Scielo RSS <![CDATA[Revista Brasileira de Ciência do Solo]]> vol. 42 num. lang. en <![CDATA[SciELO Logo]]> <![CDATA[Surface Spectroscopy of Oxisols, Entisols and Inceptisol and Relationships with Selected Soil Properties]]> ABSTRACT: Traditional method of soil survey is expensive, slow, and must be carried out by experienced researchers. Thus, advances in soil observation technologies and the need to obtain information quickly by modern techniques have intensified the use of proximal sensing. This study characterized surface reflectance spectra (A horizon) and related them to traditional soil classification, based on morphological, physical, and chemical properties of representative pedogenetic profiles, developed in two toposequences of the Distrito Federal, Brazil. In the toposequences, 15 soil profiles were selected for a complete morphological description and sampling for laboratory analyses. Soil-landscape relationships were established, and profiles were classified to the fourth level of the Brazilian Soil Classification System (SiBCS). Classes of similar soils were grouped based on their surface spectra, resulting in spectral curves of 10 representative soils in the studied area. The Morphological Interpretation of Reflectance Spectrum (MIRS) and second derivative of the Kubelka-Munk (KM) function were applied to the soil spectra. The clustered soils were similar, mainly in terms of color, textural class, and organic matter content. Groups based on soil physical and chemical properties and on surface and subsurface colors were similar to those determined by surface reflectance. The identification of soil-landscape relationships was fundamental to understand the genesis and distribution of the soils, which had similar chemical and physical properties to their parent materials. The analysis of clusters based on soil surface reflectance proved efficient in determining groups of soil classes with similar properties. Surface reflectance data were related to the soil surface and subsurface properties determined by traditional soil sample analyses, since the two approaches formed similar groups. The simultaneous interaction of soil properties was assessed by MIRS analysis, while the second derivative of the KM function adequately quantified the mineralogy of the spectra. <![CDATA[Slash Spatial Linear Modeling: Soybean Yield Variability as a Function of Soil Chemical Properties]]> ABSTRACT: In geostatistical modeling of soil chemical properties, one or more influential observations in a dataset may impair the construction of interpolation maps and their accuracy. An alternative to avoid the problem would be to use most robust models, based on distributions that have heavier tails. Therefore, this study proposes a spatial linear model based on the slash distribution (SSLM) in order to characterize the spatial variability of soybean yields as a function of soil chemical properties. The likelihood ratio statistic (LR) was applied to verify the significance of parameters associated with the model. We evaluated the sensitivity of the maximum likelihood estimators by means of local influence analysis for both the soybean response and the linear predictor. In the proposed model, we analyzed data gathered from a commercial grain production area (127.18 ha) located in the western part of the state of Paraná (Brazil). The results showed that the slash distribution allowed us to adjust the high kurtosis of the data set distribution and the LR test confirmed that the soil chemical properties of phosphorus, potassium, pH, and organic matter were significant for the SSLM. Diagnostic analysis indicated that the atypical value of the sample set was not influential in the parameter estimation process. Construction of the interpolation map based on the proposed model is not affected when considering the atypical and/or influential observations. Thus, SSLM becomes a robust alternative in the study of soybean yield variability as a function of soil chemical properties, making it possible to investigate the productive potential of the areas. <![CDATA[Pedological Studies of Subaqueous Soils as a Contribution to the Protection of Seagrass Meadows in Brazil]]> ABSTRACT: Seagrass meadows are considered one of the most important and valuable ecosystems on the planet, but also one of the most threatened. Missing knowledge about their existence and their subtidal nature are the main reasons for the lack of information about seagrass soils, especially in Brazil and other tropical areas. This study discussed the paradoxical lack of information about subaqueous soils, with a view to stimulate research on soil properties of seagrass meadows. This short communication provides information about the ecosystem and first descriptions of seagrass soils along the Brazilian Coast, marked by gleyzation, sulfidization, salinization, paludization, solonization, and classified as Gleissolos tiomórficos. Pedological studies on these ecosystems provide useful tools for their management, protection, and restoration. Thus, it is fundamental that soil scientists increase their knowledge about subaqueous soils, not only as a contribution to the Brazilian Soil Classification System, but for the conservation of these ecosystems. <![CDATA[Spatial Disaggregation of Multi-Component Soil Map Units Using Legacy Data and a Tree-Based Algorithm in Southern Brazil]]> ABSTRACT Soil surveys often contain multi-component map units comprising two or more soil classes, whose spatial distribution within the map unit is not represented. Digital Soil Mapping tools supported by information from soil surveys make it possible to predict where these classes are located. The aim of this study was to develop a methodology to increase the detail of conventional soil maps by means of spatial disaggregation of multi-component map units and to predict the spatial location of the derived soil classes. Three digital maps of terrain variables - slope, landforms, and topographic wetness index - were correlated with the soil map and 72 georeferenced profiles from the Porto Alegre soil survey. Explicit rules that expressed regional soil-landscape relationships were formulated based on the resulting combinations. These rules were used to select typical areas of occurrence of each soil class and to train a decision tree model to predict the occurrence of individualized soil classes. Validation of the soil map predictions was conducted by comparison with available soil profiles. The soil map produced showed high agreement (80.5 % accuracy) with the soil classes observed in the soil profiles; Ultisols and Lithic Udorthents were predicted with greater accuracy. The soil variables selected in this study were suitable to represent the soil-landscape relationships, suggesting potential use in future studies. This approach developed a more detailed soil map relevant to current demands for soil information and has potential to be replicated in other areas in which data availability is similar. <![CDATA[Prediction of Topsoil Texture Through Regression Trees and Multiple Linear Regressions]]> ABSTRACT: Users of soil survey products are mostly interested in understanding how soil properties vary in space and time. The aim of digital soil mapping (DSM) is to represent the spatial variability of soil properties quantitatively to support decision-making. The goal of this study is to evaluate DSM techniques (Regression Trees - RT and Multiple Linear Regressions - MLR) and the ability of these tools to predict mineral fraction content under a wide variability of landscapes. The