Scielo RSS <![CDATA[Brazilian Journal of Medical and Biological Research]]> http://www.scielo.br/rss.php?pid=0100-879X20120010&lang=en vol. 45 num. 10 lang. en <![CDATA[SciELO Logo]]> http://www.scielo.br/img/en/fbpelogp.gif http://www.scielo.br <![CDATA[<b>Protein turnover, amino acid requirements and recommendations for athletes and active populations</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000001&lng=en&nrm=iso&tlng=en Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, ²H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg-1·day-1 compared to 0.8 g·kg-1·day-1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h. <![CDATA[<b>Prevalence of <i>ERα-397 PvuII C/T</i>, <i>ERα-351 XbaI A/G</i> and<i> PGR</i> <i>PROGINS</i> polymorphisms in Brazilian breast cancer-unaffected women</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000002&lng=en&nrm=iso&tlng=en Polymorphisms of hormone receptor genes have been linked to modifications in reproductive factors and to an increased risk of breast cancer (BC). In the present study, we have determined the allelic and genotypic frequencies of the ERα-397 PvuII C/T, ERα-351 XbaI A/G and PGR PROGINS polymorphisms and investigated their relationship with mammographic density, body mass index (BMI) and other risk factors for BC. A consecutive and unselected sample of 750 Brazilian BC-unaffected women enrolled in a mammography screening program was recruited. The distribution of PGR PROGINS genotypic frequencies was 72.5, 25.5 and 2.0% for A1A1, A1A2 and A2A2, respectively, which was equivalent to that encountered in other studies with healthy women. The distribution of ERα genotypes was: ERα-397 PvuII C/T: 32.3% TT, 47.5% TC, and 20.2% CC; ERα-351 XbaI A/G: 46.3% AA, 41.7% AG and 12.0% GG. ERα haplotypes were 53.5% PX, 14.3% Px, 0.3% pX, and 32.0% px. These were significantly different from most previously published reports worldwide (P < 0.05). Overall, the PGR PROGINS genotypes A2A2 and A1A2 were associated with fatty and moderately fatty breast tissue. The same genotypes were also associated with a high BMI in postmenopausal women. In addition, the ERα-351 XbaI GG genotype was associated with menarche ≥12 years (P = 0.02). ERα and PGR polymorphisms have a phenotypic effect and may play an important role in BC risk determination. Finally, if confirmed in BC patients, these associations could have important implications for mammographic screening and strategies and may be helpful to identify women at higher risk for the disease. <![CDATA[<b>Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000003&lng=en&nrm=iso&tlng=en The JAK2/STAT3 signal pathway is an important component of survivor activating factor enhancement (SAFE) pathway. The objective of the present study was to determine whether the JAK2/STAT3 signaling pathway participates in hydrogen sulfide (H2S) postconditioning, protecting isolated rat hearts from ischemic-reperfusion injury. Male Sprague-Dawley rats (230-270 g) were divided into 6 groups (N = 14 per group): time-matched perfusion (Sham) group, ischemia/reperfusion (I/R) group, NaHS postconditioning group, NaHS with AG-490 group, AG-490 (5 µM) group, and dimethyl sulfoxide (DMSO; <0.2%) group. Langendorff-perfused rat hearts, with the exception of the Sham group, were subjected to 30 min of ischemia followed by 90 min of reperfusion after 20 min of equilibrium. Heart rate, left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), and the maximum rate of increase or decrease of left ventricular pressure (± dp/dt max) were recorded. Infarct size was determined using triphenyltetrazolium chloride (TTC) staining. Myocardial TUNEL staining was used as the in situ cell death detection method and the percentage of TUNEL-positive nuclei to all nuclei counted was used as the apoptotic index. The expression of STAT3, bcl-2 and bax was determined by Western blotting. After reperfusion, compared to the I/R group, H2S significantly improved functional recovery and decreased infarct size (23.3 ± 3.8 vs 41.2 ± 4.7%, P < 0.05) and apoptotic index (22.1 ± 3.6 vs 43.0 ± 4.8%, P < 0.05). However, H2S-mediated protection was abolished by AG-490, the JAK2 inhibitor. In conclusion, H2S postconditioning effectively protects isolated I/R rat hearts via activation of the JAK2/STAT3 signaling pathway. <![CDATA[<b>Silencing