Scielo RSS <![CDATA[Genetics and Molecular Biology]]> vol. 37 num. 1 lang. pt <![CDATA[SciELO Logo]]> <![CDATA[<b>ELAG</b>: <b>10 successful years</b>]]> <![CDATA[<b>The challenges of organizing an international course in Latin America</b>]]> The Latin American School of Human and Medical Genetics (ELAG) is the main course of its kind in the genetics field in Latin America. Here we describe the main challenges regarding the organization of such event, including how we obtain funding and how we proceed with student selection. Thus, we aim to share our experience with other groups that intend to follow this format to create similar events in other areas in this region of the world. <![CDATA[<b>Interethnic admixture and the evolution of Latin American populations</b>]]> A general introduction to the origins and history of Latin American populations is followed by a systematic review of the data from molecular autosomal assessments of the ethnic/continental (European, African, Amerindian) ancestries for 24 Latin American countries or territories. The data surveyed are of varying quality but provide a general picture of the present constitution of these populations. A brief discussion about the applications of these results (admixture mapping) is also provided. Latin American populations can be viewed as natural experiments for the investigation of unique anthropological and epidemiological issues. <![CDATA[<b>Genealogical data in population medical genetics</b>: <b>field guidelines</b>]]> This is a guide for fieldwork in Population Medical Genetics research projects. Data collection, handling, and analysis from large pedigrees require the use of specific tools and methods not widely familiar to human geneticists, unfortunately leading to ineffective graphic pedigrees. Initially, the objective of the pedigree must be decided, and the available information sources need to be identified and validated. Data collection and recording by the tabulated method is advocated, and the involved techniques are presented. Genealogical and personal information are the two main components of pedigree data. While the latter is unique to each investigation project, the former is solely represented by gametic links between persons. The triad of a given pedigree member and its two parents constitutes the building unit of a genealogy. Likewise, three ID numbers representing those three elements of the triad is the record field required for any pedigree analysis. Pedigree construction, as well as pedigree and population data analysis, varies according to the pre-established objectives, the existing information, and the available resources. <![CDATA[<b>From rumors to genetic isolates</b>]]> Here we propose a registration process for population genetic isolates, usually geographic clusters of genetic disorders, based on the systematic search of rumors, defined as any type of account regardless of its reliability. Systematically ascertained rumors are recorded, and validated through a progressive process of pre-established steps. This paper outlines the conceptual basis for this approach and presents the preliminary results from a rumor-based nationwide registry of genetically isolated populations, named CENISO (Censo Nacional de Isolados), operating in Brazil since 2009. During the first four years of its existence (2009-2013), a total of 191 Rumors were registered and validated, resulting in a prevalence rate of one per million inhabitants of Brazil. When the five statutory geographic regions of Brazil were considered, more Rumors were registered for the Northeast (2.11; 1.74-2.54 per 10(6)) than for the remaining four regions, North, Center-West, Southeast, and South, which did not differ among themselves. About half (86/191) of the recorded rumors were proven to be geographic clusters; of these disorders, 58 were autosomal recessive, 17 autosomal dominant, 5 X-linked, 3 multifactorial, and one environmental (thalidomide embryopathy). <![CDATA[<b>Human molecular cytogenetics</b>: <b>from cells to nucleotides</b>]]> The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods, cytogeneticists have used a range of technologies to study the association between visible chromosome rearrangements and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable number of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful and informative complement to other molecular and genomic approaches. This manuscript does not present a detailed history of the development of molecular cytogenetics; however, references to historical reviews and experiments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the technologies used to identify chromosomal rearrangements and copy number changes, and the applications for cytogenetics in biomedical diagnosis and research are presented and discussed. <![CDATA[<b>New microdeletion and microduplication syndromes</b>: <b>a comprehensive review</b>]]> Several new microdeletion and microduplication syndromes are emerging as disorders that have been proven to cause multisystem pathologies frequently associated