study site was the entire Guapi-Macacu watershed (1,250.78 km2) in the state of Rio de Janeiro in the Southeast region of Brazil. Terrain attributes and remote sensing data (with 30 m of spatial resolution) were used to represent landscape co-variables selected as an input in predictive models in order to develop the explanatory variables. The selection of sampling sites was based on the Latin Hypercube algorithm. A representative set of one hundred points with feasible field access was chosen. Different input databases were tested for prediction of mineral fraction content (harmonized and original data). The Spline algorithm was used to harmonize data according to the GlobalSoil. Net consortium standards. The results showed better performance from the RT models, using input from an average of six covariates; the simplest MLR model used twice as many input variables, creating more complex models without gaining precision. Furthermore, better R2 values were obtained using RT models, irrespective of harmonization of soil data. The harmonized dataset from the 0.00-0.05 and 0.05-0.15 m layers, in general, presented better results for the clay and silt, with R2 values of 0.52 (0.00-0.05 m) and 0.69 (0.05-0.15 m), respectively. Prediction of sand content showed better results when the original depth data was used as an input, although all regression tree models had R2 values greater than 0.52. The RT models provided a better statistical index than MLR for all predicted properties; however, the variance between models suggests similarity of performance. Regarding harmonization of soil data, both input databases (harmonized or not) can be used to predict soil properties, since the variance of model performance was low and generalization of the soil maps showed similar trends. The products obtained from the digital soil mapping approach make it possible to integrate the factor of uncertainties, providing easier interpretation for soil management and land use decisions. <![CDATA[Soil CO<sub>2</sub> Efflux Measurements by Alkali Absorption and Infrared Gas Analyzer in the Brazilian Semiarid Region]]> ABSTRACT The CO2 emission from the soil surface, commonly referred to as soil CO2 efflux (ECO2) or soil respiration, is the sum of processes that include root respiration and microbial activity. Measuring this evolution is important to establish sustainable land use models and to estimate global fluxes of carbon, which affect climate change. Despite its importance, few measurements have been made in areas of the semiarid Brazilian Northeast region, and most of them were made using the alkali absorption method (AA), which can underestimate ECO2. Measurements using AA were compared to measurements using the infrared gas analyzer method (IRGA) over ten months (in rainy and dry seasons), during the day and night, in areas of Caatinga (xeric shrubland and thorn forest) and pasture in the Agreste region of the state of Pernambuco. The ECO2 measurements from AA varied little from night to day and throughout the year or in the rainy and dry seasons. However, those obtained from IRGA were higher in the rainy than in the dry season, but also without significant differences from day to night. The values of both methods were similar in the dry season, but in the rainy season they were higher with the IRGA. Therefore, AA seems to have little sensitivity to seasonal variations, in contrast with measurements from the IRGA, and it may underestimate soil ECO2 when it attains higher values. This result indicates that some of the soil ECO2 values determined in areas of the Brazilian semiarid region, and consequently annual C losses, may have been underestimated. <![CDATA[Soil Microbial Community Structure and Diversity in Cut Flower Cultures Under Conventional and Ecological Management]]> ABSTRACT Microorganisms are excellent soil quality indicators because their properties within the soil community change quickly in response to changes in the surrounding environment. The aim of this study was to determine if the structure and diversity of soil bacterial and fungal communities were useful for discriminating cut flower cultures under conventional (CM), ecological (EM), and intermediate (IM) management practices. Results obtained by PCR-DGGE revealed that bacteria had lower similarity in structure and higher diversity under EM than under CM. Sites under IM showed greater similarities in structure and diversity to the site under CM, although there were still significant differences between them. Fungal structure showed higher similarity among sites, with differences in diversity only between EM and CM. In the sites studied, bacteria, rather than fungi, were good indicators of changes in soil quality. The results of this study confirmed that EM and IM promote soil bacteria diversity. <![CDATA[Hourly, Daily, and Monthly Soil Temperature Fluctuations in a Drought Tolerant Crop]]> ABSTRACT Soil temperature is a physical property of great agricultural importance in the soil-plant relationship and in energy exchange with the atmosphere. This study was conducted in a degraded Cambissolo Háplico Ta Eutrófíco (Cambisol; Inceptisol) in the Irecê Identity Territory, Bahia, Brazil, aiming to evaluate the hourly, daily, and monthly fluctuations of soil temperature at depth, and soil thermal diffusivity in the castor bean crop. Hourly soil temperature data from February 4, 2014, to September 30, 2015, were obtained by using thermocouple sensors (copper-constantan) horizontally installed at 0.05, 0.10, and 0.20 m depths. Soil thermal diffusivity was estimated by phase and amplitude methods. Results showed that, for most days, the soil temperature was at the level recommended for castor bean. The maximum and minimum hourly and daily soil temperatures were observed in October and July, respectively, and the maximum soil temperature values occurred at 4 p.m. (0.05 m), 5 p.m. (0.10 m), and 7 p.m. (0.20 m). Soil temperature variability is low, requiring few measurement points to estimate this factor in an area. The amplitude method led to soil thermal diffusivity values compatible with results in the literature. The absence of a relationship between thermal diffusivity and soil moisture was attributed to the clay-loam soil texture, predominance of micropores, and iron oxides allowing greater approximation to the soil particles, with high thermal diffusivity even under low soil moisture conditions. <![CDATA[Geochemical Signature of Amazon Tropical Rainforest Soils]]> ABSTRACT: Evaluating soil geochemical diversity in the Amazon Basin has been a challenge largely because most study sites have been at the edge of the basin and it is difficult to get samples in such a region. Here we show that even among the most weathered soils, physicochemical soil properties express lithology. Our results are based on topsoil samples collected from different locations in minimally disturbed areas in the state of Amazonas, Brazil. Soil properties were measured using methods which are suitable for highly developed soils. The Chemical Index Alteration and Weathering Index of Parker was calculated based on the content of metal(loid)s in soils determined by X-ray fluorescence. Descriptive statistics, Pearson correlation, and Principal Component Analysis (PCA) were performed on data. In general, Amazon rainforest soils are more deeply weathered than soils in other Brazilian biomes and tropical rainforests in Asia and Africa. The high coefficient of variation of metal(loid) contents express pedogenesis and parent material diversity. Correlation analysis