Development of the Brazilian version of the Child Hayling Test

Desenvolvimento da versão brasileira do Teste Hayling Infantil

Larissa de Souza Siqueira,¹ Hosana Alves Gonçalves,¹ Lilian Cristine Hübner,² Rochele Paz Fonseca²

Abstract

Introduction: The Hayling Test assesses the components of initiation, inhibition, cognitive flexibility and verbal speed by means of a sentence completion task. This study presents the process of developing the Brazilian version of the Child Hayling Test (CHT) and reports evidence of its content validity.

Methods: 139 people took part in the study. The adaptation was performed by seven translators and 12 specialist judges. An initial sample of 92 healthy children was recruited to test a selection of sentences adapted from previous adult and pediatric versions of the instrument, and a sample of 28 healthy children was recruited for pilot testing of the final version. The instrument was developed in seven stages: 1) translation, 2) back-translation, 3) comparison of translated versions, 4) preparation of new stimuli, 5) data collection with healthy children to analyze comprehension of the stimuli and analyses by the authors against the psycholinguistic criteria adopted, 6) analyses conducted by judges who are specialists in neuropsychology or linguistics, and 7) the pilot study.

Results: Twenty-four of the 72 sentences constructed were selected on the basis of 70-100% agreement between judges evaluating what they assessed and level of comprehensibility. The pilot study revealed better performance by older children, providing evidence of the instrument’s sensitivity to developmental factors.

Conclusions: Future studies employing this version of CHT with clinical pediatric populations who have frontal lesions and dysfunctions and in related areas are needed to test functional and differential diagnoses of preserved or impaired executive functions.

Keywords: Neuropsychological tests, instrument development, Child Hayling Test, executive functions, inhibition, initiation.

Introduction

The objective of this study is to describe the process of development of the Child Hayling Test (CHT) and present evidence of its content validity. This version was inspired by the Brazilian and English versions for adults¹,² and the Argentinean version of the Hayling Test, which is for children.³

The Hayling Test is a two-part sentence completion task in which the last word of each sentence is missing. In part A, the task is to complete the sentence using a word that will result in the sentence making sense. In this case, both syntactic context and semantic context of the sentence are conducive to activation of a word that is frequently used and coherent in terms of the semantic field of the sentence. In part B, the word provided should not establish a meaningful relationship with the rest of the sentence. The examinee has to inhibit the dominant (logical, coherent) response and choose a word that is unrelated to both the syntactic context and the semantic context suggested by the incomplete sentence.\(^1\) Versions have been adapted for administration to adults in several languages,\(^2-5\) but, surprisingly, there appear to only be two versions for the pediatric population, an Argentinian\(^6\) version and the Italian Junior Hayling Test.\(^4\) There are also modified versions designed to be administered with neuroimaging.\(^5,6\)

Considering that executive functions (EF) are a set of higher-order processes that serve to organize behavior and adapt it to context and to individual aims\(^7,8\) and that these functions emerge in infancy and continue to develop through adolescence,\(^9\) there is unquestionably a need for verbal tools to assess EF for clinical and research purposes. This need is even more acute when it comes to instruments useful for investigating the EF components of initiation, inhibition and cognitive flexibility in a manner that is suited to the cultural, social and linguistic scenario in Brazil and particularly in samples of children. Executive function disorders can impact patients’ functionality, affecting their social interactions and generating psychosocial and functional difficulties.\(^8\) The Hayling Test (HT)\(^1\) enables examination of the processes of initiation and inhibition in response to verbal stimuli. The complexity of these EF components and their relationships with oral language underscore the need for tools to be developed that are capable of examining controlled versus automatic processes in pediatric neuropsychological assessment.

The HT’s specificity enables comparative assessment of several EF components. Using a single symbolic form (verbal), it is possible to detect dissociations in development of the components of initiation and inhibition with indexes of cognitive flexibility that can characterize neurological and psychiatric frames.\(^10-12\) Studies have shown evidence of a double dissociation between specific EF disorders, such as in planning and response inhibition.\(^13\) This highlights the clinical value of the HT. The Supervisory Attentional System (SAS) theory, developed by Norman & Shallice,\(^14\) is the most acceptable theory for explaining the cognitive processes underlying accomplishment of parts A and B of the HT.\(^15\) From the perspective of information processing, Norman & Shallice\(^14\) adopted the distinction between automatic and controlled processing in parallel to the cognitive processing demanded on a daily basis and in cases of problem solution in new situations.

