding of interactions of diseases with respect to their dynamics is a prerequisite to understand their combined effect on yield loss.

For some diseases it has been shown that yield or yield loss are not related to disease parameters, like...
the disease severity in a critical stage or the area under disease progress curve, for instance for angular leaf spot (*P. griseola*) on *Phaseolus* beans (Bergamin Filho et al., 1997). Therefore, it can be expected that an equation involving an interaction term by multiplying disease severities may also not be useful in predicting yield loss. Disease severity is a relative measure, which doesn’t contain information on the total amount of leaf area. The latter, however, or other host parameters like the area under leaf area progress curve (AULAPC), may be strongly related to yield (Waggoner & Berger, 1987). In such a case, useful predictions of yield loss can only be achieved by realistic estimations of the available leaf area. The dynamics of the leaf area is influenced by the disease progress, which in turn is affected by the leaf area available for infection. Thus without understanding the interactions between host dynamics and progression of epidemics, no appropriate yield loss prediction can be achieved. Consequently, crop growth simulation models, coupled with disease models have been applied to estimate crop losses (e.g. Johnson, 1992; Batchelor et al., 1993; Pinnschmidt & Teng, 1994; Pinnschmidt, 1997) by identifying coupling points as described by Boote et al. (1983). Teng & Johnson (1988) pointed out that “crop-pest models may be the only realistic way to understand or predict the effects of multiple pests on yield”, but the application of this approach is rather limited still today.

Zhang et al. (2006) analyzed the relationship between winter wheat cultivar susceptibility to four main fungal diseases (*Septoria tritici* blotch, brown rust, yellow rust and powdery mildew), multiple disease systems, and yield loss (YL) levels. According to authors five potential disease profiles (PDP) were obtained. For all five PDP, cultivar susceptibility profiles (CP) 1 and CP3 (susceptible to *Septoria tritici* blotch and brown rust) consistently made a major contribution to YL, whereas CP8 (most resistant to diseases) consistently contributed little to YL. The impact of CP5 (high susceptibility to *Septoria tritici* blotch and medium to high susceptibility to yellow rust) on YL is higher among the cultivar profiles for PDP5 (with the occurrence of yellow rust and *Septoria tritici* blotch) and also for PDP3 and PDP4 (no yellow rust but high intensity of *Septoria tritici* blotch), but is comparatively lower in the case of PDP1 and PDP2 (no yellow rust and nil to medium intensity of *Septoria tritici* blotch). Authors concluded that these results could be used to improve the disease module of an agronomic model for wheat aimed at designing “cultivar-crop management” combinations for a given environment and cost/price ratio.

In a previous review (Paula Júnior et al. 2010), it was discussed some aspects related to the epidemiology of interactions among diseases and concluded that there are only few studies that emphasize epidemiological aspects and they are not merely descriptive. We also assumed that although studies involving interactions between diseases still remain quite new, it is obvious for many pathosystems that significant progress in recommending the implementation of appropriate strategies of disease management can only be achieved by careful consideration of all implications related to the interactions.

FINAL REMARKS

It is evident that the interactions of different diseases occurring on one host are a very complex phenomenon. Although effects of some disease combinations on specific hosts, like Septoria disease and mildew on wheat, are known and intensively studied, effects of interactions in general cannot be anticipated. Nevertheless, it has been reported that combinations involving obligate pathogens and viruses often result in antagonism (Blumer et al., 1955; Wilson, 1958; Latch & Potter, 1977; Potter, 1982; Erasmus & Von Wechmar, 1983; Omar et al., 1986; Conti et al., 1990; Zaiter et al., 1990; Kutzner et al., 1993; Marte et al., 1993; Dalla Pria, 1994; Bassanezi et al., 1998). Conversely, combinations involving non-obligate pathogens and viruses often result in synergism (Hedges, 1944; 1946a; b; Panzer & Nickeson, 1959; Crane & Calpouzos, 1969; Beute, 1973; Beniwal & Gudauskas, 1974; Adlakha & Raychaudhuri, 1975; Stevens & Gudauskas, 1982; 1983; Omar et al., 1986). For most combinations that may occur in the nature, results will depend on several factors. Methods of experimentation and assessment are important factors in interpreting results in interactions studies (Hyde, 1981; Sikora & Carter, 1987), since sites and timing of inoculations, level of infection, host age, and many other host and pathogen characters may affect the disease outcome (Hyde, 1981).

