Taxonomic notes of *Hemixantha* (Diptera: Richardiidae) with description of a new species from the Amazon Region

Lisiane Dilli Wentd & Rosaly Ale-Rocha

Instituto Nacional de Pesquisas da Amazônia, Coordenadoria de Pesquisas em Biodiversidade. Avenida André Araújo 2936, Petrópolis, 69011-970 Manaus, Amazonas, Brasil. E-mail: lisidilli@yahoo.com.br; alerocha@inpa.gov.br

ABSTRACT. Richardiidae is represented by ca. 180 species in 33 genera. A new species of *Hemixantha*, now totaling 20 species, is described from the Amazon Region, state of Pará, Brazil, and from Teoponte, Bolivia. *Hemixantha maculosa* sp. nov., *H. picta* Hennig, 1937 and *H. pulchripennis* Hendel, 1911 are richardiids known to have an extensively banded wing pattern. *Hemixantha maculosa* sp. nov. represents the first record of *Hemixantha* from the state of Pará and this species can be distinguished from *H. picta* and *H. pulchripennis* by anepisternum and dorsal half of anepimeron bright yellow and vein R_{2,3} slightly sinusine. Besides the hyaline areas on the wing of *H. maculosa* are very distinct from these other species, as follows: (1) subtrapezoidal median area in cell cua, extended anteriorly to vein M_{1}, separated from hyaline area in cell dm; (2) two oblique areas from costal margin almost to or beyond vein R_{4+5}, one proximal to and one distal to level of crossvein r-m; (3) a circular area on basal part of cell r_{45} and (4) a triangular area on basal region of cell m_{1}. An identification key, diagnoses, description and redescriptions, and illustrations to the species of *Hemixantha* with an extensively banded wing pattern are provided.

KEY WORDS. *Hemixantha maculosa* sp. nov.; Neotropical; new record; terminalia; wing.

Richardiidae is a family of tephritoid Diptera represented by ca. 180 species in 33 genera that are allocated to two subfamilies: Richardiinae and Epiplateinae (Hancock 2010). The family is essentially Neotropical in distribution.

Of the two subfamilies, Richardiinae is the most diverse, encompassing more than 90% of the species described (Steyskal 1968). Even though many morphological differences can be found among the included genera, a preliminary phylogenetic analysis indicates that the subfamily is a strongly-supported monophyletic group (Wendt & Ale-Rocha, unpublished data). From a historical perspective, the taxonomy of the Richardiinae has been relatively poorly studied but interest in it has been revived in a few recent contributions, as follows: new taxa were described (Pérez-Gelabert & Thompson 2006, Carvalho et al. 2011, Alencar et al. 2013); a genus was re-described (Wendt & Ale-Rocha 2012) and, especially important, a key to all genera (Hancock 2010) was published.

In Brazil, 13 genera and 60 species of Richardiinae have been recorded but only 16 species are known to occur in the Brazilian Amazon (Aczel 1950, Steyskal 1968, Alencar et al. 2013). Of these, only five are known from the state of Pará: *Beebeomyia flavimaculata* (Hennig, 1937), *Odontomera rafficauda* Hendel, 1936, *Ozaenina moderata* Hennig, 1938, *Richardiodes rectinervis* Hendel, 1912, and *Setellia penix* (Gerstaecker, 1860) (Steyskal 1968). This number, however, probably underestimates the real diversity of the group in the region.