The SAS is a set of cognitive processes involving initiation, goal-oriented strategy generation, and assessment of performance required to execute complex cognitive tasks not used on a daily basis or nor learned yet. This system is activated when automatic actuation of familiar cues is unable to select frames of thoughts and of automatic actions that can effectively accomplish a target. In this case, automatic actions of sequential thoughts are inadequate or insufficient, demanding new behaviors to be planned and monitored to achieve satisfactory performance in the task.\(^14,16\)

Within a cognitive neuropsychological perspective, it is acknowledged that the HT provides a measure of the capacity to create strategies targeting the accomplishment of tasks.\(^3,17,18\) Incapacity to generate adequate strategies causes poor performance in the HT in the form of errors.\(^18\) Moreover, administration of neuropsychological tests to assess EF is important for analysis of the components involved at different developmental ages.

Studies with samples of children with typical development that have administered instruments to measure EF, including the HT, have shown significant age effects on all subitems of executive performance, particularly on inhibition.\(^19\) In case studies of autistic spectrum disorders, researchers have observed impairment in planning, inhibition and self-monitoring of EF tasks.\(^20\) Significantly lower performance on the HT has been reported in studies with children who have difficulties with text comprehension, suggesting that the relationship between reading comprehension and working memory could rely on abilities to inhibit irrelevant information.\(^21,22\)

It is not always easy to consistently identify deficits indicative of abnormal executive processes using validated tests representing daily behavior.\(^23\) Studies with children with attention deficit hyperactivity disorder (ADHD) point to abnormalities in the domain of inhibitory and attentional EF processes, such as generation and use of strategies and behavioral control.\(^4,24-26\)

In addition to the HT’s sensitivity for assessment of children with ADHD, it is also an important instrument for assessing executive impairment in schizophrenia.\(^27\) in autism,\(^20\) and within other clinical frames,\(^28,29\) demonstrating its usefulness for diagnosis of executive and cognitive dysfunctions. However, research with children with typical development is still needed, since such studies are crucial to defining norms and to identifying biological and sociocultural factors related to cognitive and executive processes.

Studies with children in late childhood using the adult version of the HT\(^7\) and other EF assessment tasks suggest the existence of correlations between measures of EF
components, particularly between scores for inhibition and cognitive flexibility. However, another study has recommended adaptation of the test for samples of children, since the adult version proved to have little sensitivity for differentiating groups of school-aged participants.

In common with the HT, there are other nationally and internationally known instruments for neuropsychological assessment that are intended for investigation of executive processes such as initiation, inhibition, processing speed and cognitive flexibility. Among these, the most widely adopted are founded on verbal paradigms, measures of verbal fluency, go no go type tests, digit span, and n-back verbal-auditory. However, due to the fact that none of them are two-way like the HT, identification of dissociations between automatic and controlled processes is a challenge, which is overcome by the HT. The Trail Making Test (TMT) is an interesting equivalent to the HT that is based on a non-verbal paradigm.

As can be observed from the review presented here, making available verbal instruments for neuropsychological evaluation that are quick and easy to administrate, as is the case of the HT, should contribute to refinement of the profile of cognitive functions, more specifically, of the subprocesses of EF. Moreover, adaptation of this instrument for Brazilian Portuguese-speaking school-age samples should be of help for development of more accurate diagnoses of executive dysfunctions, for prognostics, for planning and execution of training programs targeted at teachers and clinicians, and for neurocognitive rehabilitation.

Methods

This study was conducted in 7 stages, each of which employed specific samples and procedures. Figure 1 illustrates the stages of development of the CHT.

![Flowchart illustrating development of the CHT.](image)

Sample

The entire sample comprised one hundred and thirty-nine participants, as follows. Seven translators took part in the general translation procedures, 12 specialists acted as judges in the assessment stage, 92 healthy children representing the target population took part in a data collection stage, and 28 healthy children were recruited for the pilot study.

Two translators participated in stage 1, forward translation. Two bilingual translators who were native speakers of Brazilian Portuguese and had high-level
proficiency in Spanish and/or English were involved in stage 2, back-translation. Three more translators participated in stage 3, comparison of translations. In stage 4, the authors of the instrument constructed new stimuli, using books for children and school primers to ensure that vocabulary appropriate for samples of children was used.

