Scielo RSS <![CDATA[Brazilian Journal of Microbiology]]> vol. 48 num. 4 lang. pt <![CDATA[SciELO Logo]]> <![CDATA[Complete genome sequence of a phthalic acid esters degrading <em>Mycobacterium</em> sp. YC-RL4]]> ABSTRACT Mycobacterium sp. YC-RL4 is capable of utilizing a broad range of phthalic acid esters (PAEs) as sole source of carbon and energy for growth. The preliminary studies demonstrated its high degrading efficiency and good performance during the bioprocess with environmental samples. Here, we present the complete genome of Mycobacterium sp. YC-RL4, which consists of one circular chromosome (5,801,417 bp) and one plasmid (252,568 bp). The genomic analysis and gene annotation were performed and many potential genes responsible for the biodegradation of PAEs were identified from the genome. These results may advance the investigation of bioremediation of PAEs-contaminated environments by strain YC-RL4. <![CDATA[Draft genome sequence of <em>Bradyrhizobium manausense</em> strain BR 3351<sup>T</sup>, an effective symbiont isolated from Amazon rainforest]]> ABSTRACT The strain BR 3351T (Bradyrhizobium manausense) was obtained from nodules of cowpea (Vigna unguiculata L. Walp) growing in soil collected from Amazon rainforest. Furthermore, it was observed that the strain has high capacity to fix nitrogen symbiotically in symbioses with cowpea. We report here the draft genome sequence of strain BR 3351T. The information presented will be important for comparative analysis of nodulation and nitrogen fixation for diazotrophic bacteria. A draft genome with 9,145,311 bp and 62.9% of GC content was assembled in 127 scaffolds using 100 bp pair-end Illumina MiSeq system. The RAST annotation identified 8603 coding sequences, 51 RNAs genes, classified in 504 subsystems. <![CDATA[Draft genome sequence of <em>Streptomyces</em> sp. strain F1, a potential source for glycoside hydrolases isolated from Brazilian soil]]> ABSTRACT Here, we show the draft genome sequence of Streptomyces sp. F1, a strain isolated from soil with great potential for secretion of hydrolytic enzymes used to deconstruct cellulosic biomass. The draft genome assembly of Streptomyces sp. strain F1 has 69 contigs with a total genome size of 8,142,296 bp and G + C 72.65%. Preliminary genome analysis identified 175 proteins as Carbohydrate-Active Enzymes, being 85 glycoside hydrolases organized in 33 distinct families. This draft genome information provides new insights on the key genes encoding hydrolytic enzymes involved in biomass deconstruction employed by soil bacteria. <![CDATA[Complete genome sequence of the aerobically denitrifying thermophilic bacterium <em>Chelatococcus daeguensis</em> TAD1]]> ABSTRACT Chelatococcus daeguensis TAD1 is a themophilic bacterium isolated from a biotrickling filter used to treat NOx in Ruiming Power Plant, located in Guangzhou, China, which shows an excellent aerobic denitrification activity at high temperature. The complete genome sequence of this strain was reported in the present study. Genes related to the aerobic denitrification were identified through whole genome analysis. This work will facilitate the mechanism of aerobic denitrification and provide evidence for its potential application in the nitrogen removal. <![CDATA[Antimicrobial resistance in <em>Neisseria gonorrhoeae</em>: history, molecular mechanisms and epidemiological aspects of an emerging global threat]]> ABSTRACT Neisseria gonorrhoeae is the agent of gonorrhea, a sexually transmitted infection with an estimate from The World Health Organization of 78 million new cases in people aged 15-49 worldwide during 2012. If left untreated, complications may include pelvic inflammatory disease and infertility. Antimicrobial treatment is usually effective; however, resistance has emerged successively through various molecular mechanisms for all the regularly used therapeutic agents throughout decades. Detection of antimicrobial susceptibility is currently the most critical aspect for N. gonorrhoeae surveillance, however poorly structured health systems pose difficulties. In this review, we compiled data from worldwide reports regarding epidemiology and antimicrobial resistance in N. gonorrhoeae, and highlight the relevance of the implementation of surveillance networks to establish policies for gonorrhea treatment. <![CDATA[Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons]]> ABSTRACT Polyhydroxyalkanoates (PHA) are efficient, renewable and environment friendly polymeric esters. These polymers are synthesized by a variety of microbes under stress conditions. This study was carried out to check the suitability of waste frying oil in comparison to other oils for economical bioplastic production. Six bacterial strains were isolated and identified as Bacillus cereus (KF270349), Klebsiella pneumoniae (KF270350), Bacillus subtilis (KF270351), Brevibacterium halotolerance (KF270352), Pseudomonas aeruginosa (KF270353), and Stenotrophomonas rhizoposid (KF270354) by ribotyping. All strains were PHA producers so were selected for PHA synthesis using four different carbon sources, i.e., waste frying oil, canola oil, diesel and glucose. Extraction of PHA was carried out using sodium hypochlorite method and maximum amount was detected after 72 h in all cases. P. aeruginosa led to maximum PHA production after 72 h at 37 °C and 100 rpm using waste frying oil that was 53.2% PHA in comparison with glucose 37.8% and cooking oil 34.4%. B. cereus produced 40% PHA using glucose as carbon source which was high when compared against other strains. A significantly lesser amount of PHA was recorded with diesel as a carbon source for all strains. Sharp Infrared peaks around 1740-1750 cm-1 were present in Fourier Transform Infrared spectra that correspond to exact position for PHA. The use of waste oils and production of poly-3hydroxybutyrate-co-3hydroxyvalerate (3HB-co-3HV) by strains used in this study is a good aspect to consider for future prospects as this type of polymer has better properties as compared to PHBs. <![CDATA[Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria]]> ABSTRACT Role of microbes in bioremediation of oil spills has become inevitable owing to their eco friendly nature. This study focused on the isolation and characterization of bacterial strains with superior oil degrading potential from crude-oil contaminated soil. Three such bacterial strains were selected and subsequently identified by 16S rRNA gene sequence analysis as Corynebacterium aurimucosum, Acinetobacter baumannii and Microbacterium hydrocarbonoxydans respectively. The specific activity of catechol 1,2 dioxygenase (C12O) and catechol 2,3 dioxygenase (C23O) was determined in these three strains wherein the activity of C12O was more than that of C23O. Among the three strains, Microbacterium hydrocarbonoxydans exhibited superior crude oil degrading ability as evidenced by its superior growth rate in crude oil enriched medium and enhanced activity of dioxygenases. Also degradation of total petroleum hydrocarbon (TPH) in crude oil was higher with Microbacterium hydrocarbonoxydans. The three strains also produced biosurfactants of glycolipid nature as indicated d by biochemical, FTIR and GCMS analysis. These findings emphasize that such bacterial strains with superior oil degrading capacity may find their potential application in bioremediation of oil spills and conservation of marine and soil ecosystem. <![CDATA[Isolation of fungi from dung of wild herbivores for application in bioethanol production]]> ABSTRACT Producing biofuels such as ethanol from non-food plant material has the potential to meet transportation fuel requirements in many African countries without impacting directly on food security. The current shortcomings in biomass processing are inefficient fermentation of plant sugars, such as xylose, especially at high temperatures, lack of fermenting microbes that are able to resist inhibitors associated with pre-treated plant material and lack of effective lignocellulolytic enzymes for complete hydrolysis of plant polysaccharides. Due to the presence of residual partially degraded lignocellulose in the gut, the dung of herbivores can be considered as a natural source of pre-treated lignocellulose. A total of 101 fungi were isolated (36 yeast and 65 mould isolates). Six yeast isolates produced ethanol during growth on xylose while three were able to grow at 42 °C. This is a desirable growth temperature as it is closer to that which is used during the cellulose hydrolysis process. From the yeast isolates, six isolates were able to tolerate 2 g/L acetic acid and one tolerated 2 g/L furfural in the growth media. These inhibitors are normally generated during the pre-treatment step. When grown on pre-treated thatch grass, Aspergillus species were dominant in secretion of endo-glucanase, xylanase and mannanase. <![CDATA[Promotion of iron nutrition and growth on peanut by <em>Paenibacillus illinoisensis</em> and <em>Bacillus</em> sp. strains in calcareous soil]]> ABSTRACT This study aimed to explore the effects of two siderophore-producing bacterial strains on iron absorption and plant growth of peanut in calcareous soil. Two siderophore-producing bacterial strains, namely, YZ29 and DZ13, isolated from the rhizosphere soil of peanut, were identified as Paenibacillus illinoisensis and Bacillus sp., respectively. In potted experiments, YZ29 and DZ13 enhanced root activity, chlorophyll and active iron content in leaves, total nitrogen, phosphorus and potassium accumulation of plants and increased the quality of peanut kernels