At the beginning of the 20th century, Hendel (1911a) and Hennig (1937, 1938) published important taxonomic contributions, with new records, descriptions and re-descriptions of species of Richardiidae, especially from Bolivia. Thus the fauna of richardiids from Bolivia is relatively well known, where 13 genera and 35 species have been recorded (Steyskal 1968). Richardiids usually have the wing hyaline or yellowish, with round or transverse spots at the base, apex and/or median region. However, five known species, *Schmusynia parvala* Hendel, 1911, *Richardia tephritina* Enderlein, 1912, *R. schmusei* Hendel, 1911, *Hemixantha picta* Hennig, 1937 and *H. pulchripennis* Hendel, 1911, and the new species herein described, have spots on the wing forming an extensively banded pattern that superficially resembles the bands of some species of Tephritidae, for instance *Parastenopa* Hendel, 1914 and *Rhagoletis* Loew, 1862. There are some hypotheses about the function of the wing banded patterns in tephritoids (e.g., Svinski & Webb 1986, Matther & Rotberg 1987, Svinski & Pereira 2005).

For instance, tephritid species with markings on the wings are considered jumping spider mimics (e.g., Greene et al. 1987) or wasp mimics (e.g., White 1999). However, in most cases, the adaptive significance of the markings remains obscure (Svinski 1999).

Hemixantha was proposed by Loew (1873) as a monotypic genus for *H. spinipes*. Thereafter, 19 species and one subspecies were described in the genus, especially by Hendel (1911a) and
Hennig (1937, 1938). However, the last contribution describing a new species of *Hemixantha* dates back to the 1930s (HENNIG 1938). The genus occurs from Costa Rica to southeastern Brazil, but most species are recorded from the Amazon Region, especially from Brazil, Peru and Bolivia (STEVES 1968).

In this paper, we describe and illustrate a new species of *Hemixantha* with an extensively banded wing pattern, from the state of Pará, Brazil, and La Paz Province, Bolivia. The new species represents the first record of the genus from Pará. We also compare *H. maculosa* sp. nov. with the two other species of the genus with patterns on the wings: *H. picta* and *H. pulchripennis*. Furthermore, we provide diagnoses and redescriptions for the latter two species. Sexual dimorphism in the wing patterns is also demonstrated for the first time.

MATERIAL AND METHODS

Specimens listed in the material examined section belong to the following institutions (curator name within parenthesis): INPA – Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil (Augusto LoureiroHenriques); MPEG – Museu Paraense Emílio Goeldi, Belém, Pará, Brazil (Orlando TobiasSilveira); MZSP – Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil (Carlos José Einicker Lamas); SMT – Senckenberg Natural History Collections Dresden, Museum of Zoology (Museum für Tierkunde), Dresden, Germany (Uwe Kallweit); USNM – National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA (Allen Lee Norrbom).

The terminology for the external morphological characters follows CUMMING & WOOD (2009), except the terminology for the terminalia, which follows WHITE et al. (1999).

When providing label data of the type material, we separated individual lines with a forward slash (/) and individual labels are cited within quotation marks. Information within *square brackets* ([]) indicates additional data that are not present on the specimen labels.

TAXONOMY

Identification key to the species of *Hemixantha* with an extensively banded wing pattern

1. Wing cell *r* 4+5 with a circular hyaline sub-basal area (Fig. 1, indicated with red arrow); vein *R* 2+3, slightly sinuous (Fig. 1). Aneisternum and dorsal half of anepimeron bright yellow (Fig. 5). Brazil: Pará; Bolivia: La Paz Province.

 H. maculosa sp. nov.

1’. Wing cell *r* 4+5 with hyaline sub-basal area, but never circular in shape (Figs 2 and 3, indicated with red arrows); vein *R* 2+3 straight (Figs 2 and 3). Aneisternum and anepimeron bright brown (Fig. 23).

2. Coxae, basal half or more of fore femur, and mid and hind tibiae dark brown. Wing with wide oblique hyaline area at middle, from costal margin to cell *dm*, separated from trangular hyaline area at middle of cell *cua* (Fig. 4, indicated with black arrow). Brazil: Amazonas.

Hemixantha maculosa sp. nov.