In stage 5, 92 healthy children participated, 56 of whom were studying at public schools and 36 of whom were at private schools. Their mean age was 8.90 (standard deviation [SD] = 1.87) and they had a mean Raven percentile of 83.23 (SD = 15.66) for intellectual abilities. These participants exhibited low rates of hyperactivity and/or inattention, according to Conners’ Abbreviated Questionnaire scores (mean [M] = 3.45; SD = 4.72).

Eight judges specialized in neuropsychology and four specialized in psycholinguistics participated in stage 6, analysis by specialized judges. In the pilot study (stage 7), 28 children with typical development were assessed. They were evenly distributed according to age, school year and type of school, as follows: two children for each year of age (from 6 to 12 years old) and for each school grade (from the 1st to the 7th) and one child from each type of school (public and private), making a total of 28 healthy children in the sample. The only exception to this distribution was that four 6-year-old children were included because whereas children of other ages could be enrolled in different school grades (for instance, seven-year-old children could be in the 1st or the 2nd grades), six-year-old children could not be enrolled in any other grade than the first. This made it possible to meet the inclusion criterion of being in at least the 1st school year.

Procedures and instruments

Firstly, the authors of the original instrument, the initial adult version, were contacted. They gave permission for development of this Brazilian version for children. Although there are two child versions – the Italian and the Argentinean – access was only obtained to the stimuli from the second of these. The seven stages conducted to develop the adapted instrument, as illustrated in Figure 1, are described below.

Translation; back-translation; comparison of translations; and linguistic adjustments to the instructions, scoring norms and stimuli (stages 1, 2 and 3). The versions for adults (English) and for children (Argentinean) underwent the processes of translation, back-translation, comparison of translations and linguistic adjustments of the test instructions. Working from the Brazilian Portuguese adult version as a starting point, adjustments were made to the instructions for the two parts (A and B) and to the scoring norms to adapt them for the pediatric population.

The two international versions were each translated by a translator with attested proficiency in the languages involved. The back-translations were conducted by two bilinguals who were native speakers of Brazilian Portuguese and had advanced levels of proficiency in the foreign languages (one in Spanish, the other in English). The authors of the Junior Hayling Test were contacted and gave their permission for their version to be used as inspiration for development of the Brazilian child version, but only the adult version in English and the child version in Spanish were translated.

Three translators participated in the comparison of translations. Two of them acted as independent judges of the initial Brazilian Portuguese versions and the third translator was used to arrive at a consensus on stimuli and instructions on which the two judges had not reached a consensus.

Construction of new stimuli (stage 4). The authors prepared new stimuli (sentences) and implemented syntactic, semantic and pragmatic adjustments to the instructions for the first version of the CHT, in accordance with the original Brazilian and English adult versions and/or the Argentinean version. This preparation process adhered to certain criteria, including syntactic and semantic judgments on the sentences, and adaptation to fit the stages of syntactic development in childhood, the vocabulary frequency of Brazilian children, and the morphosyntactic features of Brazilian Portuguese. To achieve this, alternative stimuli were sought in materials such as booklets and books for children. In contrast with the adult version, in which nouns, adjectives, and adverbs are accepted to coherently complete the sentences, the stimuli chosen for the children’s version are completed exclusively using nouns. The aim of this stage was to meet linguistic criteria for adaptation to the sociocultural environment and to Brazilian children’s developmental phases. At the end of this stage, 72 sentences had been prepared for a pilot version. Of these, four were based on the Argentinean version for children and two on the adult Brazilian version, in terms of semantic and/or syntactic aspects (Table 1). The authors of the instrument, who are psycholinguists, psychologists, neuropsychologists and speech pathologists, created the remaining sentences.
The Brazilian version of the Child Hayling Test - Siqueira et al.

