Scielo RSS <![CDATA[Brazilian Journal of Medical and Biological Research]]> vol. 48 num. 9 lang. es <![CDATA[SciELO Logo]]> <![CDATA[Development of the endocrine pancreas and novel strategies for β-cell mass restoration and diabetes therapy]]> Diabetes mellitus represents a serious public health problem owing to its global prevalence in the last decade. The causes of this metabolic disease include dysfunction and/or insufficient number of β cells. Existing diabetes mellitus treatments do not reverse or control the disease. Therefore, β-cell mass restoration might be a promising treatment. Several restoration approaches have been developed: inducing the proliferation of remaining insulin-producing cells, de novo islet formation from pancreatic progenitor cells (neogenesis), and converting non-β cells within the pancreas to β cells (transdifferentiation) are the most direct, simple, and least invasive ways to increase β-cell mass. However, their clinical significance is yet to be determined. Hypothetically, β cells or islet transplantation methods might be curative strategies for diabetes mellitus; however, the scarcity of donors limits the clinical application of these approaches. Thus, alternative cell sources for β-cell replacement could include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. However, most differentiated cells obtained using these techniques are functionally immature and show poor glucose-stimulated insulin secretion compared with native β cells. Currently, their clinical use is still hampered by ethical issues and the risk of tumor development post transplantation. In this review, we briefly summarize the current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation, including the molecular mechanisms involved. We then discuss two possible approaches of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and β-cell replacement. We critically analyze each strategy with respect to the accessibility of the cells, potential risk to patients, and possible clinical outcomes. <![CDATA[Late emergence of A594V and L595W mutations related to ganciclovir resistance in a patient with HCMV retinitis and long-term HIV progression]]> The emergence of ganciclovir (GCV) resistance during the treatment of human cytomegalovirus (HCMV) infection is a serious clinical challenge, and is associated with high morbidity and mortality. In this case report, we describe the emergence of two consecutive mutations (A594V and L595W) related to GCV resistance in a patient with HCMV retinitis and long-term HIV progression after approximately 240 days of GCV use. Following the diagnosis of retinitis, the introduction of GCV did not result in viral load reduction. The detected mutations appeared late in the treatment, and we propose that other factors (high initial HCMV load, previous GCV exposure, low CD4+ cell count), in addition to the presence of resistance mutations, may have contributed to the treatment failure of HCMV infection in this patient. <![CDATA[Potential virulence of <em>Klebsiella</em> sp. isolates from enteral diets]]> We aimed to evaluate the potential virulence of Klebsiellaisolates from enteral diets in hospitals, to support nosocomial infection control measures, especially among critical-care patients. Phenotypic determination of virulence factors, such as capsular expression on the external membrane, production of aerobactin siderophore, synthesis of capsular polysaccharide, hemolytic and phospholipase activity, and resistance to antibiotics, which are used therapeutically, were investigated in strains ofKlebsiella pneumoniae and K. oxytoca. Modular industrialized enteral diets (30 samples) as used in two public hospitals were analyzed, and Klebsiella isolates were obtained from six (20%) of them. The hypermucoviscous phenotype was observed in one of the K. pneumoniae isolates (6.7%). Capsular serotypes K1 to K6 were present, namely K5 and K4. Under the conditions of this study, no aerobactin production, hemolytic activity or lecithinase activity was observed in the isolates. All isolates were resistant to amoxicillin and ampicillin and sensitive to cefetamet, imipenem, chloramphenicol, gentamicin and sulfamethoxazole-trimethoprim. Most K. pneumoniae isolates (6/7, 85.7%) from hospital B presented with a higher frequency of resistance to the antibiotics tested in this study, and multiple resistance to at least four antibiotics (3/8; 37.5%) compared with isolates from Hospital A. The variations observed in the antibiotic resistance profiles