Figs 1, 5-12, 15-22

Diagnosis. *Hemixantha maculosa* sp. nov. differs from *H. picta* and *H. pulchripennis* in the following features: anepisternum and dorsal half of anepimeron bright yellow and vein *R* 2+3, slightly sinuous. Moreover, the hyaline areas on the wing differ as follows: subtrapezoidal median area in cell *cua*, extended anteriorly to vein *M* 1, separated from hyaline area in cell *dm*; two oblique areas from costal margin almost to or beyond vein *R* 4+5, one proximal to and one distal to level of crossvein *r-m*; a circular area on basal part of cell *r* 4+5 and a triangular area on basal region of cell *m* 1.

Description. Holotype male: measurements: 3.7 mm (body length), 3.1 mm (wing), 1.8 mm (abdomen). Head (Figs 7 and 8): Yellow, covered with whitish pollinosity. Scape and pedicel yellow. First flagellomere light brown. Arista brown. Clypeus, palpus and prementum yellow. Genal and postgenal setae weak. Postgena with short and white sparse setae. Thorax (Figs 5 and 6): Scutum, scutellum and postpronotal lobe yellow, covered with dense whitish pollinosity. Prosternum, proepimeron and proepisternum whitish-yellow. Aneisternum and dorsal half of anepimeron bright yellow. Katepisternum, ventral half of anepimeron, meron and katatergite bright dark brown. Anatergite and mediatergite dark brown covered with white pollinosity. Halter whitish on basal half and brown on the apical half. Legs: Yellow, except mid coxa, mid femur on basal third, and hind tibia brown. Fore femur with four and two spines on antero- and posteroventral surfaces, respectively. Mid femur on anteroventral surface with a row of spines beginning at base, and another on posteroventral surface beginning on apical third. Hind femur with spines from apical 2/5 on antero- and posteroventral surfaces; anterodorsal seta absent. Wing (Fig. 1): Orange brown with margins bordering hyaline areas brown, and with the following hyaline areas: alula, anal lobe except distal margin, cells *bm* and *cup* and small areas aligned with them in cell *br* and *r*, subtrapezoidal area at middle of cell *cua*, extended to vein *M* 1. Two oblique areas from costal margin, one proximal to crossvein *r-m* extended to vein *M* 1, another distal to *r-m* extended to at least *R* 4+5, a circular area on basal part of cell *r* 4+5 and a triangular area on basal part of cell *m* 1.

Abdomen: Yellow, except brown band on basal fourth of syntergite 1+2; covered with black setulae (Fig. 9). Syntergite
Figures 1-9. (1-4) Wings: (1) *Hemixantha maculosa* sp. nov., paratype male; (2) *Hemixantha picta* holotype female; (3-4) *Hemixantha pulchripennis*: (3) male; (4) female. Red arrows indicate hyaline areas on cell r₄₊₅; black arrows indicate subtriangular hyaline area at middle of cell cua1. (5-9) *Hemixantha maculosa* sp. nov., holotype male: (5) habitus, lateral; (6) habitus, dorsal; (7) head, frontal; (8) head, lateral; (9) abdomen, lateral. Scale bars: 0.5 mm.

1+2 twice as wide at apex as at base; twice as long as tergite 3. Tergites 3-5 gradually narrower than apex of syntergite 1+2. Sternite 1 absent. Sternites 2-7 yellow; sternite 2 divided into two parts: anterior very reduced and slightly sclerotized, and posterior elongated, Y-shaped and relatively sclerotized; sternite 3 longer than wide, with base narrower than apex (Fig. 10); sternite 4 wider than long, subtrapezoidal (Fig. 10); sternite 5 developed, distinctly wider than long (Fig. 10). Sternite 6 short,
very wide and ciliated (Fig. 10). Sternite 7 very reduced (Fig. 10). Terminalia (Figs 10-12): Lateral surstylus longer than medial surstylus, curved, without projection and medially wider than basal and apical parts; apex slender and distinctly curved (Fig. 11). Medial surstylus with a semicircular projection on anterior basal part (Fig. 11). Prensiseta slightly developed and symmetrically bifurcated apically, inserted on apex of medial surstylus (Fig. 11, indicated with red arrow). Proctiger slightly sclerotized, rounded and covered with setae of different lengths. Distiphallus long and flexible, with two sclerotized ribbons.
connected by membrane; apex of one ribbon modified into a set of setae and with an asymmetrical and sclerotized plate (Fig. 12).