Table 1 - Sentences adapted from previous versions of the Hayling Test

<table>
<thead>
<tr>
<th>Original sentence</th>
<th>Corresponding sentence in the Child Hayling Test*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julián took an aspirin for the pain in his...</td>
<td>The grandfather took some medicine for the pain in his...</td>
</tr>
<tr>
<td>As soon as the fire started, they called the...</td>
<td>The firefighter put out the...</td>
</tr>
<tr>
<td>The boys were reading a new...</td>
<td>The student chose a story book from the...</td>
</tr>
<tr>
<td>Before going to sleep, the woman turned off all the...</td>
<td>Before going to sleep, the child put on a...</td>
</tr>
<tr>
<td>The football player made a...</td>
<td>The football player made a...</td>
</tr>
<tr>
<td>The boy kicked the ball at the...</td>
<td>The lady put the cookies in a...</td>
</tr>
</tbody>
</table>

* These examples have all been translated into English "literally."

Administration of the 72 stimuli to healthy children representing the target population; identification of possible answers and judgment of the psycholinguistic criteria of the sentences; selection of 24 sentences for the final version; and implementation of a study for the analysis of new stimuli (stage 5). A sample of 92 children of both genders was selected to participate in this phase of instrument development. Their ages ranged from 6 to 12 and they were studying at public or private schools and therefore corresponded to the profile of the target population for the Brazilian version of the CHT. These children’s parents signed free and informed consent forms and filled out a questionnaire providing sociodemographic and health-related information. This instrument was useful for selection of participants, since it allowed researchers to identify children with neurological and/or psychiatric disorders, or with uncorrected sensory problems, among other exclusion criteria. Teachers answered Conners’ Abbreviated Questionnaire, with the objective of identifying children with signs of possible inattention and hyperactivity in the classroom.

The first set of sentences prepared as part of development of the CHT were administered to the 92 children recruited. The 6 to 7-year-old children were asked to say two words that made sense with the content of each sentence, while the older children were asked to answer in writing. Sentences were administered to the 6 to 7-year-old children individually and to the 8 to 12-year-old children in groups. Raven’s Progressive Matrices Test was also administered to these participants in order to exclude children with evidence of possible intellectual deficits. After this stage, the frequencies of answers to each sentence were analyzed using the Statistical Package for the Social Sciences (SPSS), version 17.0, and the sentences were classified. Psycholinguistic criteria were observed, such as the level of semantic constraint in terms of sentence structure (for instance, agreement in number and gender), as well as the meanings of the words provided as answers. Additionally, in order to guarantee that the instrument achieved its aim (examining verbal executive components), the syntactic complexity and extension, whether verbs were transitive or intransitive and whether they took direct and/or indirect objects were also considered. Twenty-four of the 72 sentences prepared for the pilot study were selected for the final version of the instrument. The varying levels of syntactic complexity of the sentences from the original instruments were maintained. Attention was also devoted to balancing syntactic structures between parts A and B, to control the linguistic and cognitive demands involved in processing of sentence completion in each of the parts.

Analysis by specialized judges (stage 6). Psychologists, speech pathologists and linguists specialized in neuropsychology analyzed the sets of instructions and stimuli. In the first stage, the judges gave an opinion on which neuropsychological or EF components were predominantly being assessed. The judges were instructed to number one or more cognitive components and state which components were predominantly being assessed by the sets of instruction and stimuli for parts A and B. The components they identified were initiation, inhibition, processing speed, cognitive flexibility and lexical-semantic processing. In the second stage, the specialist judges assessed the stimuli’s adequacy for the tasks and whether they represented the processes assessed. For this stage, 11 pairs of sentences were judged, one of which was eliminated after the judges gave their opinions. At the end, the judges answered two questions asking whether the sentences would be easily understood.

Those stimuli with at least 80% agreement from the judges were included. Therefore, the instrument was evaluated according to the executive components it assessed, to its adequacy for the target population, to the comprehensibility of the stimuli, and to its representativeness of the processes assessed. It was also

168 – Trends Psychiatry Psychother. 2016;38(3)
The Brazilian version of the Child Hayling Test - Siqueira et al.

Stages 1, 2 and 3: translation, back-translation, and comparison of translations

The instructions for the CHT versions generated by translation and back-translation were adapted for Brazilian Portuguese. These translated versions exhibited similarities, such as 15 sentences in each of the parts (A and B), sentences with varying lengths, ending with articles, prepositions, adjectives, pronouns, or verbs.

Stage 4: construction of new stimuli

The authors of the CHT created new stimuli based on the criteria of familiarity and ease of sentence completion. The sentences were inspired by the stimuli in the existing instruments for children (the Junior Hayling Test; the Spanish version of the Hayling Test for children) and by day-to-day topics that might interest children aged 6 to 12. The stimuli should also offer the sensitivity needed to diagnose executive impairment. The instructions based on the existing instruments were maintained, with some adaptations to suit the Brazilian children's sociolinguistic situation.

Stage 5: administration of the 72 stimuli to healthy children representing the target population

Each sentence was classified based on a restriction level accordingly to the frequency of answers given to each one of them. Table 2 summarizes how the 72 sentences from the initial pilot study were classified. After this analysis, 24 sentences were selected for the final version and classified in order to establish sentence equivalence between parts A and B. Criteria of semantic restriction, syntactic extension and complexity were adopted, and the criteria used for the Junior Hayling Test were respected.

Part A comprises 10 incomplete sentences that the child has to complete with a word that makes sense within the sentence context, plus two sentences for practice. Part B comprises 10 incomplete sentences to be completed by the child with a word that does not make sense within the sentence context and, in common with Part A, it also contains 2 practice sentences.

Stage 6: specialized judges’ analyses

The rates of agreement between the specialized judge for the two stages are shown in Tables 3 and 4. The majority of the sentences proposed for Part A were judged by the specialized judges to be assessing initiation. In a
similar manner, the specialized judges evaluated the majority of the sentences proposed for Part B as assessing inhibition. However, sentence 8 for Part B only achieved an agreement index of 60.0%, resulting in exclusion of this sentence.

<table>
<thead>
<tr>
<th>Level of sentence constraint</th>
<th>Definition</th>
<th>Percentage of sentences</th>
<th>Sample sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>High constraint 1</td>
<td>All responses within a single semantic field, most consisting of the same word, which accounts for at least 80% of responses.</td>
<td>22.53</td>
<td>Before going to sleep, the child put on a... On her wedding day, the bride wears a...</td>
</tr>
<tr>
<td>High constraint 2</td>
<td>All responses within a single semantic field, consisting of words which are produced with a more uniform frequency distribution.</td>
<td>11.16</td>
<td>The grandfather took some medicine for the pain on his... The football player kicked the ball at the...</td>
</tr>
<tr>
<td>Intermediate constraint 1</td>
<td>All responses within one of two semantic fields, one of which accounts for at least 80% of responses.</td>
<td>35.21</td>
<td>The farmer milks the... The boy poured the juice in a...</td>
</tr>
<tr>
<td>Intermediate constraint 2</td>
<td>All responses within one of two semantic fields, which account for a roughly similar proportion of responses (50%).</td>
<td>12.68</td>
<td>The lady put the cookies in a... The man keeps his money in a...</td>
</tr>
<tr>
<td>Low constraint 1</td>
<td>Most responses within one semantic field (50%), with the remaining responses arising from several other categories.</td>
<td>12.68</td>
<td>The boy bit the... The storm knocked over the...</td>
</tr>
<tr>
<td>Low constraint 2</td>
<td>Responses arising from several semantic fields, none of which predominates over others.</td>
<td>5.74</td>
<td>In my room, there are many... On my birthday, there were many...</td>
</tr>
</tbody>
</table>

Based on the specialized judges' analyses and on their suggestions, stimuli and instructions were revised and modifications were made. All changes were intended to make the sentences administrable to children aged 6 to 12. Sentences in Part A underwent syntactic reduction, deletion of adjectives, and changes to articles and verbs, and a similar process was applied to Part B. However, care was taken to maintain the criteria of control over syntactic and lexical-semantic structures and equivalence between Part A and B as well as in relation to the original test.

The changes made to the CHT's instructions were intended to make the test easier to understand, in addition to emphasizing the tasks' rules (completing sentences quickly, saying only one word, and the differences between Parts A and B).

Stage 7: pilot study

Table 5 lists descriptive data for the results of administration of the final version of the CHT in the pilot study, showing scores indicating the sample's performance.

Table 2 - Restriction level of the sentences of the CHT pilot study

<table>
<thead>
<tr>
<th>Level of sentence constraint</th>
<th>Definition</th>
<th>Percentage of sentences</th>
<th>Sample sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>High constraint 1</td>
<td>All responses within a single semantic field, most consisting of the same word, which accounts for at least 80% of responses.</td>
<td>22.53</td>
<td>Before going to sleep, the child put on a... On her wedding day, the bride wears a...</td>
</tr>
<tr>
<td>High constraint 2</td>
<td>All responses within a single semantic field, consisting of words which are produced with a more uniform frequency distribution.</td>
<td>11.16</td>
<td>The grandfather took some medicine for the pain on his... The football player kicked the ball at the...</td>
</tr>
<tr>
<td>Intermediate constraint 1</td>
<td>All responses within one of two semantic fields, one of which accounts for at least 80% of responses.</td>
<td>35.21</td>
<td>The farmer milks the... The boy poured the juice in a...</td>
</tr>
<tr>
<td>Intermediate constraint 2</td>
<td>All responses within one of two semantic fields, which account for a roughly similar proportion of responses (50%).</td>
<td>12.68</td>
<td>The lady put the cookies in a... The man keeps his money in a...</td>
</tr>
<tr>
<td>Low constraint 1</td>
<td>Most responses within one semantic field (50%), with the remaining responses arising from several other categories.</td>
<td>12.68</td>
<td>The boy bit the... The storm knocked over the...</td>
</tr>
<tr>
<td>Low constraint 2</td>
<td>Responses arising from several semantic fields, none of which predominates over others.</td>
<td>5.74</td>
<td>In my room, there are many... On my birthday, there were many...</td>
</tr>
</tbody>
</table>

Table 3 - Result of specialized judges' analyses of the cognitive/executive function assessed by each stimuli

<table>
<thead>
<tr>
<th>Stimuli</th>
<th>Cognitive/executive function evaluated</th>
<th>Agreement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part A – sentences 1 to 5</td>
<td>Initiation</td>
<td>90.0</td>
</tr>
<tr>
<td>Part A – sentences 6, 7 and 11</td>
<td>Initiation</td>
<td>80.0</td>
</tr>
<tr>
<td>Part A – sentences 8 to 10</td>
<td>Initiation</td>
<td>70.0</td>
</tr>
<tr>
<td>Part B – sentences 1 to 4</td>
<td>Inhibition</td>
<td>80.0</td>
</tr>
<tr>
<td>Part B – sentences 5 to 7, 9 and 11</td>
<td>Inhibition</td>
<td>70.0</td>
</tr>
<tr>
<td>Part B – sentence 8</td>
<td>Inhibition</td>
<td>60.0</td>
</tr>
</tbody>
</table>

Table 4 - Result of specialized judges' analysis concerning the comprehensibility of instructions and stimuli

<table>
<thead>
<tr>
<th>Stimuli</th>
<th>Agreement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part A – sentences 1, 2, 4, 6 to 10</td>
<td>100.0</td>
</tr>
<tr>
<td>Part A – sentences 3, 5 and 11</td>
<td>90.0</td>
</tr>
<tr>
<td>Part B – sentences 1 and 2</td>
<td>90.0</td>
</tr>
<tr>
<td>Part B – sentences 3 to 11</td>
<td>100.0</td>
</tr>
<tr>
<td>Sentences adequate</td>
<td>90.0</td>
</tr>
<tr>
<td>Instructions adequate</td>
<td>90.0</td>
</tr>
</tbody>
</table>
The data presented in Table 5 show that participants had no difficulties with performing the test. In general, the results of the pilot study demonstrate that the instructions were well understood by the participants and that their answers seem to have been as expected for their ages and the aims of the instrument. The average time taken for administration and scoring was 10 minutes. Considering performance according to age, the participants in the pilot study exhibited similar performance in terms of time and errors in both parts of the CHT. However, in Part B there is preliminary evidence of gradual improvement as age increases, mainly in the time variable. Regarding type of school, children from private schools made fewer mistakes and accomplished the task in a shorter time than those from public schools.