HIF-1α reduces the adhesion and secretion functions of acute leukemia hBMSCs</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000004&lng=en&nrm=iso&tlng=en Hypoxia inducible factor-1α (HIF-1α) is an important transcription factor, which plays a critical role in the formation of solid tumor and its microenviroment. The objective of the present study was to evaluate the expression and function of HIF-1α in human leukemia bone marrow stromal cells (BMSCs) and to identify the downstream targets of HIF-1α. HIF-1α expression was detected at both the RNA and protein levels using real-time PCR and immunohistochemistry, respectively. Vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) were detected in stromal cells by enzyme-linked immunosorbent assay. HIF-1α was blocked by constructing the lentiviral RNAi vector system and infecting the BMSCs. The Jurkat cell/BMSC co-cultured system was constructed by putting the two cells into the same suitable cultured media and conditions. Cell adhesion and secretion functions of stromal cells were evaluated after transfection with the lentiviral RNAi vector of HIF-1α. Increased HIF-1α mRNA and protein was detected in the nucleus of the acute myeloblastic and acute lymphoblastic leukemia compared with normal BMSCs. The lentiviral RANi vector for HIF-1α was successfully constructed and was applied to block the expression of HIF-1α. When HIF-1α of BMSCs was blocked, the expression of VEGF and SDF-1 secreted by stromal cells were decreased. When HIF-1α was blocked, the co-cultured Jurkat cell’s adhesion and migration functions were also decreased. Taken together, these results suggest that HIF-1α acts as an important transcription factor and can significantly affect the secretion and adhesion functions of leukemia BMSCs. <![CDATA[<b>Secretory TAT-peptide-mediated protein transduction of LIF receptor α-chain distal cytoplasmic motifs into human myeloid HL-60 cells</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000005&lng=en&nrm=iso&tlng=en The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy. <![CDATA[<b>Effect of different durations of overdistention on rat bladder function and morphology</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000006&lng=en&nrm=iso&tlng=en We investigated the contribution of the duration of overdistention (DOD) to rat bladder function and morphology and explored its possible molecular mechanisms. Bladder overdistention was induced in male Sprague-Dawley rats (200-250 g) by an infusion of saline. Forty rats were divided into 5 groups submitted to different DOD, i.e., 1, 2, 4, and 8 h, and control. Bladder function was evaluated by cystometry. Morphological changes were observed by light and transmission electron microscopy. Compared to control (44.567 ± 3.472 cmH2O), the maximum detrusor pressure of groups with 2-, 4- and 8-h DOD decreased significantly (means ± SEM): 32.774 ± 3.726, 31.321 ± 2.847, and 29.238 ± 3.724 cmH2O. With the increase of DOD, inflammatory infiltration and impairment of ultrastructure were more obvious in bladder tissue. Compared to control (1.90 ± 0.77), the apoptotic indexes of groups with 1-, 2-, 4-, and 8-h DOD increased significantly (6.47 ± 2.10, 10.66 ± 1.97, 13.91 ± 2.69, and 18.33 ± 3.28%). Compared to control (0.147 ± 0.031/0.234 ± 0.038 caspase 3/β-actin and Bax/Bcl-2 ratios), both caspase 3/β-actin and Bax/Bcl-2 ratios of 1-, 2-, 4-, and 8-h DOD increased significantly (0.292 ± 0.037/0.508 ± 0.174, 0.723 ± 0.173/1.745 ± 0.471, 1.104 ± 0.245/4.000 ± 1.048, and 1.345 ± 0.409/8.398 ± 3.332). DOD plays an important role in impairment of vesical function and structure. With DOD, pro-apoptotic factors increase and anti-apoptotic factors decrease, possibly contributing to the functional deterioration and morphological changes of the bladder. <![CDATA[<strong>Reversal of the anticoagulant and anti-hemostatic effect of low molecular weight heparin by direct prothrombin activation</strong>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000007&lng=en&nrm=iso&tlng=en Lopap, found in the bristles of Lonomia obliqua caterpillar, is the first exogenous prothrombin activator that shows serine protease-like activity, independent of prothrombinase components and unique lipocalin reported to interfere with hemostasis mechanisms. To assess the action of an exogenous