with intellectual disability (ID), multiple congenital anomalies (MCA), autistic spectrum disorders (ASD) and other phenotypic findings. In this paper, we review the "new" and emergent microdeletion and microduplication syndromes that have been described and recognized in recent years with the aim of summarizing their main characteristics and chromosomal regions involved. We decided to group them by genomic region and within these groupings have classified them into those that include ID, MCA, ASD or other findings. This review does not intend to be exhaustive but is rather a quick guide to help pediatricians, clinical geneticists, cytogeneticists and/or molecular geneticists. <![CDATA[<b>DNA repair diseases</b>: <b>what do they tell us about cancer and aging?</b>]]> The discovery of DNA repair defects in human syndromes, initially in xeroderma pigmentosum (XP) but later in many others, led to striking observations on the association of molecular defects and patients' clinical phenotypes. For example, patients with syndromes resulting from defective nucleotide excision repair (NER) or translesion synthesis (TLS) present high levels of skin cancer in areas exposed to sunlight. However, some defects in NER also lead to more severe symptoms, such as developmental and neurological impairment and signs of premature aging. Skin cancer in XP patients is clearly associated with increased mutagenesis and genomic instability, reflecting the defective repair of DNA lesions. By analogy, more severe symptoms observed in NER-defective patients have also been associated with defective repair, likely involving cell death after transcription blockage of damaged templates. Endogenously induced DNA lesions, particularly through oxidative stress, have been identified as responsible for these severe pathologies. However, this association is not that clear and alternative explanations have been proposed. Despite high levels of exposure to intense sunlight, patients from tropical countries receive little attention or care, which likely also reflects the lack of understanding of how DNA damage causes cancer and premature aging. <![CDATA[<b>Prevalence and impact of founder mutations in hereditary breast cancer in Latin America</b>]]> Approximately 10% of all cancers are considered hereditary and are primarily caused by germline, high penetrance mutations in cancer predisposition genes. Although most cancer predisposition genes are considered molecularly heterogeneous, displaying hundreds of different disease-causing sequence alterations, founder mutations have been identified in certain populations. In some Latin American countries, founder mutations associated with increased risk of breast and other cancers have been described. This is particularly interesting considering that in most of these countries, populations are highly admixed with genetic contributions from native populations and from the influx of several distinct populations of immigrants. In this article, we present a review of the scientific literature on the subject and describe current data available on founder mutations described in the most common breast cancer predisposition genes: BRCA1, BRCA2 and TP53. <![CDATA[<b>Impact of NGS in the medical sciences</b>: <b>genetic syndromes with an increased risk of developing cancer as an example of the use of new technologies</b>]]> The increased speed and decreasing cost of sequencing, along with an understanding of the clinical relevance of emerging information for patient management, has led to an explosion of potential applications in healthcare. Currently, SNP arrays and Next-Generation Sequencing (NGS) technologies are relatively new techniques used to scan genomes for gains and losses, losses of heterozygosity (LOH), SNPs, and indel variants as well as to perform complete sequencing of a panel of candidate genes, the entire exome (whole exome sequencing) or even the whole genome. As a result, these new high-throughput technologies have facilitated progress in the understanding and diagnosis of genetic syndromes and cancers, two disorders traditionally considered to be separate diseases but that can share causal genetic alterations in a group of developmental disorders associated with congenital malformations and cancer risk. The purpose of this work is to review these syndromes as an example of a group of disorders that has been included in a panel of genes for NGS analysis. We also highlight the relationship between development and cancer and underline the connections between these syndromes. <![CDATA[<b>Molecular analysis of holoprosencephaly in South America</b>]]> Holoprosencephaly (HPE) is a spectrum of brain and facial malformations primarily reflecting genetic factors, such as chromosomal abnormalities and gene mutations. Here, we present a clinical and molecular analysis of 195 probands with HPE or microforms; approximately 72% of the patients were derived from the Latin American Collaborative Study of Congenital Malformations (ECLAMC), and 82% of the patients were newborns. Alobar HPE was the predominant brain defect in almost all facial defect categories, except for patients without oral cleft and median or lateral oral clefts. Ethmocephaly, cebocephaly, and premaxillary agenesis were primarily observed among female patients. Premaxillary agenesis occurred in six of the nine diabetic mothers. Recurrence of HPE or microform was approximately 19%. The frequency of microdeletions, detected using Multiplex Ligation-dependant Probe Amplification (MLPA) was 17% in patients with a normal karyotype. Cytogenetics or QF-PCR analyses revealed chromosomal anomalies in 27% of the probands. Mutational analyses in genes SHH, ZIC2, SIX3 and TGIF were performed in 119 patients, revealing eight mutations in SHH, two mutations in SIX3 and two mutations in ZIC2. Thus, a detailed clinical description of new HPE cases with identified genetic anomalies might establish genotypic and phenotypic correlations and contribute to the development of additional strategies for the analysis of new cases. <![CDATA[<b>Genetic counseling and presymptomatic testing programs for Machado-Joseph disease</b>: <b>lessons from Brazil and Portugal</b>]]> Machado-Joseph disease (MJD) is an autosomal dominant, late-onset neurological disorder and the most common form of spinocerebellar ataxia (SCA) worldwide. Diagnostic genetic testing is available to detect the disease-causing mutation by direct sizing of the CAG repeat tract in the ataxin 3 gene. Presymptomatic testing (PST) can be used to identify persons at risk of developing the disease. Genetic counseling provides patients with information about the disease, genetic risks, PST, and the decision-making process. In this study, we present the protocol used in PST for MJD and the relevant observations from two centers: Brazil (Porto Alegre) and Portugal (Porto). We provide a case report that illustrates the significant ethical and psychological issues related to PST in late-onset neurological disorders. In both centers, counseling and PST are performed by a multidisciplinary team, and genetic testing is conducted at the same institutions. From 1999 to 2012, 343 individuals sought PST in Porto Alegre; 263 (77%) of these individuals were from families with MJD. In Porto, 1,530 individuals sought PST between 1996 and 2013, but only 66 (4%) individuals were from families with MJD. In Brazil, approximately 50% of the people seeking PST eventually took the test and received their results, whereas 77% took the test in Portugal. In this case report, we highlight several issues that might be raised by the consultand and how the team can extract significant information. Literature about PST testing for MJD and other SCAs is scarce, and we hope this report will encourage similar studies and enable the implementation of PST protocols in other populations, mainly in Latin America. <![CDATA[<b>Reprogenetics</b>: <b>preimplantational genetics diagnosis</b>]]> Preimplantational Genetics Diagnosis (PGD) is requested by geneticists and reproductive specialists. Usually geneticists ask for PGD because one or both members of the couple have an increased genetic risk for having an affected offspring. On the other hand, reproductive specialists ask for embryo aneuploidy screening (PGS) to assures an euploid embryo transfer, with the purpose to achieve an ongoing pregnancy, although the couple have normal karyotypes. As embryonic aneuploidies are responsible for pre and post implantation abortions, it is logical to considerer that the screening of the embryonic aneuploidies prior to embryo transfer could improve the efficiency of the in vitro fertilization procedures. Nevertheless, it is still premature to affirm this until well-designed clinical trials were done, especially in women of advanced age where the rate of embryos with aneuploidies is much greater. Although the indications of PGD are similar to conventional prenatal diagnosis (PND), PGD has less ethical objections than the PND. As with the PGD/PGS results only unaffected embryos are transferred, both methods can avoid the decision to interrupt the pregnancy due to a genetic problem; this makes an important difference when compared to conventional prenatal diagnosis. <![CDATA[<b>The new world of RNAs</b>]]> One of the major developments that resulted from the human genome sequencing projects was a better understanding of the role of non-coding RNAs (ncRNAs). NcRNAs are divided into several different categories according to size and function; however, one shared feature is that they are not translated into proteins. In this review, we will discuss relevant aspects of ncRNAs, focusing on two main types: i) microRNAs, which negatively regulate gene expression either by translational repression or target mRNA degradation, and ii) small interfering RNAs (siRNAs), which are involved in the biological process of RNA interference (RNAi). Our knowledge regarding these two types of ncRNAs has increased dramatically over the past decade, and they have a great potential to become therapeutic alternatives for a variety of human conditions. <![CDATA[<b>A