<table>
<thead>
<tr>
<th>Age</th>
<th>Part A - time</th>
<th>Part A - errors</th>
<th>Part B - time</th>
<th>Part B - errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 years (n = 4)</td>
<td>24.66±6.83</td>
<td>0.75±0.96</td>
<td>44.25±5.34</td>
<td>6.00±2.58</td>
</tr>
<tr>
<td>7 years (n = 4)</td>
<td>17.45±4.80</td>
<td>0±0</td>
<td>40.70±7.12</td>
<td>4.50±0.70</td>
</tr>
<tr>
<td>8 years (n = 4)</td>
<td>20.68±8.01</td>
<td>0±0</td>
<td>42.72±11.69</td>
<td>7.50±0.70</td>
</tr>
<tr>
<td>9 years (n = 4)</td>
<td>14.13±5.37</td>
<td>0±0</td>
<td>56.92±55.05</td>
<td>3.00±1.41</td>
</tr>
<tr>
<td>10 years (n = 4)</td>
<td>11.07±0.95</td>
<td>0±0</td>
<td>37.49±4.99</td>
<td>5.00±2.83</td>
</tr>
<tr>
<td>11 years (n = 4)</td>
<td>11.07±0.95</td>
<td>0±0</td>
<td>37.49±4.99</td>
<td>2.00±0</td>
</tr>
<tr>
<td>12 years (n = 4)</td>
<td>15.38±0.80</td>
<td>0±0</td>
<td>27.77±3.69</td>
<td>1.50±0.70</td>
</tr>
<tr>
<td>Type of school</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private (n = 14)</td>
<td>16.99±4.83</td>
<td>0±0</td>
<td>41.67±23.66</td>
<td>4.13±2.16</td>
</tr>
<tr>
<td>Public (n = 14)</td>
<td>18.52±8.07</td>
<td>0.50±0.76</td>
<td>38.69±10.94</td>
<td>4.75±2.92</td>
</tr>
</tbody>
</table>

Discussion

This article describes the process of developing a standardized task, designed according to rigorous criteria to assess the EF components of initiation and inhibition. The results indicate that this process met psychometric criteria that ensure the instrument’s validity.

There is a growing concern among clinicians and researchers with developing and validating refined tests to assess performance in specific cognitive tasks. More specifically, attention has been dedicated to stimuli selection, to modification and to adaptation for specific populations, taking their cultural, social and socioeconomic status into consideration.

The project to develop the CHT is part of the field of research devoted to investment in new resources for diagnosis of cognitive abilities. This rich and complex process allows professionals to arrive at neuropsychological construct assessments, besides enabling information exchange among scientific communities, including in international studies.

Despite growing concern with administration of neuropsychological tasks that are more adequate to each population sample, as far as we know there is no standardization of the stages that should be performed in a cross-cultural adaptation or in construction of new instruments. This is a hindrance to choosing the methodological procedures to be conducted and is a difficulty that was mentioned by Argollo et al. when describing the process of cross-cultural adaptation of a neuropsychological battery for children - NEPSY (A Developmental NEuroPSYchological Assessment). As a result, the stages in development of the children’s version of the HT were based on criteria adopted by the authors, taking linguistic and cultural aspects into consideration, as well as developmental features of Brazilian children.

A systematic review conducted by Fonseca et al. analyzed the process of adapting verbal instruments and found that the stages commonly adopted are translation, back-translation, judgments by specialists (professional experts in the fields encompassed by the instrument) and administration in pilot studies. However, some studies exhibit greater concern with ensuring the adequacy of stimuli to the sociolinguistic and cultural conditions of the country in which the adapted instrument will be administered. In the process to develop the CHT, these aspects were considered extremely necessary, since the instrument was adapted from international versions. In addition to attending to these criteria, care was also taken with psycholinguistic criteria to guarantee equivalence of stimuli.
Methodological rigor is essential when it comes to the linguistic aspects of instrument adaptation, i.e., when linguistic stimuli are used to examine cognitive functions. This is the case because linguistic and cultural specificities can limit the administration and further analysis of some tests. The CHT appears to have been adapted well, according to the psycholinguistic criteria described by Altmann and Berman. In the process of developing the CHT, the translation procedures employed included direct and compared translation. Although translation is in general the first procedure conducted in an instrument adaptation process, it is not alone sufficient to guarantee the adapted version’s adequacy. Acevedo et al. proposed general guidance for the process of adaptation of verbal and non-verbal neuropsychological instruments to Spanish, emphasizing the importance of distinguishing literal translation and adaptation. This is the case because direct translation results in non-adjusted expressions, which may harm the measurement of the target cognitive components. Similarly, it is very important to adapt the instructions as well, i.e., in this case they must be modified in order to make them more comprehensible to children, without altering the construct assessed.

