Scielo RSS <![CDATA[Food Science and Technology (Campinas)]]> vol. 34 num. 3 lang. pt <![CDATA[SciELO Logo]]> <![CDATA[<b>Prions</b>: <b>the danger of biochemical weapons</b>]]> The knowledge of biotechnology increases the risk of using biochemical weapons for mass destruction. Prions are unprecedented infectious pathogens that cause a group of fatal neurodegenerative diseases by a novel mechanism. They are transmissible particles that are devoid of nucleic acid. Due to their singular characteristics, Prions emerge as potential danger since they can be used in the development of such weapons. Prions cause fatal infectious diseases, and to date there is no therapeutic or prophylactic approach against these diseases. Furthermore, Prions are resistant to food-preparation treatments such as high heat and can find their way from the digestive system into the nervous system; recombinant Prions are infectious either bound to soil particles or in aerosols. Therefore, lethal Prions can be developed by malicious researchers who could use it to attack political enemies since such weapons cause diseases that could be above suspicion. <![CDATA[<b>Effects of sequential enzymatic hydrolysis on structural, bioactive and functional properties of <i>Phaseolus lunatus</i> protein isolate</b>]]> Significant initiatives exist within the global food market to search for new, alternative protein sources with better technological, functional, and nutritional properties. Lima bean (Phaseolus lunatus L.) protein isolate was hydrolyzed using a sequential pepsin-pancreatin enzymatic system. Hydrolysis was performed to produce limited (LH) and extensive hydrolysate (EH), each with different degrees of hydrolysis (DH). The effects of hydrolysis were evaluated in vitro in both hydrolysates based on structural, functional and bioactive properties. Structural properties analyzed by electrophoretic profile indicated that LH showed residual structures very similar to protein isolate (PI), although composed of mixtures of polypeptides that increased hydrophobic surface and denaturation temperature. Functionality of LH was associated with amino acid composition and hydrophobic/hydrophilic balance, which increased solubility at values close to the isoelectric point. Foaming and emulsifying activity index values were also higher than those of PI. EH showed a structure composed of mixtures of polypeptides and peptides of low molecular weight, whose intrinsic hydrophobicity and amino acid profile values were associated with antioxidant capacity, as well as inhibiting angiotensin-converting enzyme. The results obtained indicated the potential of Phaseolus lunatus hydrolysates to be incorporated into foods to improve techno-functional properties and impart bioactive properties. <![CDATA[<b>Chemometrics applied to the incorporation of omega-3 in tilapia fillet feed flaxseed flour</b>]]> This study evaluated the effect of adding flaxseed flour to the diet of Nile tilapia on the fatty acid composition of fillets using chemometrics. A traditional and an experimental diet containing flaxseed flour were used to feed the fish for 60 days. An increase of 18:3 n-3 and 22:6 n-3 and a decrease of 18:2 n-6 were observed in the tilapia fillets fed the experimental diet. There was a reduction in the n-6:n-3 ratio. A period of 45 days of incorporation caused a significant change in tilapia chemical composition. Principal Component Analysis showed that the time periods of 45 and 60 days positively contributed to the total content of n-3, LNA, and DHA, highlighting the effect of omega-3 incorporation in the treatment containing flaxseed flour. <![CDATA[<b>Effect of hydrocolloids on the physicochemical characteristics of yellow mombin structured fruit</b>]]> The technology for the production of restructured fruit with high contents of fruit pulp using hydrocolloids as binding agents has not been fully developed. This study evaluated the effect of mixtures of sodium alginate, low methoxy pectin, and gelatin on the characteristics of yellow mombin (Spondias mombin L.) fruit gels. The results of the central composite design showed that the models obtained, except for those of water activity and soluble solids, were predictive. Gelatin was the most important factor affecting firmness, pH, and the color parameters of the structured fruit pulp. <![CDATA[<b>Physicochemical properties and antioxidant activity of Tunisian date palm (<i>Phoenix dactylifera L.