prothrombin activator reversing the anticoagulant and antihemostatic effect induced by low molecular weight heparin (LMWH), male New Zealand rabbits (N = 20, weighing 3.8-4.0 kg) allocated to 4 groups were anticoagulated with 1800 IU/kg LMWH (iv) over 2 min, followed by iv administration of saline (SG) or recombinant Lopap (rLopap) at 1 µg/kg (LG1) or 10 µg/kg (LG10), 10 min after the injection of LMWH, in a blind manner. Control animals (CG) were treated only with saline. The action of rLopap was assessed in terms of activated partial thromboplastin time (aPTT), prothrombin fragment F1+2, fibrinogen, and ear puncture bleeding time (BT) at 5, 10, 15, 17, 20, 30, 40, 60, and 90 min after initiation of LMWH infusion. LG10 animals showed a decrease of aPTT in more than 50% and BT near to normal baseline. The level of prothrombin fragment F1+2 measured by ELISA had a 6-fold increase with rLopap treatment (10 µg/kg) and was inversely proportional to BT in LMWH-treated animals. Thus, Lopap, obtained in recombinant form using E. coli expression system, was useful in antagonizing the effect of LMWH through direct prothrombin activation, which can be a possible strategy for the reversal of bleeding and anticoagulant events. <![CDATA[<b>A study on the short-term effect of cafeteria diet and pioglitazone on insulin resistance and serum levels of adiponectin and ghrelin</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000008&lng=en&nrm=iso&tlng=en The interaction between ghrelin and adiponectin is still controversial. We investigated the effect of cafeteria diet and pioglitazone on body weight, insulin resistance, and adiponectin/ghrelin levels in an experimental study on male Wistar rats. The animals were divided into four groups of 6 rats each, and received balanced chow with saline (CHOW-O) or pioglitazone (CHOW-P), or a cafeteria diet with saline (CAFE-O) or pioglitazone (CAFE-P). The chow/cafeteria diets were administered for 35 days, and saline/pioglitazone (10 mg·kg body weight-1·day-1) was added in the last 14 days prior to euthanasia. CAFE-O animals had a higher mean final weight (372.5 ± 21.01 g) than CHOW-O (317.66 ± 25.11 g, P = 0.017) and CHOW-P (322.66 ± 28.42 g, P = 0.035) animals. Serum adiponectin levels were significantly higher in CHOW-P (55.91 ± 20.62 ng/mL) than in CHOW-O (30.52 ± 6.97 ng/mL, P = 0.014) and CAFE-O (32.54 ± 9.03 ng/mL, P = 0.027) but not in CAFE-P. Higher total serum ghrelin levels were observed in CAFE-P compared to CHOW-P animals (1.65 ± 0.69 vs 0.65 ± 0.36 ng/mL, P = 0.006). Likewise, acylated ghrelin levels were higher in CAFE-P (471.52 ± 195.09 pg/mL) than in CHOW-P (193.01 ± 87.61 pg/mL, P = 0.009) and CAFE-O (259.44 ± 86.36 pg/mL, P = 0.047) animals. In conclusion, a cafeteria diet can lead to a significant weight gain. Although CAFE-P animals exhibited higher ghrelin levels, this was probably related to food deprivation rather than to a direct pharmacological effect, possibly attenuating the increase in adiponectin levels. <![CDATA[<b>Prolonged acceptance of skin grafts induced by B cells places regulatory T cells on the histopathology scene</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000009&lng=en&nrm=iso&tlng=en The participation of regulatory T (Treg) cells in B cell-induced T cell tolerance has been claimed in different models. In skin grafts, naive B cells were shown to induce graft tolerance. However, neither the contribution of Treg cells to B cell-induced skin tolerance nor their contribution to the histopathological diagnosis of graft acceptance has been addressed. Here, using male C57BL/6 naive B cells to tolerize female animals, we show that skin graft tolerance is dependent on CD25+ Treg cell activity and independent of B cell-derived IL-10. In fact, B cells from IL-10-deficient mice were able to induce skin graft tolerance while Treg depletion of the host inhibited 100% graft survival. We questioned how Treg cell-mediated tolerance would impact on histopathology. B cell-tolerized skin grafts showed pathological scores as high as a rejected skin from naive, non-tolerized mice due to loss of skin appendages, reduced keratinization and mononuclear cell infiltrate. However, in tolerized mice, 40% of graft infiltrating CD4+ cells were FoxP3+ Treg cells with a high Treg:Teff (effector T cell) ratio (6:1) as compared