Scielo RSS <![CDATA[Materials Research]]> vol. 22 num. 3 lang. en <![CDATA[SciELO Logo]]> <![CDATA[Influence of Processing Variables on Clay-Based Ceramic Formulations]]> The properties of ceramic materials and microstructural changes are dependent on the raw materials from which they are made and on the manner in which they are processed, from the composition to the established thermal treatment, heating rate, and firing temperature. In this study, the influence of some processing parameters (formulation, maturation time, and firing temperature) on the physical-mechanical properties and microstructural aspects of ceramic pieces produced from natural aluminosilicates was investigated. Because Brazil does not have many quality ball clays reserves, bentonite was included as a plasticizing agent in this study. The formulations were submitted to maturation for a period of one to four weeks and their characteristics were determined to evaluate plasticity. Following this, the specimens were extruded and subjected to heat at temperatures of 1200, 1300, and 1400ºC. The physical-mechanical properties determined were: water absorption, linear retraction, and flexural strength. Statistical analysis was applied. The results showed that, for the analyzed masses, neither the maturation time nor the physical and mechanical properties analyzed had influence on plasticity. The firing temperature was the factor that generated the greatest alteration in results, increasing the mechanical resistance and altering the size and interlocking of the mullite needles. <![CDATA[Obtainment and Characterization of a Silicon alkoxides-based Coating Applied to a Substrate of Stainless Steel 316L for Use in Biomaterials]]> The silicon alkoxides-based coating is an alternative to control the release of cytotoxic ions through metal implants. This study evaluated the influence of the number of layers of a hybrid coating on the surface of austenitic stainless steel AISI 316L on the corrosion resistance. This coating was produced from the precursors of silicon alkoxides 3-(trimethoxysilyl)propyl methacrylate (MAP) and tetraethoxisylane (TEOS) obtained by sol-gel process, and easily applied by dip-coating. Results indicated that a single layer of coating in the substrate showed a better protection than two layers. This single layer developed by the combination of the precursors TEOS-MAP was enough to create a compact and uniform film with good adherence to AISI 316L and higher electrochemical development. A single layer of TEOS-MAP coating is more adequate as a protective coating for the AISI 361L than the sample subjected to two layers and the non-coated substrate, because this film ensures its integrity in an aggressive environment. <![CDATA[Structural, Morphological and Magnetic Properties of FeCo-(Fe,Co)<sub>3</sub>O<sub>4</sub> Nanocomposite Synthesized by Proteic Sol-Gel Method Using a Rotary Oven]]> FeCo nanoparticles coated with (Fe,Co)3O4 (magnetite doped with cobalt) were synthesized by the proteic sol-gel chemical route. The synthesized materials were characterized by Thermogravimetry (TG), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), vibrating-sample magnetometer (VSM) and Mössbauer spectroscopy (MS). The results show that the increase in temperature and the choice of the correct air/N2 flow directly influence on the final physical-chemical properties of the nanocomposite. The SEM and TEM images confirmed that a thin layer of oxide was formed on the alloy, indicating that it was obtained a self-assembled FeCo-(Fe,Co)3O4 nanocomposites. In addition, the VSM results show that a possible exchange-spring coupling in magnetic FeCo-(Fe,Co)3O4 nanoparticles occurred with high saturation magnetization from FeCo alloy and high coercivity from (Fe,Co)3O4. The rotary oven allows the uniform contact of the powder with the atmosphere of synthesis during the different oxidation-reduction steps, generating more homogeneous particles.