allowed us to classify theKlebsiella isolates as eight antibiotypes. No production of broad-spectrum β-lactamases was observed among the isolates. Our data favor the hypothesis that Klebsiella isolates from enteral diets are potential pathogens for nosocomial infections. <![CDATA[Central release of nitric oxide mediates antinociception induced by aerobic exercise]]> Nitric oxide (NO) is a soluble gas that participates in important functions of the central nervous system, such as cognitive function, maintenance of synaptic plasticity for the control of sleep, appetite, body temperature, neurosecretion, and antinociception. Furthermore, during exercise large amounts of NO are released that contribute to maintaining body homeostasis. Besides NO production, physical exercise has been shown to induce antinociception. Thus, the present study aimed to investigate the central involvement of NO in exercise-induced antinociception. In both mechanical and thermal nociceptive tests, central [intrathecal (it) and intracerebroventricular (icv)] pretreatment with inhibitors of the NO/cGMP/KATP pathway (L-NOArg, ODQ, and glybenclamide) prevented the antinociceptive effect induced by aerobic exercise (AE). Furthermore, pretreatment (it, icv) with specific NO synthase inhibitors (L-NIO, aminoguanidine, and L-NPA) also prevented this effect. Supporting the hypothesis of the central involvement of NO in exercise-induced antinociception, nitrite levels in the cerebrospinal fluid increased immediately after AE. Therefore, the present study suggests that, during exercise, the NO released centrally induced antinociception. <![CDATA[Physical exercise prevents motor disorders and striatal oxidative imbalance after cerebral ischemia-reperfusion]]> Stroke is the third most common cause of death worldwide, and most stroke survivors present some functional impairment. We assessed the striatal oxidative balance and motor alterations resulting from stroke in a rat model to investigate the neuroprotective role of physical exercise. Forty male Wistar rats were assigned to 4 groups: a) control, b) ischemia, c) physical exercise, and d) physical exercise and ischemia. Physical exercise was conducted using a treadmill for 8 weeks. Ischemia-reperfusion surgery involved transient bilateral occlusion of the common carotid arteries for 30 min. Neuromotor performance (open-field and rotarod performance tests) and pain sensitivity were evaluated beginning at 24 h after the surgery. Rats were euthanized and the corpora striata was removed for assay of reactive oxygen species, lipoperoxidation activity, and antioxidant markers. Ischemia-reperfusion caused changes in motor activity. The ischemia-induced alterations observed in the open-field test were fully reversed, and those observed in the rotarod test were partially reversed, by physical exercise. Pain sensitivity was similar among all groups. Levels of reactive oxygen species and lipoperoxidation increased after ischemia; physical exercise decreased reactive oxygen species levels. None of the treatments altered the levels of antioxidant markers. In summary, ischemia-reperfusion resulted in motor impairment and altered striatal oxidative balance in this animal model, but those changes were moderated by physical exercise. <![CDATA[Effects of a physical fitness program on memory and blood viscosity in sedentary elderly men]]> The aim of this study was to investigate the effects of a 6-month exercise program on cognitive function and blood viscosity in sedentary elderly men. Forty-six healthy inactive men, aged 60–75 years were randomly distributed into a control group (n=23) and an experimental group (n=23). Participants underwent blood analysis and physical and memory evaluation, before and after the 6-month program of physical exercise. The control group was instructed not to alter its everyday activities; the experimental group took part in the fitness program. The program was conducted using a cycle ergometer, 3 times per week on alternate days, with intensity and volume individualized at ventilatory threshold 1. Sessions were continuous and maximum duration was 60 min each. There was significant improvement in memory (21%; P&lt;0.05), decreased blood viscosity (−19%; P&lt;0.05), and higher aerobic capacity (48%; P&lt;0.05) among participants in the experimental group compared with the control group. These data suggest that taking part in an aerobic physical fitness program at an intensity corresponding to ventilatory threshold-1 may be