to non-tolerized mice where Tregs comprise less than 8% of total infiltrating CD4 cells with a Treg:Teff ratio below 1:1. These results render Treg cells an obligatory target for histopathological studies on tissue rejection that may help to diagnose and predict the outcome of a transplanted organ. <![CDATA[<b>Effect of the 5-HT<sub>4 </sub>receptor and serotonin transporter on visceral hypersensitivity in rats</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000010&lng=en&nrm=iso&tlng=en Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT4 receptor and the serotonin transporter (SERT) as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times) between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT4 receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05) and increased 5-HT4 receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05). Treatment with fluoxetine (10 mg·kg-1·day-1, days 36-42), tegaserod (1 mg·kg-1·day-1, day 43), or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT4 receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01) but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654). These results indicate that both the 5-HT4 receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level. <![CDATA[<b>Comparison of the reliability of multifocal visual evoked cortical potentials generated by pattern reversal and pattern pulse stimulation</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000011&lng=en&nrm=iso&tlng=en This study compared the effectiveness of the multifocal visual evoked cortical potentials (mfVEP) elicited by pattern pulse stimulation with that of pattern reversal in producing reliable responses (signal-to-noise ratio >1.359). Participants were 14 healthy subjects. Visual stimulation was obtained using a 60-sector dartboard display consisting of 6 concentric rings presented in either pulse or reversal mode. Each sector, consisting of 16 checks at 99% Michelson contrast and 80 cd/m² mean luminance, was controlled by a binary m-sequence in the time domain. The signal-to-noise ratio was generally larger in the pattern reversal than in the pattern pulse mode. The number of reliable responses was similar in the central sectors for the two stimulation modes. At the periphery, pattern reversal showed a larger number of reliable responses. Pattern pulse stimuli performed similarly to pattern reversal stimuli to generate reliable waveforms in R1 and R2. The advantage of using both protocols to study mfVEP responses is their complementarity: in some patients, reliable waveforms in specific sectors may be obtained with only one of the two methods. The joint analysis of pattern reversal and pattern pulse stimuli increased the rate of reliability for central sectors by 7.14% in R1, 5.35% in R2, 4.76% in R3, 3.57% in R4, 2.97% in R5, and 1.78% in R6. From R1 to R4 the reliability to generate mfVEPs was above 70% when using both protocols. Thus, for a very high reliability and thorough examination of visual performance, it is recommended to use both stimulation protocols. <![CDATA[<b>Decreased levels of pNR1 S897 protein in the cortex of neonatal Sprague Dawley rats with hypoxic-ischemic or NMDA-induced brain damage</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000012&lng=en&nrm=iso&tlng=en Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA) receptor-1 at serine 897 (pNR1 S897) in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD), and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague Dawley rats (13.12 ± 0.34 g) were randomly divided into normal control, phosphate-buffered saline (PBS) cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group) were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P &gt; 0.05), whereas it was reduced in the ipsilateral cortex (P < 0.05). At 2 h after NMDA injection, the protein level of pNR1 S897 in the contralateral cortex was also not affected (P &gt; 0.05). The levels in the ipsilateral cortex were decreased, but the change was not significant (P &gt; 0.05). The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897. <![CDATA[<b>Psychological stress alters the ultrastructure and increases IL-1β and TNF-α in mandibular condylar cartilage</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000013&lng=en&nrm=iso&tlng=en Psychological factors can be correlated