</i>) oil as affected by different extraction methods</b>]]> The chemical analysis of flesh and seed of date palm fruit (Kentichi) was evaluated. Carbohydrates were the predominant component in all studied date cultivars (~78.69-83.46 g/100g dry matter), followed by moisture content (~9.23-11.17%), along with moderate amount of fat (~0.56-7.10 g/100g dry matter), protein (~2.16-2.80 g/100g dry matter), and ash (~1.18-1.64 g/100 g dry matter). Some antioxidants (Ascorbic acid, total phenolic, total flavonoid, chlorophyll and carotenoids) were found in different values in both date fruit and seed. The physicochemical properties and antioxidant activity of both flesh and seed oil which was extracted using Hexane, Soxhlet and Modified Bligh - Dyer extraction methods were determined. The experimental results showed that temperature, different solvents and extraction time had significant effect on the yield of the date palm oil and physicochemical properties. Date Flesh oil showed an important free radical scavenging activity towards 1-1-diphenyl-2-picrylhydrazyl (DPPH) free radical. <![CDATA[<b>Production of probiotic fresh white cheese using co-culture with <i>Streptococcus thermophilus</i></b>]]> In this research, the probiotic Streptococcus thermophilus was inoculated into milk as co-culture to produce probiotic cheese. The effects of using Streptococcus thermophilus with other probiotic bacteria on cheese composition, and microbiological viability during 28 days of storage were investigated. Sensorial properties were determined only at 1st and 28th days of storage. The results showed that the use of Streptococcus thermophilus as co-culture in probiotic cheese production did not affect negatively the cheese components. Fat and dry matter properties of cheese weren't influenced by added probiotic bacteria. However, different level of pH, salt and lactic acid were detected. All probiotic bacteria were present in high levels throughout storage of cheeses, above 7 Log cfu.g- 1, threshold required for probiotic activity. Sensory panel showed that the highest average sensory evaluation points were recorded in cheeses made with Streptococcus thermophilus plus Lactobacillus casei, whereas other probiotic bacteria combinations had been affected less in regard to taste or appearance. <![CDATA[<b>Replacement of mechanically deboned chicken meat with its protein hydrolysate in mortadella-type sausages</b>]]> Mortadella-type sausage manufactured using mechanically deboned chicken meat were reformulated replacing MDCM with increasing amounts of MDCM protein hydrolysates (10%, 20%, and 30%), and their physicochemical, microbiological, and sensorial characteristics were evaluated for 60 days of storage at 4 °C. The higher substitutions resulted in sausages more susceptible to lipid oxidation with higher TBARS values during storage; however, these values were lower than the organoleptic perception threshold. The sausages were darker and less red, with lower lightness (L*) and redness (a*) values than those of the control treatment. They had soft texture, which was evidenced by both the instrumental and sensory analysis. Therefore, the formulation containing 10% of MDCM protein hydrolysates proved to be the most suitable for mortadella-type sausage elaboration. <![CDATA[<b>Chemical composition, fatty acid profile and bioactive compounds of guava seeds (<i>Psidium guajava</i> L.</b>)]]> This study aimed to characterize the chemical composition, determine the fatty acid profile, and quantify the bioactive compounds present in guava seed powder (Psidium guajava L.). The powder resulted from seeds obtained from guava pulp processing. The agro-industrial seeds from red guava cv. paluma were used, and they were donated by a frozen pulp fruit manufacturer. They contain varying amounts of macronutrients and micronutrients, with a high content of total dietary fiber (63.94 g/100g), protein (11.19 g/100g), iron (13.8 mg/100g), zinc (3.31 mg/100g), and reduced calorie content (182 kcal/100g). Their lipid profile showed a predominance of unsaturated fatty acids (87.06%), especially linoleic acid (n6) and oleic acid (n9). The powder obtained contained significant amounts of bioactive compounds such as ascorbic acid (87.44 mg/100g), total carotenoids (1.25 mg/100 g) and insoluble dietary fiber (63.55 g/100g). With regard to their microbiological quality, the samples were found suitable for consumption. Based on these results, it can be concluded that the powder produced has favorable attributes for industrial use, and that use of these seeds would be a viable alternative to prevent various diseases and malnutrition in our country and to reduce the environmental impact of agricultural waste. <![CDATA[<b>Nutritional characteristics of biofortified common beans</b>]]> Iron and zinc deficiency can cause anemia and alterations in the immune response and impair work capacity. To minimize this problem, biofortification has been developed to improve and/or maintain the nutritional status of the population. Beans are an important source of carbohydrates, proteins, and minerals. The objective of this study is to characterize biofortified beans, quantify the minerals in different cultivars, and determine mineral dialysis. Grains of raw and cooked beans were analyzed for moisture, protein, lipids, fiber, minerals, and in vitro availability using four treatments and one control. The data were analyzed using ANOVA, and the Tukey test (p<0.05). The chemical composition of the raw and cooked treatments showed a moisture content ranging from 13.4 to 81.4%, protein from 22.24 to 31.59%, lipids from 1.66 to 2.22%, fiber from 16.81 to 40.63%, carbohydrates from 27.80 to 34.78%, and ash from 4.1 to 4.82%. Different varieties of beans showed statistically significant differences in iron and zinc content compared to the control cultivar (Pérola). The iron content differed significantly from that of the Pérola cultivar in the raw treatment, while in the cooked treatment, the control cultivar did not differ from the Piratã. The same behavior was observed for the zinc content in both treatments. There was no significant difference between the cultivars in the treatments in terms of the content of the dialysis of Calcium (Ca), Iron (Fe), Magnesium (Mg), and Zinc (Zn). <![CDATA[<b>Extrusion of blends of cassava leaves and cassava flour</b>: <b>physical characteristics of extrudates</b>]]> A cassava-based puffed snack was produced using a single screw extruder to determine the effect of the raw material composition (cassava leaf flour and moisture) and the process parameters (extrusion temperature and screw speed) on the physical characteristics of an extruded-expanded snack. A central composite rotational design, including four factors with 30 treatments, was used with the following as dependent variables: expansion index, specific volume, water solubility index, water absorption index, color (L*, a*, b*), and hardness. Under conditions of low moisture content (12 to 14%), low percentage of cassava leaf flour (2 to 4%), and intermediate conditions of extrusion temperature (100°C) and screw speed (230rpm), it was possible to obtain puffed snack products with desirable characteristics. <![CDATA[<b>Carotenoids are related to the colour and lipid content of the pequi (<i>Caryocar brasiliense</i> Camb.) pulp from the Brazilian Savanna</b>]]> This study investigated the colour, proximate composition, bioactive compounds (phenolic and carotenoid contents), and antioxidant activity of the pulp of pequi from different regions of the Brazilian Savanna. The colour parameters and the lipid and carotenoid contents of the pulp were significantly different between the samples. The lipid content ranged from 135.4 to 322.5 g/kg. The pequi pulp showed high total phenolic content (1.8 to 3.3 mg GAE/g). The carotenoid amount ranged from 37 to 187 µg/g. The carotenoid content was significantly correlated with the colour and lipid content of the pequi pulp. The antioxidant activity showed a mean IC50 value of 197.9 µg/mL. The pequi pulp is rich in phenolic compounds and carotenoids and has a good antioxidant activity. Its colour is influenced by the carotenoid content, which can be predicted by regression models using routine colour parameters. <![CDATA[<b>Effect of modified atmosphere applied to minimally processed radicchio (</b><i><b>Cichorium</b> <b>intybus</b></i><b> L.) submitted to different sanitizing treatments</b>]]> Stability of minimally processed radicchio (Cichorium intybus L.) was evaluated under modified atmosphere (2% O2, 5% CO2, and 93% N2) on 3, 5, 7 and 10 days of storage at 5°C. The samples were hygienized in sodium hypochlorite or hydrogen peroxide solutions to identify the most effective sanitizing solution to remove microorganisms. Microbiological analysis was conducted to identify the presence of coliforms at 35°C and 45°C, mesophilic microorganisms, and yeast and mold. Physicochemical analyses of mass loss, pH, soluble solids, and total acidity were conducted. The color measurements were performed using a Portable Colorimeter model CR-400. The antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic methods. The sensory evaluation was carried out using a hedonic scale to test overall acceptance of the samples during storage. The sodium hypochlorite (150 mg.L-1) solution provided greater safety to the final product. The values of pH ranged from 6.17 to 6.25, total acidity from 0.405 to 0.435%, soluble solids from 0.5 to 0.6 °Brix, mass loss from 1.7 to 7.2%, and chlorophyll from 1.068 to 0.854 mg/100g. The antioxidant activity of radicchio did not show significant changes during the first 3 days of storage. The overall acceptance of the sample stored in the sealed package without modified atmosphere was 70%, while the fresh sample was obtained 77% of approval. Although the samples packaged under modified atmosphere had a higher acceptance score, the samples in sealed packages had satisfactory results during the nine days of storage. The use of modified atmosphere, combined with cooling and good manufacturing practices, was sufficient to prolong the life of minimally processed radicchio, Folha Larga cultivar, for up to ten days of storage. <![CDATA[<b>Assessing environmental impacts using a comparative LCA of industrial and artisanal production processes</b>: <b>"Minas Cheese" case</b>]]> This study uses the Life Cycle Assessment (LCA) methodology to evaluate and compare the environmental impacts caused by both the artisanal and the industrial manufacturing processes of "Minas cheese". This is a traditional cheese produced in the state of Minas Gerais (Brazil), and it is considered a "cultural patrimony" in the country. The high participation of artisanal producers in the market justifies this research, and this analysis can help the identification of opportunities to improve the environmental performance of several stages of the production system. The environmental impacts caused were also assessed and compared. The functional unit adopted was 1 kilogram (Kg) of cheese. The system boundaries considered were the production process, conservation of product (before sale), and transport to consumer market. The milk production process was considered similar in both cases, and therefore it was not included in the assessment. The data were collected through interviews with the producers, observation, and a literature review; they were ordered and processed using the SimaPro 7 LCA software. According to the impact categories analyzed, the artisanal production exerted lower environmental impacts. This can be justified mainly because the industrial process includes the pasteurization stage, which uses dry wood as an energy source and refrigeration. <![CDATA[<b>Characterization, physicochemical stability, and evaluation of in vitro digestibility of solid lipid microparticles produced with palm kernel oil and tristearin</b>]]> Solid lipid particles have been investigated by food researchers due to their ability to enhance the incorporation and bioavailability of lipophilic bioactives in aqueous formulations. The objectives of this study were to evaluate the physicochemical stability and digestibility of lipid microparticles produced with tristearin and palm kernel oil. The motivation for conducting this study was the fact that mixing lipids can prevent the expulsion of the bioactive from the lipid core and enhance the digestibility of lipid structures. The lipid microparticles containing different palm kernel oil contents were stable after 60 days of storage according to the particle size and zeta potential data. Their calorimetric behavior indicated that they were composed of a very heterogeneous lipid matrix. Lipid microparticles were stable under various conditions of ionic strength, sugar concentration, temperature, and pH. Digestibility assays indicated no differences in the release of free fatty acids, which was approximately 30% in all analises. The in vitro digestibility tests showed that the amount of palm kernel in the particles did not affect the percentage of lipolysis, probably due to the high amount of surfactants used and/or the solid state of the microparticles. <![CDATA[<b>Influence of different cultivars on oil quality and chemical characteristics of avocado fruit</b>]]> The objective of this paper was to determine the chemical composition of the avocado fruit of cultivars Fortuna, Collinson, and Barker and to carry out a detailed analysis of the fatty acid composition of the pulp, seed, and peel oils. The saturated fatty acid (SFA) of the pulp oils accounted for around 22.3, 29.4, and 41.3% of the total fatty acids in the Fortuna, Collinson and Barker cultivars, respectively, and these values indicate better quality of pulp oil of Fortuna and Collinson cultivars than that of the Barker cultivar. There was very little variation in the content monounsaturated fatty acids of the peel oils between the cultivars. However, the seed oil of the Collinson cultivar was the best since it contained the lowest (30.8% of total fatty acids) content of SFA, but it had very high concentrations of 9,12-octadecadienoic (23.9 to 29.4% of total fatty acids) and 9,12,15-octadecatrienoic (9.9 to 18.3% of total fatty acids) acids. <![CDATA[<b>Biochemical and color changes of fresh-cut melon (</b><i><b>Cucumis melo</b></i><b> L. cv. Galia) treated with UV-C</b>]]> The importance of minimally processed commodities in the retail groceries of most developed countries has been rising continuously during the last decades. Cantaloupe melon is used more than any other fruit in fresh-cut processing. Ultraviolet (UV) light has been extensively used to simulate biological stres in plants and for determining resistance mechanisms of plant tissues. In this study the effect of ultraviolet irradiation on some properties of fresh-cut cantalope melon was determined during storage. Freshly cut cantalope melons cubes treated with ultraviolet irradiation at the doses of 1, 2 or 3 min before storage, and then placed in a cold room at 5±1°C temperature and 85-90% RH. Hue angle values of control group is low compared to UV-C treated samples, whereas L values of is high. EL of UV treated samples higher than those of control group. Total soluble solids of fresh-cut melon samples in UC3 treatment increased during storage. The results indicate that UV-C treatments on fresh-cut cantaloupe melon cubes increased total soluble solids independently from water loss. <![CDATA[<b>Evaluation of jumbo squid (</b><i><b>Dosidicus gigas</b></i><b>) byproduct hydrolysates obtained by acid-enzymatic hydrolysis and by autohydrolysis in practical diets for Pacific white shrimp</b> <b>(<i>Litopenaeus vannamei</i>)</b>]]> The marine bioprocessing industry offers great potential to utilize byproducts for fish meal replacement in aquafeeds. Jumbo squid is an important fishery commodity in Mexico, but only the mantle is marketed. Head, fins, guts and tentacles are discarded in spite of being protein-rich byproducts. This study evaluated the use of two jumbo squid byproduct hydrolysates obtained by acid-enzymatic hydrolysis (AEH) and by autohydrolysis (AH) as ingredients in practical diets for shrimp. The hydrolysates were included at levels of 2.5 and 5.0% of the diet dry weight in four practical diets, including a control diet without hydrolysate. Shrimp growth and survival were not significantly affected by the dietary treatments. Postharvest quality of abdominal muscle was evaluated in terms of proximate composition and sensory evaluation. Significantly higher crude protein was observed in the muscle of shrimp fed the highest hydrolysate levels, AH 5% (204.8 g kg- 1) or AEH 5% (201.3 g kg- 1). Sensory analysis of cooked muscle showed significant differences for all variables evaluated: color, odor, flavor, and firmness. It was concluded that Jumbo squid byproducts can be successfully processed by autohydrolysis or acid-enzymatic hydrolysis, and that up to 5.0% of the hydrolysates can be incorporated into shrimp diets without affecting growth or survival. <![CDATA[<b>Stability of astaxanthin in yogurt used to simulate apricot color, under refrigeration</b>]]> The aim of this study was to incorporate astaxanthin to yogurts with different fat content to match apricot (Prunus armeniaca L.) color. The samples containing astaxanthin were stored at 5 ± 3 °C, and color stability and astaxanthin content were determined by colorimetry and high performance liquid chromatography (HPLC), respectively. Yogurt samples were analyzed in triplicate every 24 hours for one week and subsequently every week for 3 more weeks There were no significant differences (p < 0.05) between astaxanthin concentration values at 0 and 28 days for both samples; therefore, it can be said that the fat content in the yogurt had not effect on the stability of pigment. The low dispersion of the data showed uniformity in the three chromaticity coordinates L*, a*, b* throughout the storage period for both types of yogurt. Values of ∆E ≥ 5.0 were not obtained at any time during storage, indicating high stability of the pigment. <![CDATA[<b>Ability of a <i>Lactobacillus rhamnosus</i> strain cultured in milk whey based medium to bind aflatoxin B</b><b><sub>1</sub></b>]]> This study aimed to compare Lactobacillus rhamnosus growth in MRS (de Man, Rogosa and Sharpe) broth and a culture medium containing milk whey (MMW) and to evaluate aflatoxin B1 (AFB1) adsorption capacity by bacterial cells produced in both culture media. L. rhamnosus cells were cultivated in MRS broth and MMW (37 °C, 24 hours), and bacterial cell concentration was determined spectrophotometrically at 600 nm. AFB1 (1 µg/ml) adsorption assays were conducted using 1 x 10(10) non-viable L. rhamnosus cells (121 °C, 15 minutes) at pHs 3.0 and 6.0 and contact time of 60 minutes. AFB1 quantification was performed by High Performance Liquid Chromatography. Bacterial cell concentration in MMW was higher (9.84 log CFU/ml) than that in MRS broth (9.63 log CFU/ml). There were no significant differences between AFB1 binding results at the same pH value (3.0 or 6.0) for the cells cultivated in MRS broth (46.0% and 35.8%, respectively) and in MMW (43.7% and 25.8%, respectively), showing that MMW can adequately replace the MRS broth. Therefore, it can be concluded that the use of L. rhamnosus cells cultivated in MMW offers advantages such as reduction in large scale production costs, improvement of environmental sustainability, and being a practicable alternative for decontamination of food products susceptible to aflatoxin contamination. <![CDATA[<b>Adhesion and production of degrading enzymes by bacteria isolated from biofilms in raw milk cooling tanks</b>]]> Biofilms in milk cooling tanks compromise product quality even on farms. Due to the lack of studies of this topic, this study evaluated the microbiological conditions of raw milk cooling tanks on farms and characterized the microorganisms isolated from these tanks. Samples were wiped off with sterile swabs from seven milk cooling tanks in three different points in each tank. Mesophiles and psychrotrophic counts were performed in all samples. The isolation of Pseudomonas spp., Bacillus cereus and atypical colonies formed on selective media were also performed, totalizing 297 isolates. All isolates were tested for protease and lipase production and biofilm formation. Of the total isolates, 62.9% produced protease, 55.9% produced lipase, and 50.2% produced biofilm. The most widespread genus inside the milk cooling tank was Pseudomonas since it was not possible to associate this contamination with a single sampling point in the equipment. High counts of microorganisms were found in some cooling tanks, indicating poor cleaning of the equipment and providing strong evidences of microbial biofilm presence. Moreover, it is worth mentioning the milk potential contamination with both microbial cells and their degrading enzymes, which compromises milk quality. <![CDATA[<b>Characterization of commercial cooked hams according to physicochemical, sensory, and textural parameters using chemometrics</b>]]> Cooked ham is considered a high-value product due to the quality of its raw material. Although its consumption is still low in Brazil, it is increasing due to the rising purchasing power of sectors of the population. This study aimed to assess the microbiological, physicochemical, rheological, and sensory quality of cooked hams (n=11) marketed in Brazil. All samples showed microbiological results within the standards established by Brazilian legislation. Eight of the eleven samples studied met all the legal requirements; two samples violated the standards due to the addition of starch; one sample had lower protein content than the minimum required, and another one had sodium content higher than that stated on the label. The use of Hierarchical Cluster Analysis allowed the agglomeration of the samples into three groups with distinct quality traits and with significant differences in moisture content, chromaticity, syneresis, and heating and freezing loss. Principal Component Analysis showed that the samples which correlated to higher sensory acceptance regarding flavor and overall acceptability were those with higher moisture, protein, fat, and luminosity values. This study confirmed the efficacy of multivariate statistical techniques in assessing the quality of commercial cooked hams and in indicating the physicochemical parameters associated with the perception of product quality. <![CDATA[<b>Stability of porridge pre-mixture made with Brazil nut flour and green banana flour with and without milk powder</b>]]> The mixture of Brazil nut flour and green banana flour can improve the nutritional value of school meals, allowing for the use of regional ingredients derived from family agriculture. This study aimed to assess the stability of porridge pre-mixtures made with Brazil nut flour and green banana flour during six months of storage. Two types of pre-mixture were evaluated: with and without milk powder. These mixtures were packed in polyethylene/metallized polyester film, vacuum-sealed, and stored at room temperature. The products were evaluated for physicochemical composition, and every 30 days for moisture content, water activity, titratable acidity, pH, peroxide value and acidity of the lipid phase, total and thermotolerant coliforms, yeasts and molds, and sensory acceptance. There was no difference between the mixtures for the parameters evaluated. Moisture content, water activity, acidity of the lipid phase, and the yeast and mold count increased with storage time. The growth of yeasts and molds was more pronounced after 90 days of storage, when water activity reached the limit of 0.60. Although both products had good sensory acceptance throughout the period of study, it is recommended that the shelf life does not exceed 90 days. <![CDATA[<b>Physicochemical and sensory characteristics of snack made with minced Nile tilapia</b>]]> Nile tilapia is one of the major fish species cultivated worldwide and in Brazil. The tilapia fillet yield is between 30-35%, thus around 70% of waste is generated. A portion of this waste can be used to obtain minced fish, and the resulting product can be used as meat raw material to prepare fish snacks. The aim of this study was to produce fish snacks containing different inclusion levels (20, 30, and 40%) of minced fish obtained from Nile tilapia processing waste and evaluate their physicochemical characteristics and sensory acceptance. Protein content, ash, water activity, and hardness increased with increasing inclusion of minced fish. The scores obtained in the sensory evaluation were: flavor acceptance (from 7.2 to 5.7), texture (from 7.4 to 5.3), overall acceptance (from 7.1 to 5.9), and willingness to purchase (from 4.0 to 3.1). This study demonstrates that the inclusion of 20 to 40% of minced fish of Nile tilapia in snacks is well accepted and improves their nutritional value without affecting the physicochemical properties. <![CDATA[<b>Chemical composition and antioxidant activity of jatobá-do-cerrado (</b><i><b>Hymenaea stigonocarpa</b></i><b> Mart.) flour</b>]]> The Brazilian Savannah, known as "Cerrado," has an extensive biodiversity, but it is under explored. Among the native vegetables is the jatobá-do-cerrado (Hymenaea stigonocarpa Mart.), a legume with great potential for exploration for its content of dietary fiber. Legumes are an important source of nutrient compounds, such as phenolic compounds and vitamins that have antioxidant properties. This study aimed at determining the chemical composition and antioxidant activity of the jatobá flour. The jatobá flour showed high fiber content (insoluble and soluble fiber 47.8 and 12.8 g.100 g- 1, respectively), significant amounts of carotenoids such as beta-carotene and lutein, and some minerals such as calcium: 145 mg.100 g- 1, magnesium: 125 mg.100 g- 1, and potassium: 1352 mg.100 g- 1. The jatobá flour extracted with different solvents (water, methanol, and acetone) exhibited antioxidant activity by the DPPH, FRAP, and ORAC methods. The solvent used in the extraction affected the total phenolic content and antioxidant activity. Acetone extraction produced the best results. Therefore, the jatobá flour is an ingredient that can be used to develop new products with properties that promote health. <![CDATA[<b>Molecular screening of bovine raw milk for the presence of Shiga toxin-producing <i>Escherichia coli</i> (STEC) on dairy farms</b>]]> Milkborne transmission of Shiga toxin- producing Escherichia coli (STEC) has raised considerable concern due to recent outbreaks worldwide and poses a threat to public health. The aim of this study was to develop a sensitive and specific multiplex PCR assay to detect the presence of STEC in bovine raw milk. To identify E. coli (ATCC 25922) contamination, the gene uspA was used, and PCR sensitivity and specificity were accessed by testing diluted samples ranging from 2 to 2.0 × 10(6) CFU/mL. To detect STEC, the stx1 and stx2 genes were selected as targets. After reaction standardization, the multiplex assay was tested in raw milk collected from 101 cows on dairy farms. PCR assay for E. coli detection had a specificity of 100% and sensitivity of 79% (P<0.0001), with a lower detection limit of 2 CFU/mL. Multiplex PCR assay had 100% sensitivity for E. coli positive raw milk samples, and 31.1% were contaminated with STEC, 28.3% of stx2, and 1.9% of stx1. The multiplex PCR assay described in the present study can be employed to identify and screen E. coli harboring stx1 and stx2 genes in raw milk on dairy farms and in industries. <![CDATA[<b>Physicochemical, microbiological and sensory evaluation of a bioactive food blend</b>]]> The potential of functional foods to decrease the risks of chronic non-communicable diseases has motivated the development of products with beneficial effects on fat and carbohydrate metabolism. The present study aimed at analyzing the physicochemical, microbiological, and sensory properties of a bioactive food blend developed to help the nutritional therapy provided to hypolipidemic and hyperglycemic patients with HIV/AIDS treated with antiretroviral therapy. The food blend was evaluated for moisture, protein, carbohydrate, fats, fixed mineral residue, total fiber content, and fatty acid composition, according to the standards established by the Instituto Adolfo Lutz. Food safety was assessed by microbiological analyses for Bacillus cereus, Salmonella spp, and coliforms. Sensory acceptance and intention to purchase were also evaluated. The food blend showed good nutritional potential, with low atherogenicity and thrombogenicity indexes, good macronutrient balance, and high energy value. The adoption of Good Manufacturing Practices (GMP) resulted in a product suitable for consumption. With respect to sensory aspects, the food blend showed satisfactory indexes of acceptability and promising marketing potential. <![CDATA[<b>Chemical composition and effects of micronized corn bran on iron bioavailability in rats</b>]]> The degermination of corn grains by dry milling generates 5% of a fibrous residue. After segregation and micronization, corn bran becomes a potential source of dietary fiber consumption. However, its effect on iron bioavailability has not been reported in the literature. The objective of the present study was to determine the nutritional composition of corn