and plant biomass over control. In the field trial, the inoculated treatments performed better than the controls, and the pod yields of the three treatments inoculated with YZ29, DZ13, and YZ29 + DZ13 (1:1) increased by 37.05%, 13.80% and 13.57%, respectively, compared with the control. Based on terminal restriction fragment length polymorphism analysis, YZ29 and DZ13 improved the bacterial community richness and species diversity of soil surrounding the peanut roots. Therefore, YZ29 and DZ13 can be used as candidate bacterial strains to relieve chlorosis of peanut and promote peanut growth. The present study is the first to explore the effect of siderophores produced by P. illinoisensis on iron absorption. <![CDATA[Isolation and molecular characterization of <em>Thraustochytrium</em> strain isolated from Antarctic Peninsula and its biotechnological potential in the production of fatty acids]]> ABSTRACT Thraustochytrids are unicellular protists belonging to the Labyrinthulomycetes class, which are characterized by the presence of a high lipid content that could replace conventional fatty acids. They show a wide geographic distribution, however their diversity in the Antarctic Region is rather scarce. The analysis based on the complete sequence of 18S rRNA gene showed that strain 34-2 belongs to the species Thraustochytrium kinnei, with 99% identity. The total lipid profile shows a wide range of saturated fatty acids with abundance of palmitic acid (16:0), showing a range of 16.1-19.7%. On the other hand, long-chain polyunsaturated fatty acids, mainly docosahexaenoic acid and eicosapentaenoic acid are present in a range of 24-48% and 6.1-9.3%, respectively. All factors analyzed in cells (biomass, carbon consumption and lipid content) changed with variations of culture temperature (10 °C and 25 °C). The growth in glucose at a temperature of 10 °C presented the most favorable conditions to produce omega-3fatty acid. This research provides the identification and characterization of a Thraustochytrids strain, with a total lipid content that presents potential applications in the production of nutritional supplements and as well biofuels. <![CDATA[Tripartite symbiosis of <em>Sophora tomentosa</em>, rhizobia and arbuscular mycorhizal fungi]]> ABSTRACT Sophora tomentosa is a pantropical legume species with potential for recovery of areas degraded by salinization, and for stabilization of sand dunes. However, few studies on this species have been carried out, and none regarding its symbiotic relationship with beneficial soil microorganisms. Therefore, this study aimed to evaluate the diversity of nitrogen-fixing bacteria isolated from nodules of Sophora tomentosa, and to analyze the occurrence of colonization of arbuscular mycorrhizal fungi on the roots of this legume in seafront soil. Thus, seeds, root nodules, and soil from the rhizosphere of Sophora tomentosa were collected. From the soil samples, trap cultures with this species were established to extract spores and to evaluate arbuscular mycorhizal fungi colonization in legume roots, as well as to capture rhizobia. Rhizobia strains were isolated from nodules collected in the field or from the trap cultures. Representative isolates of the groups obtained in the similarity dendrogram, based on phenotypic characteristics, had their 16S rRNA genes sequenced. The legume species showed nodules with indeterminate growth, and reddish color, distributed throughout the root. Fifty-one strains of these nodules were isolated, of which 21 were classified in the genus Bacillus, Brevibacillus, Paenibacillus, Rhizobium and especially Sinorhizobium. Strains closely related to Sinorhizobium adhaerens were the predominant bacteria in nodules. The other genera found, with the exception of Rhizobium, are probably endophytic bacteria in the nodules. Arbuscular mycorrhizal fungi was observed colonizing the roots, but arbuscular mycorhizal fungi spores were not found in the trap cultures. Therefore Sophora tomentosa is associated with both arbuscular mycorhizal fungi and nodulating nitrogen-fixing bacteria. <![CDATA[Prevalence and serotype distribution of <em>Listeria monocytogenes</em> isolated from foods in Montevideo-Uruguay]]> ABSTRACT The aim of this work was to study the prevalence of Listeria monocytogenes in foods obtained in retail shops and food industries located in Montevideo-Uruguay, and to identify the serogroups of the obtained isolates. Three-thousand one-hundred and seventy-five food samples (frozen, deli meats, ready-to-eat and cheese) were analyzed. The obtained isolates were serogrouped by multiplex PCR and serotyped by conventional procedure. Genetic comparisons were performed using pulsed-field gel electrophoresis on a sub-set of isolates belonging to the same serotype successively recovered from the same establishment. L. monocytogenes was isolated from 11.2% of samples. The highest prevalence was observed in frozen foods (38%), followed by cheese (10%). 