Scielo RSS <![CDATA[Scientia Agricola]]> vol. 69 num. 4 lang. en <![CDATA[SciELO Logo]]> <![CDATA[<b>Greenhouse tomato production with electricity generation by roof-mounted flexible solar panels</b>]]> The integration of renewable energy sources into greenhouse crop production in southeastern Spain could provide extra income for growers. Wind energy could be captured by small to medium-sized wind turbines, gas could be produced from biomass, and solar energy could be gathered by solar panels. The aim of this study was to examine the effect of flexible solar panels, mounted on top of a greenhouse for electricity production, on yield and fruit quality of tomatoes (Solanum lycopersycum L., cv Daniela). This study was undertaken in a commercial raspa y amagado greenhouse, typical of the Almería region (Spain). Tomato plantlets were planted at a density of 0.75 plants m-2. The flexible solar panels were mounted on two parts of the roof in different arrangements (T1 and T2), each blacking out 9.8 % of its surface area. A control area (T0 arrangement) was fitted with no panels. No difference was found in terms of total or marketable production under these three arrangements, although fruit mean mass and maximum diameter of T0 were significantly greater than T1 and T2. Fruit in T0 matured earlier with more intense color compared with those in T1 and T2. However, these differences had no effect on price as the tomatoes produced under three conditions fell into the same commercial class (G class; diameter 67-81 mm). Solar panels covering 9.8 % roof area of the greenhouse did not affect yield and price of tomatoes despite of their negative effect on fruit size and color. <![CDATA[<b>Analytical and numerical comparisons of two methods of estimation of additive × additive interaction of QTL effects</b>]]> Epistasis (additive × additive interaction) plays an important role in the genetic architecture of complex traits. This study presents analytical and numerical comparisons of two methods of estimation of additive × additive interaction of QTL effects. In the first method, we observed only the plant phenotype, while in the second method we have additional information from the molecular markers observations. In this study, two data sets were analyzed: i) 150 barley (Hordeum vulgare L.) doubled-haploid lines derived from the cross Steptoe × Morex and ii) 145 doubled-haploid lines of barley obtained from the cross Harrington × TR306. In total, 153 sets of observations were analyzed. The additive × additive interaction effect calculated on the basis of the marker observations is smaller than the total additive × additive interaction effect obtained from phenotypic observations only. <![CDATA[<b>Physiological and symbiotic diversity of Cupriavidus necator strains isolated from nodules of Leguminosae species</b>]]> Biological nitrogen fixation, performed by diazotrophic bacteria, plays an important role in the maintenance of agricultural systems, as it contributes with significant amounts of the nitrogen (N) needed for plant growth, totally or partially exempting the use of industrial N fertilisers. Twenty-five bacterial strains isolated from nodules of Leucaena leucocephala and Phaseolus vulgaris trap plants were studied. These nodules were formed after inoculation with suspensions of soil samples collected close to the root system of Sesbania virgata. In previous studies, these bacteria were identified as Cupriavidus necator. This study aimed to evaluate the ability of these strains to fix N2 in the free-living state and to use carbon (C) sources; their resistance to antibiotics; growth in media with different pH values and salt concentrations and symbiotic efficiency with L. leucocephala and P. vulgaris. In each test, these strains were compared to C. taiwanensis LMG 19424T. Although a high variability regarding antibiotic resistance, salt tolerance and use of C sources were observed among the 25 C. necator strains, a large group behaved similar regarding salt tolerance (20 strains) and antibiotic resistance (22 strains). C. necator strains behaved in a different way of LMG 19424T. Only one of the 25 strains studied, UFLA02-69, was not able to establish symbiosis with its trap species, P. vulgaris. Only the strains LMG19424T and UFLA01-672 were efficient in symbiosis with L. leucocephala. The ability to use C sources, grow in different pHs and salt concentrations and resistance to several antibiotics, may grant high saprophytic competence and greater competitivity to these strains in relation to the native Leguminosae-nodulating bacterial populations, suggesting potential use in inoculant strain selection studies for legumes cultivated in soils with a wide range of pH and salt concentrations. <![CDATA[Rhizosphere pH and phosphorus forms in an Oxisol cultivated with soybean, brachiaria grass, millet and sorghum]]> Plants have shown different responses to fertilization with rock phosphate, including responses through alteration of the attributes of rhizospheric soil. The objective of this study was to evaluate soil pH alterations and alterations in the contents of forms of phosphorus in the rhizosphere of soil fertilized with rock phosphate as a result of cultivation of species of plants. An experiment was developed under greenhouse conditions to evaluate alterations in the pH and in the forms of phosphorus in the rhizosphere of an Oxisol fertilized with rock phosphate and cultivated with four species. Treatments consisted of the cultivation of four species of soybean - Glycine max (L.) Merrill, brachiaria grass - Brachiaria brizantha Hochst Stapf, millet - Pennisetum glaucum (L.) R. Brown, and sorghum - Sorghum bicolor (L.) Moench grown in PVC columns filled with soil and divided with a nylon screen (25 µm mesh) to impede root growth in part of the column. After 45 days of cultivation, the soil was divided into the layers of 0-1, 1-2, 