indicated that the tri-pentavalent elements are strongly associated with Al and Fe contents in the topsoil. In contrast, mono-divalent elements are correlated with sand and silt fractions. According to PCA, five soil groups with defined geochemical compositions and degrees of weathering could be identified: i) acidic sandy podzolized soils; ii) acidic loamy ferralitic soils with the highest content of tri-pentavalent ions; iii) acidic clayey kaolinitic soils with low metal(loid) contents; iv) acidic loamy kaolinitic soils with low metal(loid) contents; and v) silty neutral 2:1 clay soils. This study is the first effort to analyze the geochemical diversity in Amazon rainforest soils. These data are extremely valuable in determining the geochemical background for these soil types and this region. Geochemical variability can be predicted to some extent by lithology and pedogenesis, which can be applied to define the sampling required in future studies. <![CDATA[Field <sup>13</sup>C Pulse Labeling of Pea, Wheat, and Vetch Plants for Subsequent Root and Shoot Decomposition Studies]]> ABSTRACT Isotopic labeling of plants is useful in tracking the fate of carbon (C) from different plant parts in a soil-plant system when these parts decompose simultaneously. Pulse labeling is a relatively simple technique and is amenable for use in the field. Therefore, we evaluated a 13CO2 pulse-labeling method to label crop plants under subtropical field conditions for simultaneous root and shoot decomposition studies. Wheat (Triticum aestivum L.), pea (Pisum sativum L.), and vetch (Vicia sativa L.) plants were grown inside polyvinyl chloride (PVC) cylinders and pulse labeled once a week for a total of 11 times. After harvest, “paired” treatments were designed by combining 13C-labeled shoots with unlabeled roots and unlabeled shoots with 13C-labeled roots, resulting in six treatments (2 combinations × 3 species), plus an unamended control treatment. The 13C enrichment of plant parts, chemical fractions, 13C recovery, and distribution in roots, shoots, and soil were determined. Soil CO2 emissions were measured continuously by the alkaline trap method for 180 days. Plant dry matter production and chemical composition were not modified by 13C labeling. The maximum level of 13C enrichment (δ13C) in plants was +495 %o in wheat, +426 %o in pea, and +378 ‰ in vetch plants. All three crops showed similar patterns of 13C distribution in the following order: shoots &gt; roots &gt; soil. On average, 81 to 89 % of the recovered 13C was in the shoots, 7 to 14 % was in the roots, and 2.7 to 4.3 % was in the soil. The rate of C mineralization and cumulative C mineralization were not different between “paired” treatments of the three crops, showing that the paired treatments were equally degradable. The pulse-labeling technique used under field conditions allowed for production of sufficiently labeled wheat, pea, and vetch plants. Therefore, it is a practical approach with respect to resource demand (tracer and labor costs), and it is suitable for in situ labeling. <![CDATA[Clay Mineralogy of Basaltic Hillsides Soils in the Western State of Santa Catarina]]> ABSTRACT A commonly accepted concept holds that highly fertile, shallow soils are predominant in the Basaltic Hillsides of Santa Catarina State, in southern Brazil, but their agricultural use is restricted, either by excessive stoniness, low effective depth or steep slopes. Information about soil properties and distribution along the slopes in this region is, however, scarce, especially regarding genesis and clay fraction mineralogy. The objective of this study was to evaluate soil properties of 12 profiles distributed in three toposequences (T) of the Basaltic Hillsides in the State of Santa Catarina, two located in the valley of the Peixe River (Luzerna - T1 and Ipira - T2) and one in Descanso, in the far West of the state (T3). The main focus was the mineralogical composition of the clay fraction, identified by X-ray diffractometry (XRD), and its relations with the soil chemical properties. The morphological, chemical, and mineralogical properties of the soils of the toposequences differed from each other. In most soils, the position of the most intense XRD reflections indicated predominance of kaolinite (K) however, for being broad and asymmetric, a participation of interstratified kaolinite-smectite (K-S) was assumed. Soils of T2 and T3, located in regions with higher temperatures, lower water surplus, and lower altitude than those of T1, were more fertile, mostly redder, and contained higher proportions of smectites (S) and interstratified K-S mineral, accounting for a higher activity of the clay fraction of most soils. The T1 soils were generally less fertile, with lower clay activity and, aside from kaolinite, contained smectites with interlayered hydroxy-Al polymers (HIS). The low estimated smectite contents of the most fertile soils of all toposequences disagree with the high values of cation exchange capacity (CEC) and clay activity related to pure kaolinite soils. The broad and asymmetric reflections of most of the supposed kaolinites identified as dominant minerals indicate the presence of K-S interlayers, most likely contributing to raise the CEC of the soils. <![CDATA[Termite Mounds Effects on Soil Properties in the Atlantic Forest Biome]]> ABSTRACT Termites have peculiar activities in the soil, inducing significant changes in the soil properties. The objective of this study was to assess physical and chemical properties and soil organic matter to evaluate the effect of termite activity and termite mounds on the soil. Two toposequences were selected and divided in slope thirds (shoulder, backslope, and footslope). In each of these, four termite mounds were selected. Samples were taken from the soils and termite mounds (top, center, and base) along with a variety of termites for identification. Analyses were carried out for physical, soil texture, and chemical properties, as well as for particle size and chemical fractioning of organic matter. The species Cornitermes cumulans was found in all mounds. Soil with termite mound presented higher clay content, acidity, and Al3+ content. Phosphorus contents differed considerably between mound material and soil. Sum of bases and cation exchange capacity of the soil were higher in mounds, and differed within the mounds, according to the sampling height. Total organic carbon and particulate carbon content were highest at the mound base. A marked disparity was observed between the contents of humic substances in the mounds and surrounding soil, with humin fraction differences in distinct topographic position. The high nutrient contents detected in the termite mounds confirm the importance of termites in concentrating nutrients. <![CDATA[Tolerance to and Accumulation of Cadmium, Copper, and Zinc by <em>Cupriavidus necator</em>]]> ABSTRACT Preliminary results of in vitro experiments with multicontaminated soils and solid media indicated that nodulating diazotrophic bacteria of the genus Cupriavidus are promising for the remediation of contaminated environments due to their symbiosis with legumes and metal tolerance. Thus, strains of Cupriavidus spp. (LMG 19424T, UFLA 01-659, UFLA 01-663, and UFLA 02-71) were tested for their ability to tolerate and bioaccumulate cadmium (Cd), copper (Cu), and zinc (Zn) in Luria-Bertani broth. Changes in the growth pattern of Cupriavidus strains in the presence or absence of heavy metals were analyzed by scanning electron microscopy and metal allocation by transmission electron microscopy, to clarify the mechanisms of bioremediation. Highest tolerance was detected for strain UFLA 01-659 (minimum inhibitory concentration of 5, 4.95, and 14.66 mmol L−1 of Cd, Cu, and Zn, respectively). Among the removal rates of the metals tested (9.0, 4.6, and 3.2 mg L−1 of Cd, Cu, and Zn, respectively), the bacterial activity was clearly highest for Cd. The efficiency of strain UFLA 01-659 in removing the heavy metals is associated with its high biomass production and/or higher contents of heavy metals adsorbed and absorbed in the biomass. In response to the presence of heavy metals in the liquid culture medium, the bacteria produced exopolysaccharides and small and aggregated cells. However, these responses varied according to the strains and heavy metals. Regarding allocation, all heavy metals were adsorbed on the cell wall and membrane, whereas complexation was observed intracellularly and only for Cu and Zn. These results indicate the possibility of using C. necator UFLA 01-659 for remediation in areas with very high Cd, Cu, and Zn contents. <![CDATA[Identification of Heavy Metals in Crystals of Sand and Silt Fractions of Soils by Scanning Electron Microscopy (SEM EDS/WD-EPMA)]]> ABSTRACT Studies of heavy metals are concentrate on clay fractions, but coarser fractions of the soil can constitute significant sources of structural forms of heavy metals. The aim of this study was to evaluate the occurrence of heavy metals in the structure of minerals of the sand and silt fractions of soils from three different parent materials (metamorphic rocks and granite) in southern Brazil using SEM/EDS - Scanning Electron Microscopy with Energy Dispersive Spectroscopy and with WD-EPMA - with Wavelength Dispersive-Electron Probe Microanalysis. We sampled soils from two areas naturally rich in heavy metals, with high mineral deposits (galena - PbS) hosted in carbonate rocks and phyllite/mica schist. The main form of Ba in the sand and silt fractions was as barite (BaSO4). The precipitation of Ba and S from the soil solution occurred on the surface of silicate mineral particles. Due to the proximity of ionic radius of Ba-Pb, there was isomorphic substitution of Ba for Pb in the barite structure. The only primary mineral source of Pb in the coarse soil fractions was trioctahedral mica. Several secondary minerals in the silt and sand are sources of structural Pb: plumbogummite, plumboferrite, magnetoplumbite, and cerussite. There was a strong geochemical association of Pb-Fe-Mn. Zinc was also associated with Fe. The SEM/EDS/WD-EPMA techniques are important analyses to complement standard procedures, such as X-ray diffraction and total chemical digestion, in geochemical studies. <![CDATA[Temporal Variation of Soil Physical Quality under Conventional and No-Till Systems]]> ABSTRACT: Determination of soil physical quality (SPQ) is very important because it is related to many important soil processes. However, it is not clear which indicators should be considered in this evaluation, and information about temporal variation of SPQ under different soil tillage systems is scarce. The aim of this study was to determine the effects of no tillage (NT) and conventional tillage (CT) on temporal variation of capacity SPQ indicators [bulk density (BD), macroporosity (Pmac), air capacity (AC), plant available water capacity (PAWC), relative field capacity (RFC), Dexter's (S), and structural stability index (SSI)], and dynamic SPQ indicators [field saturated hydraulic conductivity (K0), water-conducting macroporosity (εma), and mesoporosity (εme); and pore continuity indexes based on water flux of total porosity (CWTP), of macroporosity (CWmac), and of mesoporosity (Cwmes)]. Additionally, the effect of the soil management system on corn yield was evaluated. Measurements and determinations were made at four different moments/cropping stages in the corn growing season (BS: before seeding; V6: six leaf stage; R5: physiological maturity; and AH: after harvest). Capacity SPQ indicators were derived from the soil water retention curve determined using sand box and pressure chambers, and dynamic SPQ indicators were derived from field infiltration data measured using a tension disc infiltrometer. Most capacity SPQ indicators were affected by the moment/cropping stage in which samples were taken, but followed similar trends and had similar values under both treatments, particularly in the AH stage. Dynamic SPQ indicators varied differently during the growing season depending on the management system. Under NT, most dynamic indicators increase from BS to V6 and decrease again at AH, whereas under CT, they follow a different trend, decreasing from BS to V6, remaining constant until R5, and increasing at AH. Corn yield was lower under CT (NT: 10,939 kg ha−1; CT: 8,265 kg ha−1). These results emphasize the need to include dynamic SPQ indicators, and their temporal variation when evaluating cropping systems with the aim of modeling crop yields. The capacity SPQ indicators were not able to distinguish between treatments. <![CDATA[Baseline and Quality Reference Values for Natural Radionuclides in Soils of Rio de Janeiro State, Brazil]]> ABSTRACT A first large-scale systematic survey of natural radioactivity contents of soils of the state of Rio de Janeiro is presented, focused on the establishment of Quality Reference Values (QRVs). Undisturbed soil samples were collected from 243 areas and analyzed by gamma spectrometry. The activity contents varied largely, ranging from 12.2 to 1,029 Bq kg−1 for 40K (geometric mean of 111.1 Bq kg−1), from 3.5 to 99.8 Bq kg−1 for 226Ra (geometric mean of 29.7 Bq kg−1), and from 5.4 to 314.5 Bq kg−1 for 228Ra (geometric mean of 67.1 Bq kg−1). The highest contents of radium isotopes were found in soils developed on igneous rocks (Leptosol), and the lowest in a soil of sedimentary origin (Podzol). Among the different soil types, the radioisotope contents differed substantially. Separate QRVs were calculated for each radionuclide by the 75th and 90th percentile approach, and the QRVs were estimated for each soil type. The results emphasized the restrictiveness of QRVs based on the 75th percentile or of a single overall QRV for all soils. Therefore, rather than estimating a separate QRV for each radionuclide for the State, we suggest the use of an upper threshold value, defined as the 90th percentile, and a specific QRV for each soil type area. <![CDATA[Contribution of <em>Eucalyptus</em> Harvest Residues and Nitrogen Fertilization to Carbon Stabilization in Ultisols of Southern Bahia]]> ABSTRACT: Eucalyptus forests in southern Bahia (BA) are planted in soils with a sandy surface layer and humid tropical climate, conditions that lead to soil carbon (C) decomposition. Recent studies have shown that nitrogen (N) may be important for soil C stabilization. The aim of this study was to evaluate the contribution of Eucalyptus harvest residues and nitrogen fertilization to C stabilization in Ultisols of southern BA. The experiment was conducted in Eucalyptus clonal plantations cultivated in two regions of Eunápolis, BA, Brazil, with different clay content: southern region (140 g kg-1 of clay) and western region (310 g kg-1 of clay). Five treatments were evaluated: one control (CTR), without Eucalyptus harvest residues and N fertilization, and four treatments with harvest residues combined with four rates of N fertilization: 0, 25, 50, and 100 kg ha-1. Soil samples were collected from the 0.00-0.10, 0.10-0.20, 0.20-0.40, and 0.40-0.60 m layers at the beginning and the end of the experiment (36 months). The amount of C and N and the C and N isotopic ratio (δ13C and δ15N) of particulate organic matter (POM) and mineral-associated organic matter (MAOM) were determined. In the southern region after 36 months, the C-MAOM stocks in the 0.00-0.10 m layer of the CTR decreased by 33 %. The addition of harvest residue followed by 100 kg ha-1 N increased C-POM and N-POM stocks (0.00-0.10 m) compared to the CTR, and the final N-POM stocks and residue-C recovery in the surface soil layer were positively correlated with the increase in N fertilization rates. In the western region, residue maintenance resulted in increased C-MAOM stocks (0.00-0.10 m) compared to the CTR, but an increase in N availability reduced this increment. The increase in N fertilization rates did not alter C stocks, but reduced N stocks of POM and MAOM in the upper soil layer. At the end of the experiment, N fertilizer recovery (0.00-0.60 m) was similar among the regions evaluated. In soil with lower clay content, higher N availability led to higher C and N stocks in the particulate fraction. In soils with high clay content, physical and chemical protections are more important than N fertilization for soil C stabilization, and just maintaining harvest residues may suffice to increase C and N in the more stable SOM fraction. <![CDATA[Natural Fertility and Metals Contents in Soils of Rio Grande do Sul (Brazil)]]> ABSTRACT: The parent geological materials and formation factors influence the chemical, physical, and mineralogical properties and composition of the soil. Therefore, the aims of this study were to determine the chemical and some physical and mineralogical properties of the soil useful for agricultural practice; to determine the natural contents of the semitotal metals in soils of the state of Rio Grande do Sul (Brazil); and to suggest use of the quality reference values (QRVs) in accordance with Resolution 420/2009 of the National Commission for the Environment (Conama). To determine some soil properties useful for agricultural, 254 surface soil samples from areas without known human influence (native grasslands or forests) were analyzed according to the methodology used by the soil testing laboratories of the state of Rio Grande do Sul. In addition, the semitotal heavy metal (Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) contents of the soil were determined by the Usepa 3050B method and Hg was determined through an adaptation of the Usepa 7471 method. The results were studied in five soil groups from the state of Rio Grande do Sul according to soil parent materials: (1) basalt (volcanic rocks) of the Plateau region, (2) crystalline rocks (granite, schists, etc.) of the Southern Shield, (3) pelitic rocks (siltstones, mudstones, etc.) of the Peripheral Depression, (4) sandstones (sedimentary) of the Central Plains, and (5) sediments (unconsolidated) of the Coastal Plains. The properties for agricultural use of these soils were compared using the criteria adopted by the current fertilizer recommendations for the state. Multivariate analysis was used to study metals contents. Average values of available P contents were low in all soil groups; however, average values were high in several soil groups for available K. Averages of total acidity and cation exchange capacity were higher in Group 1 soils. The average values of extractable Zn, Cu, and S were high in all soils. Averages of Fe oxides were higher in the soils formed over basalt than in the other soils. Average metal (Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) contents were higher in Group 1 soils than in the other soil groups (2 to 5). For Hg, however, average values were similar for all soil groups. The Spearman correlation coefficients were positive and highest among the metals (except for Cd and Hg) and the clay, Fed, and extractable Cu soil properties. Another high positive correlation coefficient was found between semitotal Cu and Zn contents and organic carbon. The QRVs for Cd, Co, Cr, Cu, Hg, Ni, Pb, V, and Zn, determined according to Conama Resolution 420/2009, followed the same trend as the average metals contents. <![CDATA[Hydropedology of a High Tableland with Cerrado, Brazilian Central Plateau: the Frutal Catchment Case Study]]> ABSTRACT: Currently, the Brazilian savanna (Cerrado) represents the main agricultural area of the country, comprising a great variety of landscapes and soils, geological formations and vegetation patterns, as well as the major watershed. We studied the hydropedology and morphometry of a representative catchment (Frutal river), on a high tableland (Chapada) in the Triângulo Mineiro region, Brazil, describing the soil-water-landscape relationships to understand land use and water resources. To this end, we applied physical, chemical, micromorphological, and morphometric methods. When dry, compaction was observed in well-structured Ferralsols (Latossolos) with medium texture under intensive agriculture, reducing the water recharge capacity. The soil carbon stock was highest in hydromorphic savannas (veredas), reaching an organic matter content of 316.8 g kg-1 in the studied Umbric Gleysols, representing poorly drained lowlands. Physical and micromorphological properties were relevant parameters to understand the water recharge in soil; in agricultural fields, bulk density tended to increase and hydraulic conductivity to decrease, particularly under long-term sugarcane; morphometric parameters in the Frutal catchment indicated a low flooding risk and high flow capacity. This reinforces the need for soil conservation strategies to enhance water infiltration and groundwater recharge, with a view to maintain the water longer in the catchment. For surface water dynamics, slope morphology is an important property, affecting soil erosion, water retention and crop productivity. <![CDATA[Physiological Responses to Hypoxia and Manganese in <em>Eucalyptus</em> Clones with Differential Tolerance to Vale do Rio Doce Shoot Dieback]]> ABSTRACT: Vale do Rio Doce shoot dieback (VRDSD) is an anomaly whose cause seems to be associated with hypoxic conditions and their consequences (excess Mn and Fe) triggered by elevation of the water table in areas with poor drainage. Different plants have distinct survival strategies under this form of stress. The objective of this study was to understand the physiological responses involved in the differential tolerance of eucalyptus clones to VRDSD and their relationship to hypoxia and excess Mn. A hydroponic experiment was carried out using a 2 × 2 × 2 factorial arrangement, two eucalyptus clones with different levels of tolerance to VRDSD (sensitive Urograndis hybrid - 1213; and the tolerant Rio Claro hybrid - Eucalyptus grandis x unknown - 2719), two concentrations of O2 (8 and 4 mg L-1), and two Mn concentrations (1.39 and 300 mg L-1) in a randomized block design (RBD) with three replicates. Forty-day-old clones were maintained in Clark nutrient solution for 30 days. After this period, the treatments were applied for 11 days. Plant gaseous exchange shoot and root production, and the quantity of enzymes related to oxidative stress in leaves and roots were evaluated. In the tolerant clone, reactive oxygen species (ROS) were produced under hypoxic conditions, accompanied by reduction in production of dry matter, malondialdehyde (MDA), and in activity of the enzyme alcohol dehydrogenase (ADH). However, this clone had greater production of superoxide dismutase (SOD) under these conditions, an enzyme responsible for detoxification of ROS, which acts as part of the Low Oxygen Quiescence Syndrome (LOQS). In contrast, sensitive clones did not exhibit expressive reductions in growth or changes in the leaf/root ratio. These clones formed large quantities of adventitious roots and had high levels of MDA and ADH and low levels of SOD. Therefore, sensitive clones appear not to be prepared for detoxification of ROS and other toxic metabolites, but rather adopt morphological escape mechanisms, the Low Oxygen Escape Syndrome (LOES), in response to hypoxia. Thus, the period of soil waterlogging may cause the death of large numbers of roots in sensitive clones, limiting their ability to absorb water and nutrients and culminating in the death of these plants. Excess Mn seems to aggravate the damage caused by hypoxia, but it is not the causal agent of VRDSD. <![CDATA[Crop Response to Gypsum Application to Subtropical Soils Under No-Till in Brazil: a Systematic Review]]> ABSTRACT The use of gypsum to improve the root environment in tropical soils in the southeastern and central-western regions of Brazil is a widespread practice with well-established recommendation criteria. However, only recently gypsum began to be used on subtropical soils in South of Brazil, so available knowledge of its effect on crop yield is incipient and mainly for soils under no-till (NT) systems. Avaiable studies span a wide range of responses, from a substantial increase to a slight reduction in crop yield. Also, the specific conditions leading to a favorable effect of gypsum application on crop yield are yet to be accurately identified. The primary objectives of this study were to examine previously reported results to assess the likelihood of a crop response to gypsum and to develop useful recommendation criteria for gypsum application to subtropical soils under NT in Brazil. For this purpose, we examined the results of a total of 73 growing seasons, reported in 20 different scientific publications that assessed grain yield as a function of gypsum rates. Four different scenarios were examined, by the occurrence or not of high subsurface acidity (viz., Al saturation &gt;20 % and/or exchangeable Ca &lt;0.5 cmolc dm-3 in the 0.20-0.40 m soil layer) and of water deficiency during the crop cycle. Based on the results, for grasses, 10 % Al saturation and/or 3 cmolc dm-3 exchangeable Ca in the soil subsurface layer (0.20-0.40 m) is more suitable than the current recommendation (Al saturation of 20 % and/or 0.5 cmolc dm-3 Ca) for subtropical NT soils in Brazil. Also, applying gypsum to NT soils with low subsurface acidity (Al saturation &lt;10 %) and with an adequate Ca content (&gt;3 cmolc dm-3) failed to increase crop yield, irrespective of the soil water status. Under these conditions, high gypsum rates (6-15 Mg ha−1) may even reduce grain yield, possibly by inducing K and Mg deficiency. On the other hand, applying gypsum to soils with high subsurface acidity increased yield by 16 % in corn (87 % of cases) and by 19 % in winter cereals (83 % of cases), whether or not the soil was water-deficient. By contrast, soybean yield was only increased by gypsum applied in the simultaneous presence of high soil subsurface acidity and water deficiency (average increase 27 %, 100 % of cases). <![CDATA[Nutrient Uptake by High-Yielding Cotton Crop in Brazil]]> ABSTRACT: Determining nutrient uptake and accumulation rates by cotton crops is important to define management strategies, especially for transgenic varieties, which are cultivated using high-technology approaches that require substantial investment to maximize yield. Currently in Brazil, the states of Bahia and Mato Grosso are responsible for 84.4 % of the total cotton growing area. In the present study, two trials were conducted in 2013, one that involved planting FM 940 GLT, FM 980 GLT, and FM 913 GLT varieties in the state of Bahia and the other which involved FM 940 GLT and FM 980 GLT varieties in the state of Mato Grosso. The aim of the two trials was to represent the two regions that currently encompass the largest areas of cotton cultivation. Tissue samples, consisting of leaves, stems, and reproductive components, were collected eleven times during the crop cycle for determination of nutrient content and shoot dry matter. After weighing, plant tissue samples were dried and ground to determine nutrient contents. Because there were no overall differences in nutrient contents and biomass accumulation of the varieties during the crop cycle, we undertook joint analysis of the data from all varieties at each site. Favorable climatic conditions in Bahia promoted plant biomass production that was twice as much as plants grown in Mato Grosso, with cotton yields of 6.2 and 3.8 t ha−1 of lint and seed, respectively. The maximum nutrient accumulation occurred between 137-150 days after emergence (DAE) for N; 143-148 for P; 172-185 for K; 100 for Ca; 144-149 for Mg; and 153-158 for S. Maximum uptake ranged from 218-362 kg ha−1 N; 26-53 kg ha−1 P; 233-506 kg ha−1 K; 91-202 kg ha−1 Ca; 28-44 kg ha−1 Mg; and 19-61 kg ha−1 S. On average, the sites revealed nutrient export of 14, 2, 23, 3, 2, and 2 kg t−1 of lint and seed for N, P, K, Ca, Mg, and S, respectively, with little variation among sites. Extraction of nutrients per area by cotton vary among sites, but nutritional requirement of cotton per unit of lint and seeds is similar independently of yield potential. <![CDATA[Is Composting a Route to Solubilize Low-Grade Phosphate Rocks and Improve MAP-Based Composts?]]> ABSTRACT: In alkalinized and Ca-rich composts, solubilization of apatite from phosphate rocks (PRs) is not guaranteed; however, chelating agents and humified substances produced during composting may alter the soluble contents and P forms of monoammonium phosphate (MAP)-based composts. These effects may depend on the proportions of organic wastes and P source used in the compost piles. The aim of this study was to evaluate the effect of composting chicken manure, coffee husk, and Araxá PR, Bayóvar PR, or MAP in different proportions on the organic matter decomposition, total N, Ca contents, and soluble P fractions in the composts. The treatments consisted of a 3 × 4 × 2 factorial, through the combination of three P sources [Araxá PR, Bayóvar PR, and MAP], with four mixtures in the respective proportions: 25, 40, 50, and 75 % of P source with 37.5, 40, 25, and 12.5 % of chicken manure, and 37.5, 20, 25, and 12.5 % of coffee husk, composted or not for 150 days. The composts with PRs showed greater reductions in total C and water-soluble C and lower dry mass yields than MAP-based composts. The use of MAP in mixtures ensured lower N losses compared to composts formulated with PRs. Regardless of the mixture among chicken manure, coffee husk, and PRs, composting increased the pH and total Ca contents and did not alter the fractions of soluble P in water, in citric acid, and in neutral ammonium citrate plus water in the final PR-based composts. Composting of these mixtures was not an efficient route to solubilize P from Araxá and Bayóvar PRs. Values of pH above 8 and high Ca contents were the main factors explaining the stability and non-solubilization of the apatite of PRs in the composts. Composting with MAP, mixed in different proportions with chicken manure and coffee husk, reduced water-soluble P, maintained the pH of the mixtures in the range of 5 to 7, and enriched the composts with N and P. <![CDATA[Contamination and Soil Biological Properties in the Serra Pelada Mine - Amazonia, Brazil]]> ABSTRACT Discovered in 1980 and unleashed an utter gold rush of the modern era, Serra Pelada was the largest