Disease development under glasshouse conditions where environmental conditions may differ from those prevalent in the field can produce artificial or forced interactions. Normally the inoculum concentration, temperature, nutrition, relative humidity, wetness and others variables used in glasshouse experiments may not occur in the field or, if they occur, other interactions could make the interpretation of the data difficult. This review emphasizes the necessity of studies at field conditions to understand possible interactions.

Interaction between foliar diseases is a subject that should be not neglected in breeding programs, especially in tropical regions. Investigations should include inoculations of mixtures of inoculum from different pathogens and incorporation of genes that confer resistance to multiple pathogens.

ACKNOWLEDGEMENTS

W.C. Jesus Junior, T.J. Paula Júnior and M.S. Lehner are supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq.
REFERENCES

Adee SR, Pfender WF, Hartnett DC (1990) Competition between
Pyrenophora triticic-repentis and Septoria nodorum in the wheat leaf as measured with the de Wit Replacement series. Phytopathology 80:1177-1182.

Adlakah KL, Raychadhuri SP (1975) Interaction between
Helminthosporium sativum and mosaic streak virus. Zeitschrift für
Pflaenzenkrankheiten und Pflanzenschutz 62:201-206.

Ahrens W (1981) Schadwirkung eines kombinierten Befalls des
echten Rübenmehltaus (Erysiphe betae) und der Virusvergilbung
an Zuckerrüben bei unterschiedlicher Mehltauaufläufigkeit.
Zeitschrift für Pflaenzenkrankheiten und Pflanzenschutz 88:221-
227.

Alves-Júnior M, Alfenas-Zerbini P, Andrade EC, Esposito DA,
Silva FN, Cruz ACF, Ventrella MC, Otoni WC, Zerbini FM (2009)
Synergism of negative interference during co-infection of tomato and Nicotiana benthamiana with two bipartite begomoviruses.
Virology 387:257-266.

Al-Naimi FA (2003) The competitive interaction between
Pyrenophora triticic-repentis and Puccinia triticina. MS Thesis,
Kansas State University, Manhattan, KS, USA.

Ataga AE, Epton HAS, Frost RR (1999) Interaction of virus-
infected celery and Septoria apiicola. Plant Pathology 48:620-
626.

Effects of bean line pattern mosaic virus on the monocyclic
components of rust and angular leaf spot of Phaseolus bean at

Basu PK, Butter G (1988) Assessment of brown spot (Septoria
glycines) alone and in combination with bacterial blight
(Pseudomonas syringae pv. glycinea) on soybeans in a short-

Extending the use of crop models to study pest damage. Transaction of ASAE 36:1-8.

Benival SPS, Gudauskas RT (1974) Maize dwarf mosaic virus
increases susceptibility of sorghum and corn to Helminthosporium
maydis race T. Phytopathology 64:1197-1201.

Bergamin Filho A, Carneiro SMTPG, Godoy CV, Amorim L,
Berger RD, Hau B (1997) Angular leaf spot of Phaseolus beans:
Relationships between disease, healthy leaf area, and yield.
Phytopathology 87:5056-515.

Bergstrom GC, Knavel J, Kuc J (1982) Role of insect injury and
powdery mildew in the epidemiology of the summer stem blight

Beute MK (1973) Increased leaf exudation enhances Curvularia

Blaszczak W, Milchert M (1980) Pea reaction to cucumber mosaic

Blumer S, Stalder L, Harder A (1955) Über die gegenseitigen
Beziehungen zwischen Gurkenmosaik und Gurkenmehltau.