1/2b and 4b were the most frequently identified serotypes. In six of 236 analyzed establishments we successively recovered L. monocytogenes isolates belonging to the same serotype. Most of them corresponded to serotype 1/2b. Pulsed-field gel electrophoresis profiles suggest that at least 33% of L. monocytogenes 1/2b isolates are genetically related and that may remain viable for prolonged periods. The observed prevalence of L. monocytogenes was lower than reported in neighboring countries. Our findings highlight the role that frozen foods may play in the spread of this pathogen, and the relevance of serotypes 1/2b and 4b. <![CDATA[Illumina-based analysis of endophytic bacterial diversity of tree peony (<em>Paeonia</em> Sect. <em>Moutan</em>) roots and leaves]]> ABSTRACT Diverse communities of bacteria inhabit plant tissues and those bacteria play a crucial role for plant health and growth. Tree peony (Paeonia Sect. Moutan) is known for its excellent ornamental and medicinal values as Chinese traditional plant, but little is known about its associated bacterial community under natural conditions. To examine how endophytic bacteria in tree peony vary across tissues and cultivars, PCR-based Illumina was applied to reveal the diversity of endophytic bacteria in tree peony. A total of 149,842 sequences and 21,463 operational taxonomic units (OTUs) were obtained. The OTU abundance of roots was higher than leaves across other three cultivars except for ‘Kinkaku’ and ‘Luoyanghong’. The community was composed of five dominant groups (Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria and Actinobacteria) in all samples. Endophytic bacteria community structures had changed in leaves and roots. Sequences of Pseudomonas and Enterobacteriaceae were prevalent in root samples, whereas Succinivibrio and Acinetobacter were the dominant genus in leaf samples. Otherwise, the distribution of each dominant genus among the 5 cultivars was either varied. These findings suggested that both plant genotype and tissues contribute to the shaping of the bacterial communities associated with tree peony. <![CDATA[Isolation, identification, and biocontrol of antagonistic bacterium against <em>Botrytis cinerea</em> after tomato harvest]]> ABSTRACT Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmful for human health and environment. Biocontrol method for the management of disease after tomato harvest has great practical significance. In this study, antagonistic bacterium B-6-1 strain was isolated from the surface of tomato and identified as Enterobacter cowanii based on morphological characteristics and physiological and biochemical features combined with sequence analysis of 16SrDNA and ropB gene and construction of dendrogram. Effects of different concentrations of antagonistic bacterium E. cowanii suspension on antifungal activity after tomato harvest were analyzed by mycelium growth rate method. Results revealed that antifungal activity was also enhanced with increasing concentrations of antagonistic bacterium; inhibitory rates of 1 × 105 colony-forming units (cfu)/mL antagonistic bacterial solution on Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea were 46.31%, 67.48%, and 75.67%, respectively. By using in vivo inoculation method, it was further confirmed that antagonistic bacterium could effectively inhibit the occurrence of B. cinerae after tomato harvest, biocontrol effect of 1 × 109 cfu/mL zymotic fluid reached up to 95.24%, and antagonistic bacterium E. cowanii has biocontrol potential against B. cinerea after harvest of fruits and vegetables. <![CDATA[Zearalenone adsorption capacity of lactic acid bacteria isolated from pigs]]> ABSTRACT The ability to adsorb zearalenone by five strain of lactic acid bacteria was evaluated: four strains of Lactobacillus spp. isolated from pig rectal swabs and one commercial strain (Lactobacillus rhamnosus). Several factors affecting the adsorption capacity were evaluated in order to improve the adsorption of the mycotoxin by bacteria. The stability of the zearalenone-bacteria complex was analyzed. In every case, bacterial adsorption capacity was higher than 40.0%. The strain showing the highest adsorption (68.2%) was selected for the following steps of this research. The adsorption percentages obtained after processing 6.5 and 7.5 mL MRS broth were 57.40% + 3.53 and 64.46% + 0.76, respectively. The stability of zearalenone-bacteria complex was evaluated by successively rinsing. In the first rinsing step 42.26% + 0.414 was still bound. In the second rinsing step 25.12% + 0.664 was still bound, whereas 15.82% + 0.675 