Scielo RSS <![CDATA[Brazilian Journal of Medical and Biological Research]]> vol. 49 num. 11 lang. es <![CDATA[SciELO Logo]]> <![CDATA[Non-clinical studies required for new drug development - Part I: early <em>in silico</em> and <em>in vitro</em> studies, new target discovery and validation, proof of principles and robustness of animal studies]]> This review presents a historical overview of drug discovery and the non-clinical stages of the drug development process, from initial target identification and validation, through in silico assays and high throughput screening (HTS), identification of leader molecules and their optimization, the selection of a candidate substance for clinical development, and the use of animal models during the early studies of proof-of-concept (or principle). This report also discusses the relevance of validated and predictive animal models selection, as well as the correct use of animal tests concerning the experimental design, execution and interpretation, which affect the reproducibility, quality and reliability of non-clinical studies necessary to translate to and support clinical studies. Collectively, improving these aspects will certainly contribute to the robustness of both scientific publications and the translation of new substances to clinical development. <![CDATA[Treatment of hepatitis C virus genotype 3 infection with direct-acting antiviral agents]]> Hepatitis C virus (HCV) genotype 3 is responsible for 30.1% of chronic hepatitis C infection cases worldwide. In the era of direct-acting antivirals, these patients have become one of the most challenging to treat, due to fewer effective drug options, higher risk of developing cirrhosis and hepatocellular carcinoma and lower sustained virological response (SVR) rates. Currently there are 4 recommended drugs for the treatment of HCV genotype 3: pegylated interferon (PegIFN), sofosbuvir (SOF), daclatasvir (DCV) and ribavirin (RBV). Treatment with PegIFN, SOF and RBV for 12 weeks has an overall SVR rate of 83–100%, without significant differences among cirrhotic and non-cirrhotic patients. However, this therapeutic regimen has several contraindications and can cause significant adverse events, which can reduce adherence and impair SVR rates. SOF plus RBV for 24 weeks is another treatment option, with SVR rates of 82–96% among patients without cirrhosis and 62–92% among those with cirrhosis. Finally, SOF plus DCV provides 94–97% SVR rates in non-cirrhotic patients, but 59–69% in those with cirrhosis. The addition of RBV to the regimen of SOF plus DCV increases the SVR rates in cirrhotic patients above 80%, and extending treatment to 24 weeks raises SVR to 90%. The ideal duration of therapy is still under investigation. For cirrhotic patients, the optimal duration, or even the best regimen, is still uncertain. Further studies are necessary to clarify the best regimen to treat HCV genotype 3 infection. <![CDATA[Construction of a fusion plasmid containing the PSCA gene and cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and its anti-tumor effect in an animal model of prostate cancer]]> Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is a negative regulator of T cell activation, which competes with CD28 for B7.1/B7.2 binding, and which has a greater affinity. Fusion of specific antigens to extracellular domain of CTLA4 represents a promising approach to increase the immunogenicity of DNA vaccines. In this study, we evaluated this interesting approach for CTLA4 enhancement on prostate stem cell antigen (PSCA)-specific immune responses and its anti-tumor effects in a prostate cancer mouse model. Consequently, we constructed a DNA vaccine containing the PSCA and the CTLA-4 gene. Vaccination with the CTLA4-fused DNA not only induced a much higher level of anti-PSCA antibody, but also increased PSCA-specific T cell response in mice. To evaluate the anti-tumor efficacy of the plasmids, murine models with PSCA-expressing tumors were generated. After injection of the tumor-bearing mouse model, the plasmid carrying the CTLA4 and PSCA fusion gene showed stronger inhibition of tumor growth than the plasmid expressing PSCA alone. These observations emphasize the potential of the CTLA4-fused DNA vaccine, which could represent a promising approach for tumor immunotherapy. <![CDATA[Effects of endurance training on reduction of plasma glucose during high intensity constant and incremental speed tests in Wistar rats]]> The aim of this research was to investigate the effects of endurance training on reduction of plasma glucose during high intensity constant and incremental speed tests in Wistar rats. We hypothesized that plasma glucose might be decreased in the exercised group during heavy (more intense) exercise. Twenty-four 10-week-old male Wistar rats were randomly assigned to sedentary and exercised groups. The prescription of endurance exercise training intensity was determined as 60% of the maximum intensity reached at the incremental speed test. The animals were trained by running on a motorized treadmill, five days/week for a total period of 67 weeks. Plasma glucose during the constant speed test in the exercised group at 20 m/min was reduced at the 14th, 21st and 28th min compared to the sedentary group, as well at 25 m/min at the 21st and 28th min. Plasma glucose during the incremental speed test was decreased in the exercised group at the moment of exhaustion (48th min) compared to the sedentary group (27th min). Endurance training positively modulates the mitochondrial activity and capacity of substrate oxidation in muscle and liver. Thus, in contrast to other studies on high load of exercise, the effects of endurance training on the decrease of plasma glucose during constant and incremental speed tests was significantly