considered a nonmedication alternative to improve physical and cognitive function. <![CDATA[A single resistance exercise session improves myocardial contractility in spontaneously hypertensive rats]]> Resistance training evokes myocardial adaptation; however, the effects of a single resistance exercise session on cardiac performance are poorly understood or investigated. This study aimed to investigate the effects of a single resistance exercise session on the myocardial contractility of spontaneously hypertensive rats (SHRs). Male 3-month-old SHRs were divided into two groups: control (Ct) and exercise (Ex). Control animals were submitted to sham exercise. Blood pressure was measured in conscious rats before the exercise session to confirm the presence of arterial hypertension. Ten minutes after the exercise session, the animals were anesthetized and killed, and the hearts were removed. Cardiac contractility was evaluated in the whole heart by the Langendorff technique and by isometric contractions of isolated left ventricular papillary muscles. SERCA2a, phospholamban (PLB), and phosphorylated PLB expression were investigated by Western blot. Exercise increased force development of isolated papillary muscles (Ex=1.0±0.1 g/mg vs Ct=0.63±0.2 g/mg, P&lt;0.05). Post-rest contraction was greater in the exercised animals (Ex=4.1±0.4% vs Ct=1.7±0.2%, P&lt;0.05). Papillary muscles of exercised animals developed greater force under increasing isoproterenol concentrations (P&lt;0.05). In the isolated heart, exercise increased left ventricular isovolumetric systolic pressure (LVISP; Δ +39 mmHg; P&lt;0.05) from baseline conditions. Hearts from the exercised rats presented a greater response to increasing diastolic pressure. Positive inotropic intervention to calcium and isoproterenol resulted in greater LVISP in exercised animals (P&lt;0.05). The results demonstrated that a single resistance exercise session improved myocardial contractility in SHRs. <![CDATA[Antibacterial and anti-inflammatory activities of an extract, fractions, and compounds isolated from <em>Gochnatia pulchra</em> aerial parts]]> This paper reports on the in vitro antibacterial and in vivo anti-inflammatory properties of a hydroethanolic extract of the aerial parts of Gochnatia pulchra (HEGP). It also describes the antibacterial activity of HEGP fractions and of the isolated compounds genkwanin, scutellarin, apigenin, and 3,5-O-dicaffeoylquinic acid, as evaluated by a broth microdilution method. While HEGP and its fractions did not provide promising results, the isolated compounds exhibited pronounced antibacterial activity. The most sensitive microorganism was Streptococcus pyogenes, with minimum inhibitory concentration (MIC) values of 100, 50 and 25 µg/mL for genkwanin and the flavonoids apigenin and scutellarin, respectively. Genkwanin produced an MIC value of 25 µg/mL against Enterococcus faecalis. A paw edema model in rats and a pleurisy inflammation model in mice aided investigation of the anti-inflammatory effects of HEGP. This study also evaluated the ability of HEGP to modulate carrageenan-induced interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) production. Orally administered HEGP (250 and 500 mg/kg) inhibited carrageenan-induced paw edema. Regarding carrageenan-induced pleurisy, HEGP at 50, 100, and 250 mg/kg diminished leukocyte migration by 71.43%, 69.24%, and 73.34% (P&lt;0.05), respectively. HEGP suppressed IL-1β and MCP-1 production by 55% and 50% at 50 mg/kg (P&lt;0.05) and 60% and 25% at 100 mg/kg (P&lt;0.05), respectively. HEGP abated TNF-α production by macrophages by 6.6%, 33.3%, and 53.3% at 100, 250, and 500 mg/kg (P&lt;0.05), respectively. HEGP probably exerts anti-inflammatory effects by inhibiting production of the pro-inflammatory cytokines TNF-α, IL-1β, and MCP-1. <![CDATA[Comparison of conventional Papanicolaou cytology samples with liquid-based cervical cytology samples from women in Pernambuco, Brazil]]> In the present study, we compared the performance of a ThinPrep cytological method with the conventional Papanicolaou test for diagnosis of cytopathological changes, with regard to unsatisfactory results achieved at the Central Public Health Laboratory of the State of Pernambuco. A population-based, cross-sectional study was performed with women aged 18 to 65 years, who spontaneously sought gynecological services in Public Health Units in the State of Pernambuco, Northeast Brazil, between April and November 2011. All patients in the study were given a