Variation. The paratype male from Taperinha, Pará (MZSP) is slightly different in the hyaline areas on the wing: basal part of cell r 1 with a small hyaline area, and the oblique area from costal margin, distal to r-m, is continuous to the circular area on basal part of cell r 4 5, forming only a hyaline area.

Female: similar to male, except: the paratype from Bolivia (USNM) has mesopleura yellow, except for meron and katatergite brown. Abdomen (Figs 18-22): sternites 2-6 yellow; sternite 3 rectangular, longer than wide (Fig. 19); sternite 4 as wide as long, subtrapezoidal (Fig. 20); sternite 5 developed, distinctly wider than long (Fig. 21). Sternite 6 short and wide (Fig. 22). Terminalia (Figs 15-17): oviscape 0.84 mm long, yellow, with longitudinal and central areas and apical margin brown (Fig. 15). Taenia brown, short, one-fifth as long as oviscape; slightly less sclerotized than oviscape. Eversible membrane brown and slightly sclerotized on basal 2/3, hyaline and membranous on apical third (Fig. 15). Sternite 8 0.15 mm long, not fused, shorter than tergite 8. Cerci dome-shaped, enlarged at base and gradually narrower at apex (Fig. 16). Two spherical spermathecae (Fig. 17).

Type locality. Taboca Island, Vitória do Xingu, Pará, Brazil. Geographic distribution. Brazil, Pará; Bolivia, La Paz Province.

Remarks. This is the first record of Hemixantha from the state of Pará.

Etymology. The specific epithet refers to the marks on the wing (from Latin m aculosus = spotted).

Hemixantha picta Hennig, 1937

Figs 2, 23, 24

Diagnosis. Similarly to H. pulchripennis, H. picta has the mesopleuron entirely brown. As in H. maculosa, the legs of H. picta are yellow, except for the mid and hind coxae brown. Nevertheless, the hyaline areas of the wing of H. picta are diagnostic: the wing has two complete transverse and slightly curved areas, one at the middle (proximal to r-m) extending to the posterior margin in cell cu 1, and another at the apical third of the wing.
Redescription. Holotype female (Fig. 23): Measurements (following HENNIG 1937: 312): 6.0 mm body length, without the head; 6.0 mm wing. Head: lost. Thorax: scutum, scutellum, proepimeron, proepisternum and prosternum yellow. Scutum and scutellum covered with whitish pollinosity. Mesopleuron and mediogaster bright brown. Posterior half of katatergite, anatergite and laterals of mediogaster with weak white pollinosity. Halter yellowish at basal half and brown at apical half. Legs: Yellow, except mid and hind coxae brown. Fore femur with spines beginning on preapical region. Mid femur on anteroventral surface with row of spines beginning at base and another on posteroverentral surface beginning on apical third. Hind femur with spines from apical half; anterodorsal seta absent. Wing (Fig. 2): brown, except for the following hyaline areas: alula, basal fourth area, except for yellowish area at base of costal cell continuous until sub-base of cell br; sub-base of cell r1; two complete transverse and slightly curved areas, one at the middle (proximal to r-m) extending to the posterior margin in cell cu1, and another at the apical third of the wing. Vein R4+5 straight. Abdomen: yellow with black setulae. Syntergite 1+2 with four laterodorsal setae; preapical seta weak. Terminalia: not dissected, observed only externally: ovipositor short and taenia brown. Cerci dome-shaped, enlarged at the base and gradually narrower at the apex (Fig. 24).

Male. Unknown.

Geographic distribution: Bolivia.

Remarks on the holotype. Specimen in relatively good condition, except for the head, left mid and hind legs, which are missing.

Hemixantha pulchripennis Hendel, 1911

Figs 3-4, 13-14, 25-33

Diagnosis. Hemixantha pulchripennis and H. picta have the mesopleuron entirely brown, but H. pulchripennis differs in having all coxae, fore femur, basal half of mid and hind femora, and mid and hind tibiae dark brown. Also, the pattern of the hyaline areas on the wing of H. pulchripennis (Fig. 3) differs considerably from the wing patterns of H. maculosa and H. picta: subtriangular or slightly oval area at middle of cell cu1, not extended anteri-orly beyond vein cu1, and separated from hyaline area in cell dm (Fig. 3, indicated with black arrow), wide transverse and oblique area at the middle of wing from the costal margin to cell dm; subtriangular preapical area in cell m1, extended anteriorly to vein R4+5 (Fig. 3, indicated with red arrow); and three apical hyaline areas present only in males: one very reduced and subtriangular area in cell r1, one subtrapezoidal area in cell r3, and one smaller and subtrapezoidal area on cell r4+5. Vein R2+3, 4+5 straight. Terminalia (Figs 13 and 14): lateral surstylus slightly larger than medial surstylus; lateral surstylus without projection and on median region wider than basal and apical regions; medial surstylus with slightly semicircular projection on anterior basal region; prensiseta distinctly stronger (Fig. 13) than in H. maculosa (Fig. 11), symmetrically bifurcated at the apex, inserted at the apex of medial surstylus; proctiger slightly sclerotized, very developed, rounded, covered with long setae and with a distinct long pair of setae on ventral surface (Figs 13 and 14); distiphallus similar to H. maculosa.

Comments. According to Hendel (1911a), two syntypes males of Hemixantha pulchripennis are deposited at the Hun-
garian Natural History Museum, Budapest, Hungary. Because the institution does not lend type material, we could not study the syntypes of this species. However, Hendel (1911a, b) provided a reasonably detailed description and an excellent figure of the habitus of H. pulchripennis in profile, which allowed us to reliably identify this species. Also, the specimens we used in the redescription are from the type locality. Before this contribution, only the male of H. pulchripennis was known. Fortunately, we found females in the INPA collection from the type locality (Manaus, Brazil). Females are similar to males, except for differences in the hyaline areas of the wing (Figs 3 and 4), as following described. Measurements (n = 2): 5.0-6.0 mm (body length), 4.5-5.0 mm (wing), 2.6-2.9 mm (abdomen). Wing (Fig. 4): brown, except for the following hyaline areas: alula, base of cell br, base and sub-base of cell r1; cells bm and cup, basal half of anal lobe, subtriangular or slightly oval median area on cell cu1 (Fig. 4, indicated with black arrow), a wide transverse and oblique median area from the costal margin to cell dm, triangular preapical area from R5 to posterior margin of wing (Fig. 4, indicated with red arrow); apical fourth completely brown, without hyaline areas (Fig. 4). Abdomen: yellow, with brown band on basal fourth of syntergite 1+2; covered with black setulae. Syntergite 1+2 1.5 times wider at apex than at base; 2.5 times longer than tergite 3. Tergites 3-5 gradually narrower than apex of syntergite 1+2. Stermites 1-6 yellow; sternite 1 present, but reduced into two very small subcircular plates and weakly sclerotized (Fig. 28); sternite 2 divided into two portions: anterior very reduced and slightly
scleototized and posterior elongated, gradually narrower and relatively sclerotized (Fig. 29); sternite 3 longer than wide, with base narrower than apex (Fig. 30); sternite 4 wider than long, with subtrapezoidal shape (Fig. 31); sternite 5-6 distinctly wider than long (Figs 32 and 33). *Termitalia*: oviscape 1.2 mm long, light brown (Fig. 26). Taenia dark brown, short, one sixth as long as oviscape, as sclerotized as oviscape. Eversible membrane brown and slightly sclerotized on basal half; hyaline and membranous on apical half (Fig. 26). Sternite 8 0.2 mm long, completely fused, slightly shorter than tergite 8 (Fig. 25). Cerci dome-shaped, with enlarged base and apex gradually narrowed (Fig. 25). Two spherical spermathecae (Fig. 27).

Material examined. Brazil, Amazonas: Manaus, 16.VII.1969, E.V. Silva leg., 1 female (INPA); idem, 31.III.1977, L. Albuquerque leg., 1 female (INPA); idem, Campus Universitário (UFAM), 20.VIII.1978, J.A. Rafael leg., 1 male (INPA); idem, 14.X.1978, idem, 1 male (INPA), idem, Reserva Km 41 (area 1501, Esteio farm, 2°26′56″S, 59°46′12″W), PDBFF (Biological Dynamics of Forest Fragments Project, Sub-bosque), 18-19.IX.2004, R. Querino leg., 1 male (INPA), idem, Reserva Km 41 (area 1501, Esteio farm, 2°26′56″S, 59°46′12″W), PDBFF (Biological Dynamics of Forest Fragments Project, Sub-bosque), 18-19.IX.2004, R. Querino leg., 1 male (INPA), idem, 31.III.1977, L. Albuquerque leg., 1 female (INPA); idem, 14.X.1978, idem, 1 male (INPA). We sincerely thank Augusto L. Henriques (INPA), Orlando T. Silveira (MPEG), Carlos J. Einicker Lamas (MZSP), Allen L. Norrborn (USNM) for lending material. L.D. Wendt thanks Uwe Kallweit for welcoming her at SMT and allowing inspection of the type material of *H. picta*. We also thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) for the scholarship provided and for supporting the project “Incremento do conhecimento da diversidade, formação e fixação de especialistas em Sistemática de Diptera (Insecta) na Amazônia”. R. Ale-Rocha thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico for the fellowship (PQ/CNPq) provided. The visit to SMT by L.D. Wendt was funded by the German Academic Exchange Service (DAAD) and CNPq. Automontage equipment was available to us through the project “Amazonas: Diversidade de insetos ao longo de suas fronteiras” (PRONEX/FAPEAM Proc. 1437/2007/ NTO318/07) headed by Dr. José Albertino Rafael.

DISCUSSION

Hemixantha had 19 species and one subspecies known and now it is composed by 20 species and one subspecies. *Hemixantha maculosa* sp. nov., *H. picta* and *H. pulchripennis* are easily distinguished from all other species of *Hemixantha* by the spots on the wing forming an extensively banded pattern. And these three species differ considerably from each other in the pattern of the spots on the wing, and in the coloration of pleuron and legs. The sexual dimorphism can be observed in species of some genera of *Richardiidae*, for instance in *Richardia Robineau-Desvoidy*, 1830, *Megalothoraca* Hendel, 1911 and *Batrachophthalmum* Hendel, 1911, and the differences between the sexes are present in the head shape or the spines on the legs (only in *Richardia*). The sexual dimorphism found in *H. pulchripennis* is for first time reported to the genus; moreover, the difference in the spots on the wing is for first time found in *Richardiinae*. This attribute is also found in *Automola* Loew, 1873 (Epiplateinae).

ACKNOWLEDGEMENTS

We sincerely thank Augusto L. Henriques (INPA), Orlando T. Silveira (MPEG), Carlos J. Einicker Lamas (MZSP), Allen L. Norrborn (USNM) for lending material. L.D. Wendt thanks Uwe Kallweit for welcoming her at SMT and allowing inspection of the type material of *H. picta*. We also thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) for the scholarship provided and for supporting the

Submitted: 12.VII.2013; Accepted: 09.IX.2013.
Editorial responsibility: Gabriel L.F. Mejdalani