According to Wilson, neuropsychological batteries do not favor the control or manipulation of variables such as the stimuli used for assessment, including, for instance, lexical frequency, familiarity, and grammatical category. Janczura et al. and Stein & Gomes also emphasize the importance of standardization using familiarity lists for Brazilian Portuguese. These authors mention that rules of concreteness, words’ semantic associations, and word frequencies, among others, allow the researcher to advance cognitive function studies, using adequate materials and, consequently, refining the quality and reliability of results. In this context, the stage in which 72 candidate stimuli were administered to healthy children representing the target population was considered necessary to collect relevant psycholinguistic criteria for each sentence in the instrument. By means of this stage it was possible to classify the sentences created for the CHT according to the level of restriction of answers and, posteriorly, detect which sentences were appropriate for subsequent stages in the development and adaptation process.

The stage of analysis by specialist judges was included because it is a procedure commonly found in adaptation studies, as in the cross-cultural adaptations of the NEPSY Battery, the Wechsler Adult Intelligence Scale, third edition (WAIS-III) and Wechsler Intelligence Scale for Children, third edition (WISC-III) Scales, and the Brief Battery of Communication Assessment MAC. The analysis by specialist judges can be compared to the theoretical analysis of items that, in psychometry, according to Pasquali, aims to evaluate the hypothesis that each item adequately represents the construct.

To supplement the test development process, the pilot study was conducted to verify whether it was necessary to alter sentences and to provide an estimated total administration time. Discriminative and quick to administer tasks are clinically useful for assessment of school age children. According to Fonseca et al., the literature does not indicate the ideal sample size for a pilot study. This CHT study was intended to assess healthy children with the ages and educational characteristics of those who would take part in future normative samples.

In this context, the results of this instrument development process show which words and/or expressions had to be modified to be made suitable for the children’s linguistic knowledge, leading to better sentence comprehension. Moreover, the analyses by a neuropsycholinguist and by specialized judges were of fundamental importance. These procedures ensured that the aims of the original instruments were maintained, while serving to assess whether the sentences were appropriate for the samples of children. Finally, the pilot study completed the process, providing empirical data from a real assessment context, testing the task with children in the target age groups. This stage contributed evidence about the applicability of the task and led to final adjustments, as was the case in a study by Bandeira et al. While demonstrating the roles played by age and type of school in the EF components assessed by the CHT, these data showed that children’s performance improved as age increased. This fact may be related to improved attentional, executive and linguistic capacities. The preliminary results of cases of each age indicate that the task seems to adequately differentiate performance levels, with a potential to aid in identification of children with typical and atypical development.

Regarding school type, the pilot study suggests children from private schools perform better on the CHT stimuli. This result corroborates the findings of studies that claim there is an influence from the sociocultural conditions on the level of cognitive stimulation offered to children enrolled at this type of school, possibly both at school and at home. Therefore, education plays an important role in children’s development and is related to EF improvement.

One limitation of this study is that it is not possible to determine whether the number of participants in the pilot study was sufficient, since there is no consensus in the literature regarding an adequate sample size for adaptation and development of neuropsychological instruments. It is suggested that a systematic literature
review be conducted of pilot studies presenting sensitivity data and analyzing sample size in adaptation of instruments for children.

Despite this limitation, the CHT offers implications for the functional diagnosis of executive components. Its two-part format enables associations and dissociations in performance to be identified. The CHT adaptation process was successful because it comprised seven complex and rigorous stages. Each of these steps was useful to maintain the HT’s score interpretations, offering evidence of the test’s content validity. Future studies will focus on psychometric parameters to define reliability, criterion validity and construct validity and on acquiring normative data by age and school type. Studies of the relationships between performance in the HT and in other neuropsychological tasks will also be needed, attempting to identify diagnostic associations and dissociations, in the light of cognitive neuropsychology. Similarly, clinical studies of sensitivity and of specificity should be conducted with neurological and psychiatric infant populations.

References
Correspondence: Larissa de Souza Siqueira
Av. Ipiranga, 6681, prédio 11, 9º andar, sala 932
90619-900 - Porto Alegre, RS - Brazil
Tel./Fax: +55 (51) 3320.3500 - Ext. 7742
E-mail: larissassiqueira@gmail.com