remained in the pellet after the third rinse. Results obtained demonstrated that Lactic Acid Bacteria has capacity to adsorb zearalenone. Finally adsorption was increased using a higher volume of initial broth. These results could be used to design a new lyophilized powder for detoxification, using lactic acid bacteria as potential zearalenone adsorbents. <![CDATA[Antibacterial efficacy of nisin, bacteriophage P100 and sodium lactate against <em>Listeria monocytogenes</em> in ready-to-eat sliced pork ham]]> ABSTRACT The effectiveness of bacteriophage P100, nisin and sodium lactate, individually and in combination, in inhibiting Listeria monocytogenes in ready-to-eat pork ham slices was assessed. The antimicrobials were applied to the surfaces of ready-to-eat pork ham slices, which were inoculated with a mixture of L. monocytogenes. Among the individual antimicrobial treatments, bacteriophage P100 was the most effective, decreasing L. monocytogenes to undetectable levels at zero and 72 h post-infection. Sodium lactate was the least effective treatment. Treatment with nisin at zero h significantly reduced initial cell density (p &lt; 0.05). However, this pattern was not observed at 72 h of storage. A significant difference (p &lt; 0.05) existed between the results of separate bacteriophage and nisin treatments after refrigerated storage, but not immediately upon inoculation of the bacteria. The results showed that the use of bacteriophage P100 is the method of choice for the control of bacteria. <![CDATA[Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels]]> ABSTRACT Objective To screen for and characterize lactic acid bacteria strains with the ability to produce fermented milk and reduce cholesterol levels. Methods The strains were isolated from traditional fermented milk in China. In vitro and in vivo evaluation of cholesterol-reduction were used to identify and verify strains of interest. Characteristics were analyzed using spectrophotometry and plate counting assays. Results The isolate HLX37 consistently produced fermented milk with strong cholesterol-reducing properties was identified as Lactobacillus plantarum (accession number: KR105940) and was thus selected for further study. The cholesterol reduction by strain HLX37 was 45.84%. The isolates were acid-tolerant at pH 2.5 and bile-tolerant at 0.5% (w/v) in simulated gastric juice (pH 2.5) for 2 h and in simulated intestinal fluid (pH 8.0) for 3 h. The auto-aggregation rate increased to 87.74% after 24 h, while the co-aggregation with Escherichia coli DH5 was 27.76%. Strain HLX37 was intrinsically resistant to antibiotics such as penicillin, tobramycin, kanamycin, streptomycin, vancomycin and amikacin. Compared with rats in the model hyperlipidemia group, the total cholesterol content in the serum and the liver as well as the atherogenic index of rats in the viable fermented milk group significantly decreased by 23.33%, 32.37% and 40.23%, respectively. Fewer fat vacuoles and other lesions in liver tissue were present in both the inactivated and viable fermented milk groups compared to the model group. Conclusion These studies indicate that strain HLX37 of L. plantarum demonstrates probiotic potential, potential for use as a candidate for commercial use for promoting health. <![CDATA[Development of a propidium monoazide-polymerase chain reaction assay for detection of viable <em>Lactobacillus brevis</em> in beer]]> ABSTRACT The spoilage of beer by bacteria is of great concern to the brewer as this can lead to turbidity and abnormal flavors. The polymerase chain reaction (PCR) method for detection of beer-spoilage bacteria is highly specific and provides results much faster than traditional microbiology techniques. However, one of the drawbacks is the inability to differentiate between live and dead cells. In this paper, the combination of propidium monoazide (PMA) pretreatment and conventional PCR had been described. The established PMA-PCR identified beer spoilage Lactobacillus brevis based not on their identity, but on the presence of horA gene which we show to be highly correlated with the ability of beer spoilage LAB to grow in beer. The results suggested that the use of 30 µg/mL or less of PMA did not inhibit the PCR amplification of DNA derived from viable L. brevis cells. The minimum amount of PMA to completely inhibit the PCR amplification of DNA derived from dead L. brevis cells was 2.0 µg/mL. The detection limit of PMA-PCR assay described here was found to be 10 colony forming units (CFU)/reaction for the horA gene. Moreover, the horA-specific PMA-PCR assays were subjected to 18 reference isolates, representing 100% specificity with no false positive amplification observed. Overall the use of horA-specific PMA-PCR allows for a substantial reduction in the