2-3, 3-4, 4-5, 5-7, 7-9, and 9-14 mm from the rhizoplane and air dried to determine pH and P contents through Hedley fractionation. In the 1-2 and 2-3 mm layers, soybean cultivation caused an increase in pH when compared to the control treatment (without plants). In the other layers, there were no alterations in pH due to cultivation of plants. The cultivation of millet, brachiaria grass, and sorghum reduced the inorganic P content in the most labile forms only in the 0-1 mm layer from the rhizoplane. <![CDATA[<b>Application of<i> s</i>emi-selective mediums in routine diagnostic testing of<i> Pseudomonas savastanoi </i>pv. <i>phaseolicola</i> on common bean seeds</b>]]> Halo blight, caused by Pseudomonas savastanoi pv. phaseolicola (Psp), is considered to be an important bacterial disease on common bean (Phaseolus vulgaris L.) in Serbia. Use of pathogen-free seeds is one of the most effective control measures against this disease. The aim of this study was to evaluate a detection method for Psp on untreated common bean seeds (23 genotypes) from commercial crops grown within Serbia. Detection of this pathogen was made by plating onto the modified sucrose peptone (MSP) and Milk Tween (MT) semi-selective mediums from soaked whole common bean seed. Colonies growing on the MSP medium were light yellow, convex and shiny, whereas on the MT medium, they were creamy white, flat and circular. The pathogenicity of the obtained strains was confirmed by the inoculation of germinated bean seed. The isolates recovered from the seed assay were further confirmed to be Psp by using both Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (Nested-PCR) detection methodologies. The International Seed Testing Association (ISTA) method selected for this work was found to be effective in detecting the presence of Psp in common bean seed. The bacterium Psp was detected in only two of the 23 seed samples analyzed by this method, which shows that the bacterium is not widespread in Serbia. <![CDATA[<b>First record of damage by an insect pest in a commercial amaranth crop in Brazil</b>]]> Insect pests have not been recorded for amaranth (Amaranthus cruentus L.) in Brazil. Generalized plant lodging was observed after the grain-filling period in an irrigated commercial amaranth crop (7 ha), located in Cristalina, state of Goiás (Brazil), which was cultivated between Aug. and Dec. 2009. Almost all sampled plants presented internal galleries bored by lepidopteran larvae. The larvae were reared, and the adults were identified as Herpetogramma bipunctalis (F.) (Crambidae). This is the first report of an insect pest causing significant damage in a commercial amaranth crop in Brazil, which indicates the need to develop pest management strategies in order to support the increased production in Brazil. <![CDATA[<b>Phenology of the oil palm interspecific hybrid <i>Elaeis oleifera</i> × <i>Elaeis guineensis</i></b>]]> Oil palm is one of the most important oil crops in the world. Because of its high productivity and perennial nature, it has been expanding quickly. Commercial plantations consist mostly of the African palm E. guineensis Jacq. However, producers in Latin America are increasingly planting the O × G interspecific hybrid, a cross between African palm (E. guineensis) and the American palm (E. oleifera (Kunth) Cortés). This interspecific hybrid has emerged as a promising solution to diseases such as the bud rot of oil palm because of the apparent partial resistance of this genotype to the disease. This work studied and described the phenology of the O × G interspecific hybrid. The phenology stages were coded using the BBCH scale. The scale for the phenophases was defined using a three-digit code. Due to the nature of the palm, no descriptions were used for stage two (formation of side shoots/tillering) and stage four (development of harvestable vegetative plant parts or vegetative reproductive organs) because these stages do not apply to oil palm. The scale was constructed using germinating seeds, pre-nursery and nursery plants and five year-old palms. For the description of the stem elongation, different age palms of the same O × G hybrid were used. Observations were performed during an 18-month period. Additionally, the interval for the change from one phenology stage to another was determined both in days and degree-days (DD). The interspecific O × G hybrid required 6408 DD from when the spear leaf unfolds until the bunch was ripened and harvested, and 4427.6 DD from leaf unfolding to anthesis. <![CDATA[<b>Stingless bees damage broccoli inflorescences when collecting fibers for nest building</b>]]> The stingless bee Trigona spinipes (Fabricius, 1793) (Hymenoptera: Apidae) is an important pollinator for various crops, but constitutes an occasional pest of other plant species since it causes injury to leaves, stems, flowers and fruits while collecting nest materials. The aim of the present study was to determine the damage caused by T. spinipes to a broccoli (Brassica oleracea L. var. italica, Brassicaceae) growing on an organic farm. A significant number of plants (72.5 %) presented damaged inflorescences, while 39% of all of the inflorescences suffered some degree of injury. The activities of T. spinipes caused scarifications on the stems of the inflorescences, and these typically evolved to epidermal cicatrices up to 10 mm wide. In some cases, the lesions were sufficiently deep to cause partial destruction of the vascular tissues, and this lead to thinner (< 5 mm diameter) floral stems that may collapse. To the best of our knowledge, this is the first report concerning the attack of broccoli plants by T. spinipes. The results obtained should serve to highlight the possibility that stingless bees could be responsible for direct and/or indirect damage to vegetable crops, and to stimulate the development of control strategies for these incidental pests.