open-air mine in Brazil. About 80,000 gold prospectors worked there until 1984, when the gold pits were flooded. The environmental impact caused by mining inflicted irreversible damage to the ecosystem, with the formation of a large lake and piles of waste rock and sterile overburden, still evident 28 years after the mine was closed. This study aimed to evaluate the available and pseudo total contents of potentially toxic elements (PTEs), the contamination and pollution levels, and to understand how the biological soil factors are related to the chemical properties of the soil and the available PTE contents in the Serra Pelada - Amazônia, Brazil. Soil was collected from seven areas around the lake: Area 1 - margin of the mine without waste and/or sterile deposits; Area 2 - margin with waste and/or sterile deposits; Area 3 - area with sterile deposit; Area 4 - mine tailings, denominated curimã by the prospectors, from which gold had been extracted; Area 5 - sediment dredged from the lake in the mine pit; Area 6 - area with agroforestry system; Area 7 - riparian forest, unaffected by the artisanal gold extraction process (control treatment). Apart from selenium (Se), all evaluated elements, in at least one of the studied areas, exceeded the contents of the investigation values (defined as the content of a given substance in soil or groundwater above which the human health is under potential direct or indirect risks, considering a standardized exposure scenario) in agricultural areas in Brazil, as determined by the National Council of the Environment. Soil enrichment and contamination with Co, Ba, Mn, and Hg were investigated. Principal component analysis showed that the available levels of PTEs influenced the soil biological properties, in particular basal respiration, indicating that important ecosystem processes are being affected by PTE contamination. <![CDATA[Performance of Flooded Rice Grown in Succession to Winter Cover Crops]]> ABSTRACT: Mean grain yield of flooded rice in southern Brazil has increased in recent years due to the use of high-yield cultivars and improvement of crop management practices. Nevertheless, stagnation in grain yields has been observed in some rice-producing regions. Adoption of conservation tillage systems based on cover crops may be a strategy to increase rice grain yield potential. The objective of the present study was to evaluate the effect of winter cover crops on initial establishment, development, and grain yield of flooded rice (Oryza sativa L.) grown under different fertilization levels and no-tillage. A field experiment was carried out for three consecutive years (2010/11, 2011/12, and 2012/13) in Cachoeirinha, Rio Grande do Sul, South Brazil. Treatments included three winter cover crops [ryegrass (Lolium multiflorum Lam.), native serradella (Ornithopus micranthus Benth.), and a ryegrass-serradella mixture] and fallow, and three fertilization levels for rice grown in succession. More than 3 Mg ha−1 of serradella aboveground residue or 4 Mg ha−1 of ryegrass residue limited rice emergence in the first year when rainfall in the sowing-emergence period was higher than in the second and third years. In contrast, a large amount of residue (serradella &gt;2 Mg ha−1; ryegrass &gt;3 Mg ha−1) was beneficial to rice emergence when rainfall was low in the sowing-emergence period of the second and third years. The serradella cover crop increased rice aboveground biomass at anthesis by 22 % compared to the ryegrass cover crop. Furthermore, rice grain yield was 15 % higher in succession to serradella than to ryegrass in the third year. Continuous cultivation of flooded rice in succession to ryegrass over three years reduced grain yield by around 1.4 Mg ha−1, regardless of fertilization level. Fertilization for very high production expectations increased rice grain yield in all years, especially in the second year, when solar radiation was higher than normal. The use of winter cover crops affected plant emergence, aboveground biomass, and grain yield of flooded rice. Rice grain yield increased with increases in fertilization level, and this response was not affected by the previous cover crop. <![CDATA[Is Structural Quality as Assessed by the "Profil Cultural" Method Related to Quantitative Indicators of Soil Physical Quality?]]> ABSTRACT Soil and crop management systems change the soil structure, thereby affecting soil quality. The “profil cultural” method (PCM) has been used to identify the effects of management systems on soil structure; however, few studies relate the structures identified by the PCM to quantitative indicators of soil structural quality. This study aimed to quantify soil structures using the PCM and relate these structures to bulk density (Bd), critical bulk density (Bdc), soil aeration capacity (εa), least limiting water range (LLWR), and soil air permeability (Ka) under different soil and crop management systems. The study was developed in a long-term experiment (24 years) involving two systems of soil management (no-tillage and conventional tillage) and two systems of crop management (rotation and succession), resulting in four treatments: no-tillage with crop rotation (NTr), no-tillage with crop succession (NTs), conventional tillage with heavy harrowing and crop rotation (CTr) and conventional tillage with heavy harrowing and crop succession (CTs). The PCM was used to identify the different homogeneous morphological units (HMUs) in the soil profile. Undisturbed soil samples were collected for the HMUs that were most represented in the profiles to determine Ka, LLWR, Bd, and εa. There was agreement between the HMUs and the quantitative indicators. The LLWR showed greater values for Bdc under no-tillage (NTr = 1.36 Mg m-3 and NTs = 1.37 Mg m-3) than under conventional tillage (CTs = 1.31 Mg m-3 and CTr = 1.33 mg m-3). The proportion of samples where Bd &gt; Bdc was 23 % under CTs, 77 % under CTr, 32 % under NTs, and 39 % under NTr. The structures that were most restrictive to root development (CΔ, CΔμ, FmtΔμ, and FmtμΔ) show a lower Ka and greater soil penetration resistance as the soil dries. Pores are more continuous and the structure is less restrictive to plant development in no-tillage than in conventional tillage. <![CDATA[Relationship Among Crop Systems, Soil Cover, and Water Erosion on a Typic Hapludox]]> ABSTRACT Several soil conservation practices are used to reduce water erosion and ensure sustainable agriculture. An effective crop management practice is intercropping, in which two or more crops with different architectures and vegetative cycles are grown simultaneously in the same area. We hypothesized that intercropping of corn and jack-bean increases soil cover and reduce soil erosion by water in comparison to monocropping. The objective of this study was to evaluate the effects of different crop systems on soil cover and on soil erosion by water. Soil and water losses from a Typic Hapludox were measured under the following systems: corn cultivation (CO), jack-bean cultivation (JB), intercropping of corn and jack-bean (IC), and bare soil (BS), as a reference for maximum erosion rates. For each crop system, erosion plots with dimensions of 12 × 4 m were set up in the field on a 0.12 m m−1 slope gradient. The experiment was carried out under natural rainfall, over three crop seasons (November to March) from 2011 to 2014. The soil cover index of the systems was monitored during crop growth, and rainfall erosivity for the crop seasons was calculated according to the EI30 index to interpret soil and water losses. A set of linear mixed models was fitted to relate soil losses to rainfall erosivity, crop systems, and soil cover. The average rainfall erosivity in the study area was 6,132 MJ mm ha−1 h−1 per crop season. The results indicate that water losses are directly related to erosivity and are less influenced by soil cover and cultivation systems than the soil losses. A linear maximum value of the soil cover index was achieved 70 days after sowing. Intercropping exhibited greater soil cover than single crops. Total soil losses from the three seasons display the trend: BS &gt; CO &gt; JB &gt; IC. The best fitted model of the linear mixed models indicates that soil loss responses are strongly correlated with rainfall erosivity and soil cover, which nullified the influence of the crop systems in the model. <![CDATA[Temporal and Spatial Uncertainty of Erosion Soil Loss from an Argisol Under Sugarcane Management Scenarios]]> ABSTRACT The identification of erosion-susceptible areas is fundamental for the adoption of soil conservation practices. Thus, the best way to estimate the spatial pattern of soil erosion must be identified, in which the process uncertainties are also taken into consideration. The purpose of this study was to evaluate the spatial and temporal uncertainty of soil loss under two scenarios of sugarcane harvest management: green cane (GC) and burnt cane (BC). The study was carried out on a 200-ha area, in Tabapuã, São Paulo State, Brazil. A regular 626-point sampling grid was established in the area, with equidistant intervals of 50 m and a final plant density of about 3.3 samples per ha. The probability that the soil loss would exceed the tolerable limit of 6.67 t ha-1 yr-1 was estimated for each management scenario and after the five harvests. The temporal uncertainty was determined by integrating the estimated annual probabilities, representing the harvests. Areas with soil loss risks above the threshold were identified based on probability maps, generated from the individual and combined dichotomous variables. Soil losses from the BC were highest, during all five harvests. With the exception of the 5th harvest and the entire cultivation cycle under GC, all soil loss estimates were spatially dependent. From the 4th harvest under GC, the probability of the soil loss exceeding the threshold was above 80 % in zero percent of the area, whereas, for BC, the probability exceeded 80 % in 40 % of the area. The production cycle allowed the delimitation of priority areas for the adoption of conservation practices in each management. In the BC, areas with steeper slopes were more likely to exceed the threshold with lower uncertainties. <![CDATA[Effectiveness of Arsenic Co-Precipitation with Fe-Al Hydroxides for Treatment of Contaminated Water]]> ABSTRACT Wastewater treatment is a challenging problem faced by the mining industry, especially when mine effluents include acid mine drainage with elevated arsenic levels. Iron (hydr)oxides are known to be effective in removal of As from wastewater, and although the resulting compounds are relatively unstable, the presence of structural Al enhances their stability, particularly under reducing conditions. The purpose of this study was to assess the effectiveness of Al-Fe (hydr)oxide co-precipitates for the removal of As from wastewater and to assess the chemical stability of the products. Different Al-Fe (hydr)oxides were synthesized at room temperature from ferrous and aluminum salts using three different Fe:Al molar ratios (1:0.0, 1:0.3, and 1:0.7) and aged for 90 days (sulfate experiments) or 120 days (chloride experiments) in the presence of arsenic. At the end of the aging periods, the precipitated sludges were dried and characterized in order to evaluate their stability and therefore potential As mobility. All treatments were effective in reducing As levels in the water to below 10 µg L-1, but the presence of Al impaired the effectiveness of the treatment. Aluminum decreased the chemical stability of the precipitated sludge and hence its ability to retain As under natural environmental conditions. <![CDATA[Metal-Resistant Rhizobacteria Change Soluble-Exchangeable Fraction in Multi-Metal-Contaminated Soil Samples]]> ABSTRACT There is a complex interaction between various components of the soil ecosystem, including microbial biomass and soil chemical contaminants such as heavy metals and radionuclides, which may greatly affect the efficiency of bioremediation techniques. The aim of this study was to investigate microbial capacity to change pH, changes in the metal soluble-exchangeable fraction, and effects of initial heavy metal contents on soil samples in microbial solubilization/immobilization capacity. The soil samples used in this study were collected at a known metal-contaminated site. Three highly metal-resistant bacteria were isolated from rhizosphere soil samples collected on weed species identified as Senecio brasiliensis, Senecio leptolobus, and Baccharis trimera. A completely randomized experimental design in a factorial arrangement was used, with three replicates. In general, with an acid pH, the isolates neutralized the contaminated growth media. In a neutral or basic initial pH, increases in pH were observed in the media, so these bacteria have an alkalizing effect on the growth media. Soluble metal contents were quite different and depend on the microbial species and heavy metal contents in the soil samples. The soluble-exchangeable fraction of metal such as Cu, Zn, Ni, Cr, Cd, Pb, and Ba may be unavailable after inoculation with heavy metalresistant rhizobacteria. A promising approach seems to be the application of inoculants with metal-resistant bacteria in bioremediation of multi-metal-polluted environments to improve the efficiency of this environmentally friendly technology. <![CDATA[Reference Values of Soil Quality for the Rio Doce Basin]]> ABSTRACT: The great geological and soil variation in the state of Minas Gerais, Brazil, indicates the need for regional studies to understand the geochemical background of soils. The Rio Doce Basin became a priority area for geochemical background determination after the rupture of the tailings dam of Fundão in 2015. In this context, the objectives of this study were to propose Reference Values of Soil Quality in the Rio Doce Basin, to define variables that can predict metal(loid) concentrations in the soil, and to examine the correlation between metal(loid) concentrations determined by X-ray fluorescence and by the traditional method. One hundred and seven samples were collected from minimally disturbed areas, representing the main soils and source materials. Metal(loid)s were determined by acid digestion and X-ray fluorescence. Descriptive statistics of the data, as well as the calculation of the Randomized Dependence Coefficient (RDC) and Principal Component Analysis (PCA) were carried out. The soils were found to be acidic, dystrophic with low Mehlich-1 extracted P contents, and have a variable texture. The coefficient of determination ranged from 0.4 to 0.9, suggesting X-ray fluorescence as a promising technique for determining metal(loid) concentrations in soils. The absence of correlation between clay and organic matter contents with metal(loid) concentrations suggests that the latter were inherited exclusively from the parent material, with little influence of pedogenesis. Metal mineralization in the highlands that constitute the topographic drainage divide of the basin increase the reference values of soil quality to higher values than established for the State of Minas Gerais.