standardized questionnaire on sociodemographics, sexual characteristics, reproductive practices, and habits. A total of 525 patients were assessed by the two methods (11.05% were under the age of 25 years, 30.86% were single, 4.4% had had more than 5 sexual partners, 44% were not using contraception, 38.85% were users of alcohol, 24.38% were smokers, 3.24% had consumed drugs previously, 42.01% had gynecological complaints, and 12.19% had an early history of sexually transmitted diseases). The two methods showed poor correlation (k=0.19; 95%CI=0.11–0.26; P&lt;0.001). The ThinPrep method reduced the rate of unsatisfactory results from 4.38% to 1.71% (χ2=5.28; P=0.02), and the number of cytopathological changes diagnosed increased from 2.47% to 3.04%. This study confirmed that adopting the ThinPrep method for diagnosis of cervical cytological samples was an improvement over the conventional method. Furthermore, this method may reduce possible losses from cytological resampling and reduce obstacles to patient follow-up, improving the quality of the public health system in the State of Pernambuco, Northeast Brazil. <![CDATA[Preventive effect of reduced glutathione on contrast-induced nephropathy in elderly patients undergoing coronary angiography or intervention: a randomized, controlled trial]]> Coronary angiography can be a high-risk condition for the incidence of contrast-induced nephropathy (CIN) in elderly patients. Reduced glutathione, under a variety of mechanisms, may prevent CIN in this procedure. We prospectively examined whether hydration with reduced glutathione is superior to hydration alone for prevention of CIN in an elderly Han Chinese population. A total of 505 patients (271 males and 234 females) aged 75 years or older who underwent non-emergency coronary angiography or an intervention were randomly divided into two groups. The treatment group received hydration with reduced glutathione (n=262) and the control group received hydration alone (n=243). Serum creatinine and blood urea nitrogen levels were measured prior to coronary angiography and 48 h after this procedure. The primary endpoint was occurrence of CIN, which was defined as 25% or 44.2 µmol/L above baseline serum creatinine levels 48 h after the procedure. The overall incidence of CIN was 6.49% in the treatment group and 7.41% in the control group, with no significant difference between the groups (P=0.68). In subgroup analysis by percutaneous coronary intervention, no significant differences were found between the two groups. In summary, reduced glutathione added to optimal hydration does not further decrease the risk of CIN in elderly patients undergoing coronary angiography or an intervention. <![CDATA[A glycoprotein E gene-deleted bovine herpesvirus 1 as a candidate vaccine strain]]> A bovine herpesvirus 1 (BoHV-1) defective in glycoprotein E (gE) was constructed from a Brazilian genital BoHV-1 isolate, by replacing the full gE coding region with the green fluorescent protein (GFP) gene for selection. Upon co-transfection of MDBK cells with genomic viral DNA plus the GFP-bearing gE-deletion plasmid, three fluorescent recombinant clones were obtained out of approximately 5000 viral plaques. Deletion of the gE gene and the presence of the GFP marker in the genome of recombinant viruses were confirmed by PCR. Despite forming smaller plaques, the BoHV-1△gE recombinants replicated in MDBK cells with similar kinetics and to similar titers to that of the parental virus (SV56/90), demonstrating that the gE deletion had no deleterious effects on replication efficacy in vitro. Thirteen calves inoculated intramuscularly with BoHV-1△gE developed virus neutralizing antibodies at day 42 post-infection (titers from 2 to 16), demonstrating the ability of the recombinant to replicate and to induce a serological response in vivo. Furthermore, the serological response induced by recombinant BoHV-1△gE could be differentiated from that induced by wild-type BoHV-1 by the use of an anti-gE antibody ELISA kit. Taken together, these results indicated the potential application of recombinant BoHV-1 △gE in vaccine formulations to prevent the losses caused by BoHV-1 infections while allowing for differentiation of vaccinated from naturally infected animals. <![CDATA[<em>Caryocar brasiliense camb</em> protects against genomic and oxidative damage in urethane-induced lung carcinogenesis]]> The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days) significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.