bran and its effects on iron bioavailability using the hemoglobin depletion-repletion method in rats. The animals were divided into two groups: cellulose (control) and corn bran (experimental). The bran had high content of total dietary fiber, especially the insoluble fraction, and low phytate content. Hemoglobin uptake did not differ between groups at the end of repletion period, and the iron relative bioavailability value of the corn bran diet was 104% in comparison to that of the control group. The product evaluated proved to be a potential source of dietary fiber and it showed no negative effects on iron bioavailability. <![CDATA[<b>Evaluation of allicin stability in processed garlic of different cultivars</b>]]> This research aimed at evaluating the suitability of five different garlic cultivars for the processing of unsalted garlic paste, chopped fried garlic, and fried sliced garlic. The concentration of allicin in the products was evaluated immediately after processing and at 45-day intervals during 180 days of storage. Allicin concentrations in raw garlic of the varieties under study differed (20.73 a 24.31mg of allicin g- 1 garlic). Stability exhibited a similar between the varieties according to the type of processing utilized. Processing into paste was more favorable to the preservation of allicin than the other processes. The amount of allicin lost during the process to obtain paste for the different varieties was less than 9.5%, and it reached a maximum loss of 22% for the commercial varieties during storage (180 days). All fried garlic samples showed a decrease by 99% in the content of allicin right after processing. The processing of garlic in the form of acidified paste preserved its bioactive characteristics during storage. <![CDATA[<b>Characterization of goat milk and potentially symbiotic non-fat yogurt</b>]]> Combining prebiotics and probiotic microorganisms improve quality in the formulation of foods. In this paper, the characteristics of goat milk and symbiotic yogurt were studied. Raw goat milk was analyzed and the skimming process was optimized. For the formulation of a potentially non-fat symbiotic yogurt made with skimmed goat milk, inulin, gelatin, sugar, and Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei subsp. rhamnoshus. Chemical characteristics, acceptability, and viability of lactic acid bacteria and probiotic culture were assessed. The protein and fat content of the raw milk was 2.90 and 3.56 g/100 mL, respectively. The optimum skimming process was obtained at 9,800 rpm and 4 °C for 15 minutes. The product formulated had a protein and fat content of 4.04 to 0.04 g/100 mL, good sensory properties, and acceptability of 95%. The lactic bacteria count was 9 × 10(7) CFU mL- 1, and probiotic culture count was higher than 1 × 10(6) CFU mL- 1, which guarantees their effect and capacity to survive in the digestive tract and spread in the intestine. The yogurt was stable during the 21 days of storage. Therefore, this study shows that goat milk yogurt is an adequate delivery vehicle of the probiotic culture L. casei and inulin. <![CDATA[<b>Bioactive and volatile organic compounds in Southern Brazilian blackberry (</b><i><b>Rubus Fruticosus</b></i><b>) fruit cv. Tupy</b>]]> Blackberry (Rubus fruticosus, cultivar Tupy), an expanding fruit crop in southern Brazil, is greatly appreciated for its flavor and bioactive potential with limited characterization of its metabolite content. The purpose of this study was to characterize the bioactive and volatile organic compound (VOC) content of mature blackberry fruit of cultivar Tupy. Gallic acid, (-)-epicatechin, ferulic acid, and quercetin were the main phenolic compounds found in mature fruit. Among the VOCs identified in 'Tupy' blackberry were important flavor components characteristic of fruit berries, including hydrocarbons, alcohols, aldehydes, ketones, esters, and terpenoids. Some of the VOCs had not been previously found in blackberry, while others have been associated with typical blackberry flavor. <![CDATA[<b>Erratum</b>]]> Blackberry (Rubus fruticosus, cultivar Tupy), an expanding fruit crop in southern Brazil, is greatly appreciated for its flavor and bioactive potential with limited characterization of its metabolite content. The purpose of this study was to characterize the bioactive and volatile organic compound (VOC) content of mature blackberry fruit of cultivar Tupy. Gallic acid, (-)-epicatechin, ferulic acid, and quercetin were the main phenolic compounds found in mature fruit. Among the VOCs identified in 'Tupy' blackberry were important flavor components characteristic of fruit berries, including hydrocarbons, alcohols, aldehydes, ketones, esters, and terpenoids. Some of the VOCs had not been previously found in blackberry, while others have been associated with typical blackberry flavor.