Scielo RSS <![CDATA[Journal of the Brazilian Society of Mechanical Sciences]]> http://www.scielo.br/rss.php?pid=0100-738620020003&lang=en vol. 24 num. 3 lang. en <![CDATA[SciELO Logo]]> http://www.scielo.br/img/en/fbpelogp.gif http://www.scielo.br <![CDATA[<b>Instabilities in electrochemical systems with a rotating disc electrode</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300001&lng=en&nrm=iso&tlng=en Polarization curves experimentally obtained in the electro-dissolution of iron in a 1 M H2SO4 solution using a rotating disc as the working electrode present a current instability region within the range of applied voltage in which the current is controlled by mass transport in the electrolyte. According to the literature (Barcia et. al., 1992) the electro-dissolution process leads to the existence of a viscosity gradient in the interface metal-solution, which leads to a velocity field quantitatively different form the one developed in uniform viscosity conditions and may affect the stability of the hydrodynamic field. The purpose of this work is to investigate whether a steady viscosity profile, depending on the distance to the electrode surface, affects the stability properties of the classic velocity field near a rotating disc. Two classes of perturbations are considered: perturbations monotonically varying along the radial direction, and perturbations periodically modulated along the radial direction. The results show that the hydrodynamic field is always stable with respect to the first class of perturbations and that the neutral stability curves are modified by the presence of a viscosity gradient in the second case, in the sense of reducing the critical Reynolds number beyond which perturbations are amplified. This result supports the hypothesis that the current oscillations observed in the polarization curve may originate from a hydrodynamic instability. <![CDATA[<b>Numerical study of wedge supported oblique shock wave-oblique detonation wave transitions</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300002&lng=en&nrm=iso&tlng=en The results of a numerical study of premixed Hydrogen-air flows ignition by an oblique shock wave (OSW) stabilized by a wedge are presented, in situations when initial and boundary conditions are such that transition between the initial OSW and an oblique detonation wave (ODW) is observed. More precisely, the objectives of the paper are: (i) to identify the different possible structures of the transition region that exist between the initial OSW and the resulting ODW and (ii) to evidence the effect on the ODW of an abrupt decrease of the wedge angle in such a way that the final part of the wedge surface becomes parallel to the initial flow. For such a geometrical configuration and for the initial and boundary conditions considered, the overdriven detonation supported by the initial wedge angle is found to relax towards a Chapman-Jouguet detonation in the region where the wedge surface is parallel to the initial flow. Computations are performed using an adaptive, unstructured grid, finite volume computer code previously developed for the sake of the computations of high speed, compressible flows of reactive gas mixtures. Physico-chemical properties are functions of the local mixture composition, temperature and pressure, and they are computed using the CHEMKIN-II subroutines. <![CDATA[<b>Substitution-Newton-Raphson method applied to the modeling of a vapour compression refrigeration system using different representations of the thermodynamic properties of R-134a</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300003&lng=en&nrm=iso&tlng=en This paper gives a detailed presentation of the Substitution-Newton-Raphson method, suitable for large sparse non-linear systems. It combines the Successive Substitution method and the Newton-Raphson method in such way as to take the best advantages of both, keeping the convergence features of the Newton-Raphson with the low requirements of memory and time of the Successive Substitution schemes. The large system is solved employing few effective variables, using the greatest possible part of the model equations in substitution fashion to fix the remaining variables, but maintaining the convergence characteristics of the Newton-Raphson. The methodology is exemplified through a simple algebraic system, and applied to a simple thermodynamic, mechanical and heat transfer modeling of a single-stage vapor compression refrigeration system. Three distinct approaches for reproducing the thermodynamic properties of the refrigerant R-134a are compared: the linear interpolation from tabulated data, the use of polynomial fitted curves and the use of functions derived from the Helmholtz free energy. <![CDATA[<b>Variable structure position control of an industrial robotic manipulator</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300004&lng=en&nrm=iso&tlng=en The use of a robust position controller for a robotic manipulator moving in free space is presented. The aim is to implement in practice a controller that is robust to uncertainties in the model of the system, as well as being inexpensive from a computational point of view. Variable structure theory provides the technique for the design of such controller. The design steps are presented, first from a theoretical perspective and then applied to the control of a two degree-of-freedom manipulator. Simulation results that backed the implementation are presented, followed by the experiments conducted and the results that were obtained. The conclusion is that variable structure control is readily applicable to industrial robots for the robust control of positions. <![CDATA[<b>Wind tunnel simulation of atmospheric boundary layer flows</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300005&lng=en&nrm=iso&tlng=en The present work shows how thick boundary layers can be produced in a short wind tunnel with a view to