Wechselwirkung von Schadorganismen im Agro-Okosystem

pests to crop growth simulators to predict yield reductions.
Phytopathology 73:1581-1587.

Brokenshire T (1974) Predisposition of wheat to Septoria
infection following attack by Erysiphe. Transactions of the British
Mycological Society 63:393-397.

mildew on wheat and its subsequent effect on Septoria severity
and yield. Phytopathology 72:258.

Carneiro SMTPG (2000) Efeito da infecção conjunta de
Phaeoisariopsis griseola e Colletotrichum lindemuthianum
nos componentes de produção e nas variáveis de área foliar do
Brazil.

Catherall PL (1987) Effects of barley yellow dwarf and ryegrass
mosaic viruses alone and in combination on the productivity
of perennial and Italian ryegrasses. Plant Pathology 36:73-78.

Castillo-Urquiza GP, Maia FGM, Carvalho MG, Pinto CMF,
Zerbini FM (2006) Caracterização de um isolado do Bean rugose
mosaic virus (BRMV) de Minas Gerais e estimativa de perdas
em feijoeiro em infecção simples ou em conjunto com o BCMV.
Fitopatologia Brasileira 31:455-461.

between Rynchosporium secalis and Pyrenophora teres in the
field and identification of genotypes with double resistance in a
doubled-haploid barley population. Journal of Phytopathology
155:90-96.

potato by cucumber mosaic virus depends on the presence of

Cole DL (1982) Interactions between Cercospora arachidicola
and Phoma arachidicola, and their effects on defoliation and

Conti GG, Bassi M, Carminucci D, Gatti L, Bocci AM (1990)
Preinoculation with tobacco necrosis virus enhances peroxidase
activity and lignification in cucumber, as a resistance response to

Cox CM, Garret KA, Bowden RL, Fritz AK, Dendy SP, Herr WF
(2004) Cultivar mixtures for the simultaneous management of

Crane GL, Calpouzos L (1969) Synergism of
Septoria nodorum and Phytophthora infestans. Zeitschrift für
Pflazenkrankheiten und Pflanzenschutz 82:201-206.

de dez cultivares de feijoeiro ao vírus do mosaico-em-desenho. In: 5º
Seminário sobre Pragas, Doenças e Plantas Daninhas do Feijoeiro,
Resumos... Piracicaba SP, Brazil. FEALQ. p. 22.
Interactions between foliar diseases: Concepts and epidemiological approaches

Harrison AL (1973) Control of peanut leaf rust alone or in combination with Cercospora leaf spot. Phytopathology 63:668-673.

Holton CS, Jackson TL (1951) Variatel reaction to dwarf bunt and flag smut, and the occurrence of both in the same wheat plant. Phytopathology 41:1035-1037.

Johnson KB (1992) Evaluation of a mechanistic model that describes

Lim LG, Gaunt RE (1986a) The effect of powdery mildew (Erysiphe graminis f. sp. hordei) and leaf rust (Puccinia hordei) on spring barley in New Zealand. I. Apical development and yield potential. Plant Pathology 35:54-60.

Lim LG, Gaunt RE (1986b) The effect of powdery mildew (Erysiphe graminis f. sp. hordei) and leaf rust (Puccinia hordei) on spring barley in New Zealand. II. Epidemic development, green leaf area and yield. Plant Pathology 35:44-53.

Stevens C, Gudauskas RT (1982) Relation of maize dwarf mosaic virus infection to increased susceptibility of corn to *Helminthosporium maydis* race 0. Phytopathology 72:1500-1502.

Teng PS, Johnson KB (1988) Analysis of epidemiological components...

TPP-2013-0080

Submitted: 16 May 2013

Revisions requested: 19 August 2013

Accepted: 21 October 2013

Section Editor: Renato B. Bassanezi