snapshot of gene therapy in Latin America</b>]]> Gene therapy attempts the insertion and expression of exogenous genetic material in cells for therapeutic purposes. Conceived in the 1960s, gene therapy reached its first clinical trial at the end of the 1980s and by December 2013 around 600 genuine open clinical trials of gene therapy were registered at NIH Clinical Trials Database. Here, we summarize the current efforts towards the development of gene therapy in Latin America. Our survey shows that the number of scientists involved in the development of gene therapy and DNA vaccines in Latin America is still very low. Higher levels of investment in this technology are necessary to boost the advancement of innovation and intellectual property in this field in a way that would ease both the social and financial burden of various medical conditions in Latin America. <![CDATA[<b>Genetics and human rights</b>: <b>Two histories: restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil</b>]]> Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to identity. In this article, we report the use of genetics to support the right to identity in two historical circumstances. First, we report the search, localization, DNA testing and genetic identification of 110 individuals who were appropriated as babies by the Argentine military dictatorship of 1976-1983 in the context of savage repression and egregious violations of human rights, including forced disappearance and suppression of identity. Second, we report on the repair of right-to-identity violations of hundreds of individuals that occurred during the process of compulsory isolation of patients with leprosy in Brazil through the Program "Reencontro", which has led to the genetic identification of 158 pairs of individuals who previously did not have proof that they were siblings. The high value placed on genetic identification by victims of identity suppression did not counter the prevailing view that genetic factors were not more important than other factors (social, emotional, educational, cultural, spiritual) in determining the complex phenomenon of personal identity. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics for the benefit of mankind. <![CDATA[<b>RELAGH - the challenge of having a scientific network in Latin America</b>: <b>an account from the presidents</b>]]> Latin America and the Caribbean region make up one of the largest areas of the world, and this region is characterized by a complex mixture of ethnic groups sharing Iberian languages. The area is comprised of nations and regions with different levels of social development. This region has experienced historical advances in the last decades to increase the minimal standards of quality of life; however, several factors, such as concentrated populations in large urban centers and isolated and poor communities, still have an important impact on medical services, particularly genetics services. Latin American researchers have greatly contributed to the development of human genetics and historic inter-ethnic diversity, and the multiplicity of geographic areas are unique for the study of gene-environment interactions. As a result of regional developments in the fields of human and medical genetics, the Latin American Network of Human Genetics (Red Latinoamericana de Genética Humana -RELAGH) was created in 2001 to foster the networking of national associations and societies dedicated to these scientific disciplines. RELAGH has developed important educational activities, such as the Latin American School of Human and Medical Genetics (ELAG), and has held three biannual meetings to encourage international research cooperation among the member countries and international organizations. Since its foundation, RELAGH has been admitted as a full regional member to the International Federation of Human Genetics Societies. This article describes the historical aspects, activities, developments, and challenges that are still faced by the Network. <![CDATA[<b>A tribute to José María ("Chema") Cantú</b>]]> José María ("Chema") Cantú (1938-2007), born in Mexico, was a pioneering, loved and respected leader in medical and human genetics and bioethics in Latin America. He graduated as a physician in Mexico and then trained in medical and human genetics in France and the United States. He was instrumental in developing a first-rate research, training and genetic services program in medical and human genetics in Guadalajara, in northwestern Mexico. He acted forcefully at national, regional and international levels to promote scientific development through collaboration and education in science and humanities, while he simultaneously strived for justice, peace, love and human rights. He attained some of the highest honors a scientist and humanist could aspire to as well as the recognition of the communities he served. Hundreds of disciples throughout Latin America and the world have been inspired by his vision of a better world through the conjunction of science, respect for humankind, ethics and love.