higher in exercised than in sedentary rats and associated with improved muscle and hepatic oxidative capacity, constituting an important non-pharmacological intervention tool for the prevention of insulin resistance, including type 2 diabetes mellitus. <![CDATA[A novel homozygous mutation in the solute carrier family 12 member 3 gene in a Chinese family with Gitelman syndrome]]> Loss of function of mutated solute carrier family 12 member 3 (SLC12A3) gene is the most frequent etiology for Gitelman syndrome (GS), which is mainly manifested by hypokalemia, hypomagnesemia and hypocalciuria. We report the genetic characteristics of one suspicious Chinese GS pedigree by gene sequencing. Complete sequencing analysis of the SLC12A3 gene revealed that both the proband and his elder sister had a novel homozygous SLC12A3 mutation: c.2099T&gt;C and p.Leu700Pro. Moreover, the SLC12A3 genes of his mother and daughter encoded the same mutated heterozygote. It was noted that in this pedigree, only the proband complained about recurrent episodes of bilateral lower limb weakness over 8 years, while his elder sister, mother and daughter did not present symptoms. The inconsistent clinical features of this pedigree implied that besides diverse phenotypes possibly originated from the same genotype, gender difference may also dominate the variant GS phenotypes. Further genetic and proteomic research are needed to investigate the precise mechanisms of GS, including the study of specific ethnicities. <![CDATA[Oxidative stress and skeletal muscle dysfunction are present in healthy smokers]]> Chronic exposure to cigarette smoke seems to be related to an increase of pro-inflammatory cytokines, oxidative stress and changes in muscular and physical performances of healthy smokers. However, these parameters have not yet been evaluated simultaneously in previous studies. The participants of this study were healthy males divided into two groups: smokers (n=20) and non-smokers (n=20). Inflammation was evaluated by measuring plasma levels of the cytokines IL-10, IL-6 e TNF-α, and of the soluble receptors sTNFR1 and sTNFR2. Oxidative stress was evaluated by determination of thiobarbituric acid reactive substances (TBARS) plasma levels, total antioxidant capacity of plasma and erythrocytes activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase. Muscular performance was evaluated by measuring the peak torque of knee flexors and extensors, and by determining the total work of the knee extensors. Physical performance was assessed by measuring the peak oxygen uptake (VO2 peak), the maximum heart rate (HRmax) and the walking distance in the shuttle walking test. Smokers showed an increase in the levels of the sTNFR1 and TBARS and a decrease in the total antioxidant capacity of plasma, in the catalase activity and in the total work (P&lt;0.05). IL-6, IL-10, sTNFR2, SOD, peak torque, VO2 peak, HRmax and walking distance were similar between groups. Smokers presented increased oxidative stress and skeletal muscle dysfunction, demonstrating that the changes in molecular and muscular parameters occur simultaneously in healthy smokers. <![CDATA[High-CHO diet increases post-exercise oxygen consumption after a supramaximal exercise bout]]> We investigated if carbohydrate (CHO) availability could affect the excess post-exercise oxygen consumption (EPOC) after a single supramaximal exercise bout. Five physically active men cycled at 115% of peak oxygen uptake (V̇O2 peak) until exhaustion with low or high pre-exercise CHO availability. The endogenous CHO stores were manipulated by performing a glycogen-depletion exercise protocol 48 h before the trial, followed by 48 h consuming either a low- (10% CHO) or a high-CHO (80% CHO) diet regime. Compared to the low-CHO diet, the high-CHO diet increased time to exhaustion (3.0±0.6 min vs 4.4±0.6, respectively, P=0.01) and the total O2 consumption during the exercise (6.9±0.9 L and 11.3±2.1, respectively, P=0.01). This was accompanied by a higher EPOC magnitude (4.6±1.8 L vs 6.2±2.8, respectively, P=0.03) and a greater total O2 consumption throughout the session (exercise+recovery: 11.5±2.5 L vs 17.5±4.2, respectively, P=0.01). These results suggest that a single bout of supramaximal exercise performed with high CHO availability increases both exercise and post-exercise energy expenditure. <![CDATA[Cerebral vasomotor reactivity assessment using Transcranial Doppler and MRI with apnea test]]> Differently from previous studies that used Transcranial Doppler (TCD) and functional MRI (fMRI) for cerebral vasomotor reactivity (CVR) assessment in patients with carotid stenosis (CS), we assessed CVR using an identical stimulus, the Breath-Holding Test (BHT). We included 15 patients with CS and 7 age-matched controls to verify whether fMRI responded differently to BHT between groups and to calculate the agreement rate between tests. For TCD, impaired CVR was defined when the mean percentage increase on middle cerebral artery velocities was ≤31% on 3 consecutive 30-s apnea intercalated by 4-min normal breathing intervals. For fMRI, the percent variation on blood oxygen level-dependent (BOLD) signal intensity in the lentiform nucleus (LN) ipsilateral to the CS (or both LNs for controls) from baseline breathing to apnea was measured. The Euclidian differences between the series of each subject and the series of controls and patients classified it into normal or impaired CVR. We found different percent variations on BOLD-signal intensities between groups (P=0.032). The agreement was good in Controls (85.7%; κ=0.69) and overall (77.3%; κ=0.54). We conclude that BHT was feasible for CVR assessment on fMRI and elicited different BOLD responses in patients and controls, with a good overall agreement between the tests.