with temporomandibular disorders (TMDs), but the mechanisms are unknown. In the present study, we examined the microstructural changes and expression of proinflammatory cytokines in mandibular condylar cartilage of the temporomandibular joint (TMJ) in a psychological stress animal model. Male Sprague-Dawley rats (8 weeks old, 210 ± 10 g) were randomly divided into 3 groups: psychological stress (PS, N = 48), foot shock (FS, N = 24), and control (N = 48). After inducing psychological stress using a communication box with the FS rats for 1, 3, or 5 weeks, PS rats were sacrificed and compared to their matched control littermates, which received no stress and were killed at the same times as the PS rats. Body and adrenal gland weight were measured and corticosterone and adrenocorticotropic hormone levels were determined by radioimmunoassay. After hematoxylin-eosin staining for histological observation, the ultrastructure of the TMJ was examined by scanning electron microscopy. Transcription and protein levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were evaluated by ELISA and semi-quantitative RT-PCR. The PS group showed a significantly higher adrenal gland weight after 3 weeks of stress and higher hormone levels at weeks 1, 3, and 5. Histopathological changes and thinning cartilage were apparent at weeks 3 and 5. In the PS group, TNF-α increased at 1, 3, and 5 weeks and IL-1β increased significantly after 1 and 3 weeks of stress, and then decreased to normal levels by 5 weeks. Psychological stress increased plasma hormone levels and RT-PCR indicated increased IL-1β and TNF-α expression in the TMJ in a time-dependent manner. These results suggest that cytokine up-regulation was accompanied by stress-induced cartilage degeneration in the mandibular condyle. The proinflammatory cytokines play a potential role in initiating the cartilage destruction that eventually leads to the TMDs. <![CDATA[<b>A simple test of muscle coactivation estimation using electromyography</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000014&lng=en&nrm=iso&tlng=en In numerous motor tasks, muscles around a joint act coactively to generate opposite torques. A variety of indexes based on electromyography signals have been presented in the literature to quantify muscle coactivation. However, it is not known how to estimate it reliably using such indexes. The goal of this study was to test the reliability of the estimation of muscle coactivation using electromyography. Isometric coactivation was obtained at various muscle activation levels. For this task, any coactivation measurement/index should present the maximal score (100% of coactivation). Two coactivation indexes were applied. In the first, the antagonistic muscle activity (the lower electromyographic signal between two muscles that generate opposite joint torques) is divided by the mean between the agonistic and antagonistic muscle activations. In the second, the ratio between antagonistic and agonistic muscle activation is calculated. Moreover, we computed these indexes considering different electromyographic amplitude normalization procedures. It was found that the first algorithm, with all signals normalized by their respective maximal voluntary coactivation, generates the index closest to the true value (100%), reaching 92 ± 6%. In contrast, the coactivation index value was 82 ± 12% when the second algorithm was applied and the electromyographic signal was not normalized (P < 0.04). The new finding of the present study is that muscle coactivation is more reliably estimated if the EMG signals are normalized by their respective maximal voluntary contraction obtained during maximal coactivation prior to dividing the antagonistic muscle activity by the mean between the agonistic and antagonistic muscle activations. <![CDATA[<b>Behavioral meaningful opioidergic stimulation activates <i>kappa</i> receptor gene expression</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000015&lng=en&nrm=iso&tlng=en The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female reproduction <![CDATA[<b>Physical training prevents body weight gain but does not modify adipose tissue gene expression</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2012001000016&lng=en&nrm=iso&tlng=en The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns.