Scielo RSS <![CDATA[Memórias do Instituto Oswaldo Cruz]]> vol. 111 num. 7 lang. en <![CDATA[SciELO Logo]]> <![CDATA[Analysis of the genetic diversity of <em>Candida</em> isolates obtained from diabetic patients and kidney transplant recipients]]> Yeasts of the genus Candida have high genetic variability and are the most common opportunistic pathogenic fungi in humans. In this study, we evaluated the genetic diversity among 120 isolates of Candida spp. obtained from diabetic patients, kidney transplant recipients and patients without any immune deficiencies from Paraná state, Brazil. The analysis was performed using the ITS1-5.8S-ITS2 region and a partial sequence of 28S rDNA. In the phylogenetic analysis, we observed a consistent separation of the species C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, C. parapsilosis, C. metapsilosis and C. orthopsilosis, however with low intraspecific variability. In the analysis of the C. albicans species, two clades were formed. Clade A included the largest number of isolates (91.2%) and the majority of isolates from GenBank (71.4%). The phylogenetic analysis showed low intraspecific genetic diversity, and the genetic polymorphisms between C. albicans isolates were similar to genetic divergence found in other studies performed with isolates from Brazil. This low genetic diversity of isolates can be explained by the geographic proximity of the patients evaluated. It was observed that yeast colonisation was highest in renal transplant recipients and diabetic patients and that C. albicans was the species most frequently isolated. <![CDATA[Phlebotomine sandfly (Diptera: Psychodidae) diversity and their <em>Leishmania</em> DNA in a hot spot of American Cutaneous Leishmaniasis human cases along the Brazilian border with Peru and Bolivia]]> In this study, we identified the phlebotomine sandfly vectors involved in the transmission of American Cutaneous Leishmaniasis (ACL) in Assis Brasil, Acre, Brazil, which is located on the Brazil-Peru-Bolivia frontier. The genotyping of Leishmania in phlebotomines was performed using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism. A total of 6,850 sandflies comprising 67 species were captured by using CDC light traps in rural areas of the municipality. Three sandfly species were found in the state of Acre for the first time: Lutzomyia georgii, Lu. complexa and Lu. evangelistai. The predominant species was Lu. auraensis/Lu. ruifreitasi and Lu. davisi (total 59.27%). 32 of 368 pools were positive for the presence of Leishmania DNA (16 pools corresponding to Lu. davisi, and 16 corresponding to Lu. auraensis/Lu. ruifreitasi), with a minimal infection prevalence of 1.85% in Lu. davisi and 2.05% in Lu. auraensis/Lu. ruifreitasi. The Leishmania species found showed maximum identity with L. (Viannia) guyanensis and L. (V.) braziliensis in both phlebotomine species. Based on these results and similar scenarios previously described along the Brazil/Peru/Bolivia tri-border, the studied area must take into consideration the possibility of Lu. davisi and Lu. auraensis/Lu. ruifreitasi as probable vectors of ACL in this municipality. <![CDATA[Spatial modeling of cutaneous leishmaniasis in the Andean region of Colombia]]> The objective of this research was to identify environmental risk factors for cutaneous leishmaniasis (CL) in Colombia and map high-risk municipalities. The study area was the Colombian Andean region, comprising 715 rural and urban municipalities. We used 10 years of CL surveillance: 2000-2009. We used spatial-temporal analysis - conditional autoregressive Poisson random effects modelling - in a Bayesian framework to model the dependence of municipality-level incidence on land use, climate, elevation and population density. Bivariable spatial analysis identified rainforests, forests and secondary vegetation, temperature, and annual precipitation as positively associated with CL incidence. By contrast, livestock agroecosystems and temperature seasonality were negatively associated. Multivariable analysis identified land use - rainforests and agro-livestock - and climate - temperature, rainfall and temperature seasonality - as best predictors of CL. We conclude that climate and land use can be used to identify areas at high risk of CL and that this approach is potentially applicable elsewhere in Latin America. <![CDATA[Larvicidal activity of <em>Syzygium aromaticum</em> (L.) Merr and <em>Citrus sinensis</em> (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of <em>Aedes aegypti</em>]]> Environmentally friendly botanical larvicides are commonly considered as an alternative to synthetic larvicides against Aedes aegypti Linn. In addition, mosquito resistance to currently used larvicides has motivated research to find new compounds acting via different mechanisms of action, with the goal of controlling the spread of mosquitos. Essential oils have been widely studied for this purpose. This work aims to evaluate the larvicidal potential of Syzygium aromaticum and Citrus sinensis essential oils, either alone or in combination with temephos, on Ae. aegypti populations having different levels of organophosphate resistance. The 50% lethal concentration (LC50) of the essential oils alone and in combination with temephos and the influence of essential oils on vector oviposition were evaluated. The results revealed that essential oils exhibited similar larvicidal activity in resistant populations and susceptible populations. However, S. aromaticum and C. sinensis essential oils in combination with temephos did not decrease resistance profiles. The presence of the evaluated essential oils in oviposition sites significantly decreased the number of eggs compared to sites with tap water. Therefore, the evaluated essential oils are suitable for use in mosquito resistance management, whereas their combinations with temephos are not recommended. Additionally, repellency should be considered during formulation development to avoid mosquito deterrence. <![CDATA[Highly active ozonides selected against drug resistant malaria]]> Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART), artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites. <![CDATA[Evaluation of crystal violet decolorization assay for minimal inhibitory concentration detection of primary antituberculosis drugs against <em>Mycobacterium tuberculosis</em> isolates]]> In this study we evaluated the crystal violet decolorization assay (CVDA) for detection of minimum inhibitory concentration (MIC) of antituberculosis drugs. 53 isolates were tested in this study and 13 of them were multidrug resistant (MDR) isolates. The antibiotics concentrations were 2-0.06 mg/L for isoniazid (INH) and rifampicin (RIF) and were 16-0.25 mg/L for streptomycin (STM) and ethambutol (EMB). Crystal violet (CV-25 mg/L) was added into the microwells on the seventh day of incubation and incubation was continued until decolorization. Decolorization of CV was the predictor of bacterial growth. Overall agreements for four drugs were detected as 98.1%, and the average time was detected as 9.5 ± 0.89 day after inoculation. One isolate for INH and two isolates for STM were determined resistant in the reference method, but susceptible by the CVDA. One isolate was susceptible to EMB by the reference method, but resistant by the CVDA. All results were concordant for RIF. This study shows that CVDA is a rapid, reliable and suitable for determination of MIC values of Mycobacterium tuberculosis. And it can be used easily especially in countries with limited-sources. <![CDATA[HSP70 of <em>Leishmania amazonensis</em> alters resistance to different stresses and mitochondrial bioenergetics]]> The 70 kDa heat shock protein (HSP70) is a molecular chaperone that assists the parasite Leishmania in returning to homeostasis after being subjected to different types of stress during its life cycle. In the present study, we evaluated the effects of HSP70 transfection of L. amazonensis promastigotes (pTEX-HSP70) in terms of morphology, resistance, infectivity and mitochondrial bioenergetics. The pTEX-HSP70 promastigotes showed no ultrastructural morphological changes compared to control parasites. Interestingly, the pTEX-HSP70 promastigotes are resistant to heat shock, H2O2-induced oxidative stress and hyperbaric environments. Regarding the bioenergetics parameters, the pTEX-HSP70 parasites had higher respiratory rates and released less H2O2 than the control parasites. Nevertheless, the infectivity capacity of the parasites did not change, as verified by the infection of murine peritoneal macrophages and human macrophages, as well as the infection of BALB/c mice. Together, these results indicate that the overexpression of HSP70 protects L. amazonensis from stress, but does not interfere with its infective capacity. <![CDATA[Larvicidal efficacies of plants from Midwestern Brazil: melianodiol from <em>Guarea kunthiana</em> as a potential biopesticide against <em>Aedes aegypti</em>]]> A total of 36 ethanol extracts from different anatomical parts of 27 plant species (18 families), native to the Pantanal and Cerrado biomes in Midwest Brazil, was assessed for their effect against Aedes aegypti larvae, the vector of dengue, hemorrhagic dengue, Zika and chikungunya fevers. Only the extract obtained from seeds of Guarea kunthiana (Meliaceae) proved active (LC50 = 169.93 μg/mL). A bioassay-guided investigation of this extract led to the isolation and identification of melianodiol, a protolimonoid, as the active constituent (LC50 = 14.44 mg/mL). Meliantriol, which was also obtained from the bioactive fraction, was nevertheless devoid of any larval toxicity, even at the highest concentration tested (LC50 &gt; 100.0 mg/mL). These results indicate that the larvicidal activity of melianodiol stems from the presence of the carbonyl moiety at C-3 in the 21,23-epoxy-21,24,25-trihydroxy-tirucall-7-ene-type skeleton. The structures of both protolimonoids were established on the basis of spectral methods (1H and 13C NMR and MS). This is the first report on the toxicity of melianodiol against Ae. aegypti larvae. Based on the results, melianodiol can be regarded as a potential candidate for use as an ecologically sound biocontrol agent for reducing the larval population of this vector. <![CDATA[Study of surface carbohydrates in <em>Galba truncatula</em> tissues before and after infection with <em>Fasciola hepatica</em>]]> The presence and distribution of surface carbohydrates in the tissues of Galba truncatula snails uninfected or after infection with Fasciola hepatica as well as on the surface of the snail-pathogenic larval stages of the parasite were studied by lectin labelling assay. This is an attempt to find similarities that indicate possible mimicry, utilised by the parasite as an evasion strategy in this snail-trematode system. Different binding patterns were identified on head-foot-mantle, hepatopancreas, genital glands, renopericardial complex of the host as well as of the snail-pathogenic larval stages of F. hepatica. The infection with F. hepatica leads to changes of labelling with Glycine max in the head-mantle cells and Arachis hypogaea in the tubular epithelium of the hepatopancreas. The lectin binding on the other snail tissues is not changed by the development of the larvae. Our data clearly demonstrated the similarity in labelling of G. truncatula tissues and the surface of the snail-pathogenic larval stages of F. hepatica. The role of glycosylation of the contact surfaces of both organisms in relation to the host-parasite interactions is also discussed. <![CDATA[Conidial germination in <em>Scedosporium apiospermum</em>, <em>S. aurantiacum</em>, <em>S. minutisporum</em> and <em>Lomentospora prolificans</em>: influence of growth conditions and antifungal susceptibility profiles]]> In the present study, we have investigated some growth conditions capable of inducing the conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Germination in Sabouraud medium (pH 7.0, 37ºC, 5% CO2) showed to be a typically time-dependent event, reaching ~75% in S. minutisporum and &gt; 90% in S. apiospermum, S. aurantiacum and L. prolificans after 4 h. Similar germination rate was observed when conidia were incubated under different media and pHs. Contrarily, temperature and CO2 tension modulated the germination. The isotropic conidial growth (swelling) and germ tube-like projection were evidenced by microscopy and cytometry. Morphometric parameters augmented in a time-dependent fashion, evidencing changes in size and granularity of fungal cells compared with dormant 0 h conidia. In parallel, a clear increase in the mitochondrial activity was measured during the transformation of conidia-into-germinated conidia. Susceptibility profiles to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin varied regarding each morphotype and each fungal species. Overall, the minimal inhibitory concentrations for hyphae were higher than conidia and germinated conidia, except for caspofungin. Collectively, our study add new data about the conidia-into-hyphae transformation in Scedosporium and Lomentospora species, which is a relevant biological process of these molds directly connected to their antifungal resistance and pathogenicity mechanisms.