simulate atmospheric flows. Several types of thickening devices are analysed. The experimental assessment of the devices was conducted by considering integral properties of the flow and the spectra: skin-friction, mean velocity profiles in inner and outer co-ordinates and longitudinal turbulence. Designs based on screens, elliptic wedge generators, and cylindrical rod generators are analysed. The paper describes in detail the experimental arrangement, including the features of the wind tunnel and of the instrumentation. The results are compared with experimental data published by other authors and with naturally developed flows. <![CDATA[<b>Effects of condensation in microchannels with a porous boundary</b>: <b>analytical investigation on heat transfer and meniscus shape</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300006&lng=en&nrm=iso&tlng=en In two-phase miniature and microchannel flows, the meniscus shape must be considered due to effects that are affected by condensation and/or evaporation and coupled with the transport phenomena in the thin film on the microchannel wall, when capillary forces drive the working fluid. This investigation presents an analytical model for microchannel condensers with a porous boundary, where capillary forces pump the fluid. Methanol was selected as the working fluid. Very low liquid Reynolds numbers were obtained (Re~6), but very high Nusselt numbers (Nu~150) could be found due to the channel size (1.5 mm) and the presence of the porous boundary. The meniscus calculation provided consistent results for the vapor interface temperature and pressure, as well as the meniscus curvature. The obtained results show that microchannel condensers with a porous boundary can be used for heat dissipation with reduced heat transfer area and very high heat dissipation capabilities. <![CDATA[<b>Influence of duty factor on the die-sinking Electrical Discharge Machining of high-strength aluminum alloy under rough machining</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300007&lng=en&nrm=iso&tlng=en The use of high-strength aluminium alloys as material for injection molding tools to produce small and medium batches of plastic products as well as prototyping molds is becoming of increasing demand by the tooling industry. These alloys are replacing the traditional use of steel in the cases above because they offer many advantages such as very high thermal conductivity associated with good corrosion and wear resistance presenting good machinability in milling and electrical discharge machining operations. Unfortunately there is little technological knowledge on the Electrical Discharge Machining (EDM) of high-strength aluminium alloys, especially about the AMP 8000 alloy. The duty factor, which means the ratio between pulse duration and pulse cycle time exerts an important role on the performance of EDM. This work has carried out an experimental study on the variation of the duty factor in order to analyze its influence on material removal rate and volumetric relative wear under roughing conditions of EDM process. The results showed that high values of duty factor are possible to be applied without bringing instability into the EDM process and with improvement of material removal rate and volumetric relative wear. <![CDATA[<b>Proposal of methodology for the modeling and control of manipulators</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300008&lng=en&nrm=iso&tlng=en Industrial applications demand that robots operate in agreement with the position and orientation of their end effector. It is necessary to solve the kinematics inverse problem. This allows the displacement of the joints of the manipulator to be determined, to accomplish a given objective. Complete studies of dynamical control of joint robotics are also necessary. Initially, this article focuses on the implementation of numerical algorithms for the solution of the kinematics inverse problem and the modeling and simulation of dynamic systems. This is done using real time implementation. The modeling and simulation of dynamic systems are performed emphasizing off-line programming. In sequence, a complete study of the control strategies is carried out through the study of several elements of a robotic joint, such as: DC motor, inertia, and gearbox. Finally a trajectory generator, used as input for a generic group of joints, is developed and a proposal of the controller's implementation of joints, using EPLD development system, is presented. <![CDATA[<b>Analysis of open CNC architecture for machine tools</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300009&lng=en&nrm=iso&tlng=en The evolution of digital circuit technology, leadind to higher speeds and more reliability allowed the development of machine controllers adapted to new production systems (e.g., Flexible Manufacturing Systems - FMS). Most of the controllers are developed in agreement with the CNC technology of the correspondent machine tool manufacturer. Any alterations or adaptation of their components are not easy to be implemented. The machine designers face up hardware and software restrictions such as lack of interaction among system's elements and impossibility of adding new function. This is due to hardware incompatibility and to software not allowing alterations in the source program. The introduction of open architecture philosophy propitiated the evolution of a new generation of numeric controllers. This brought the conventional CNC technology to the standard IBM - PC microcomputer. As a consequence, the characteristics of the CNC (positioning) and the microcomputer (easy of programming, system configuration, network communication etc) are combined. Some researchers have addressed a flexible structure of software and hardware allowing changes in the hardware basic configuration and all control software levels. In this work, the development of open architecture controllers in the OSACA, OMAC, HOAM-CNC and OSEC architectures is described. <![CDATA[<b>Seismic motion simulation based on Cassino Parallel Manipulator</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300010&lng=en&nrm=iso&tlng=en In this paper we present a study of feasibility by using Cassino Parallel Manipulator (CaPaMan) as an earthquake simulator. We propose a suitable formulation to simulate the frequency, amplitude and acceleration magnitude of seismic motion by means of the movable platform motion by giving a suitable input motion. In this paper we have reported numerical simulations that simulate the three principal earthquake types for a seismic motion: one at the epicenter (having a vertical motion), another far from the epicenter (with the motion on a horizontal plane), and a combined general motion (with a vertical and horizontal motion). <![CDATA[<b>Experimental validation of a 3-D vision-based measurement system applied to robot calibration</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300011&lng=en&nrm=iso&tlng=en One of the problems that slows the development of off-line programming is the low static and dynamic positioning accuracy of robots. Robot calibration improves the positioning accuracy and can also be used as a diagnostic tool in robot production and maintenance. A large number of robot measurement systems are now available commercially. Yet, there is a dearth of systems that are portable, accurate and low cost. In this work a measurement system that can fill this gap in local calibration is presented. The measurement system consists of a single CCD camera mounted on the robot tool flange with a wide angle lens, and uses space resection models to measure the end-effector pose relative to a world coordinate system, considering radial distortions. Scale factors and image center are obtained with innovative techniques, making use of a multiview approach. The target plate consists of a grid of white dots impressed on a black photographic paper, and mounted on the sides of a 90-degree angle plate. Results show that the achieved average accuracy varies from 0.2mm to 0.4mm, at distances from the target from 600mm to 1000mm respectively, with different camera orientations. <![CDATA[<b>Characterization of capacitive sensors for measurements of the moisture in irrigated soils</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300012&lng=en&nrm=iso&tlng=en The irrigation is a technique developed to supply the hydric needs of the plants. The use of the water should be optimized so that the culture just has enough for its growth, avoiding waste. The objective of this work was to characterize the behavior of capacitive sensors of humidity to monitor the moisture in the soils. In first instance, it was appraised sensors with dielectric built of synthetic pomes stone (Rd = 0,4 and Rd = 0,8) and of soil samples (Rd = 0,8 and Rd = 1,0), being the Rd parameter a geometric factor that relates the distance between the capacitor plates with radius of the plates. For the calibration, the sensors were installed in PVC recipient of cylindrical shape, filled with soil. The set (sensor and soil) was humidified by capillary effect and submitted by a natural drying very slowly. The parameter readings were taken daily, which allowed obtain the curves relating the humidity percentage, expressed in terms of dry weight, with the output voltage fort the sensor. The experiments were performed in sand soil and in dark red latossolo. The obtained results allowed to infer that the behavior of the sensor has a specific feature for each type of soil, being, therefore, necessary to develop a own calibration curve for the sensor, when used in soil with specific characteristic. <![CDATA[<b>Performance evaluation of 3D computer vision techniques</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300013&lng=en&nrm=iso&tlng=en This work presents the implementation and comparison of three different techniques of three-dimensional computer vision as follows: • Stereo vision - correlation between two 2D images • Sensorial fusion - use of different sensors: camera 2D + ultrasound sensor (1D); • Structured light The computer vision techniques herein presented took into consideration the following characteristics: • Computational effort ( elapsed time for obtain the 3D information); • Influence of environmental conditions (noise due to a non uniform lighting, overlighting and shades); • The cost of the infrastructure for each technique; • Analysis of uncertainties, precision and accuracy. The option of using the Matlab software, version 5.1, for algorithm implementation of the three techniques was due to the simplicity of their commands, programming and debugging. Besides, this software is well known and used by the academic community, allowing the results of this work to be obtained and verified. Examples of three-dimensional vision applied to robotic assembling tasks ("pick-and-place") are presented. <![CDATA[<b>Application of the center manifold theory to the study of slewing flexible Non-ideal structures with nonlinear curvature</b>: <b>a case study</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862002000300014&lng=en&nrm=iso&tlng=en In this paper is Analyzed the local dynamical behavior of a slewing flexible structure considering nonlinear curvature. The dynamics of the original (nonlinear) governing equations of motion are reduced to the center manifold in the neighborhood of an equilibrium solution with the purpose of locally study the stability of the system. In this critical point, a Hopf bifurcation occurs. In this region, one can find values for the control parameter (structural damping coefficient) where the system is unstable and values where the system stability is assured (periodic motion). This local analysis of the system reduced to the center manifold assures the stable / unstable behavior of the original system around a known solution.