time required for detection of potential beer spoilage L. brevis and efficiently differentiates between viable and nonviable cells. <![CDATA[Survey of pathogens in threatened wild red-tailed Amazon parrot (<em>Amazona brasiliensis</em>) nestlings in Rasa Island, Brazil]]> ABSTRACT The red-tailed Amazon parrot (Amazona brasiliensis) is a threatened species of psittacine bird that inhabit coastal regions of Brazil. In view of the threat of this species, the aim of this study was to perform a health evaluation in wild nestlings in Rasa Island, determining the prevalence of enterobacteria and infectious agents according to type of nest. Blood samples were collected from 64 birds and evaluated for antibodies of Chlamydia psittaci by commercial dot-blot ELISA. Cloacal and oropharyngeal swabs samples were collected from 23 birds from artificial wooden nests, 15 birds from PVC nests and 2 birds from natural nests for microbiological analysis. Swab samples were collected from 58 parrots for C. psittaci detection by PCR and from 50 nestlings for Avian Influenza, Newcastle Disease and West Nile viruses’ detection analysis by real-time RT-PCR. Ten bacterial genera and 17 species were identified, and the most prevalent were Escherichia coli and Klebsiella oxytoca. There was no influence of the type of nest in the nestlings’ microbiota. All samples tested by ELISA and PCR were negative. There is currently insufficient information available about the health of A. brasiliensis and data of this study provide a reference point for future evaluations and aid in conservation plans. <![CDATA[Contribution of flagella and motility to gut colonisation and pathogenicity of <em>Salmonella</em> Enteritidis in the chicken]]> ABSTRACT Salmonella Enteritidis causes fowl paratyphoid in poultry and is frequently associated to outbreaks of food-borne diseases in humans. The role of flagella and flagella-mediated motility into host-pathogen interplay is not fully understood and requires further investigation. In this study, one-day-old chickens were challenged orally with a wild-type strain Salmonella Enteritidis, a non-motile but fully flagellated (SE ΔmotB) or non-flagellated (SE ΔfliC) strain to evaluate their ability to colonise the intestine and spread systemically and also of eliciting gross and histopathological changes. SE ΔmotB and SE ΔfliC were recovered in significantly lower numbers from caecal contents in comparison with Salmonella Enteritidis at early stages of infection (3 and 5 dpi). The SE ΔmotB strain, which synthesises paralysed flagella, showed poorer intestinal colonisation ability than the non-flagellated SE ΔfliC. Histopathological analyses demonstrated that the flagellated strains induced more intense lymphoid reactivity in liver, ileum and caeca. Thus, in the present study the flagellar structure and motility seemed to play a role in the early stages of the intestinal colonisation by Salmonella Enteritidis in the chicken. <![CDATA[Captive wild birds as reservoirs of enteropathogenic <em>E. coli</em> (EPEC) and Shiga-toxin producing <em>E. coli</em> (STEC)]]> ABSTRACT Psittacine birds have been identified as reservoirs of diarrheagenic Escherichia coli, a subset of pathogens associated with mortality of children in tropical countries. The role of other orders of birds as source of infection is unclear. The aim of this study was to perform the molecular diagnosis of infection with diarrheagenic E. coli in 10 different orders of captive wild birds in the state of São Paulo, Brazil. Fecal samples were analyzed from 516 birds belonging to 10 orders: Accipitriformes, Anseriformes, Columbiformes, Falconiformes, Galliformes, Passeriformes, Pelecaniformes, Piciformes, Psittaciformes and Strigiformes. After isolation, 401 E. coli strains were subjected to multiplex PCR system with amplification of genes eae and bfp (EPEC), stx1 and stx2 for STEC. The results of these tests revealed 23/401 (5.74%) positive strains for eae gene, 16/401 positive strains for the bfp gene (3.99%) and 3/401 positive for stx2 gene (0.75%) distributed among the orders of Psittaciformes, Strigiformes and Columbiformes. None of strains were positive for stx1 gene. These data reveal the infection by STEC, typical and atypical EPEC in captive birds. The frequency of these pathotypes is low and restricted to few orders, but the data suggest the potential public health risk that these birds represent as reservoirs of diarrheagenic E. coli. <![CDATA[Adhesion and invasion of <em>Clostridium perfringens</em> type A into epithelial cells]]> ABSTRACT Clostridium perfringens is the causative agent for necrotic enteritis. It secretes the major virulence factors, and α- and NetB-toxins that are responsible for intestinal lesions. The TpeL toxin affects cell morphology by producing myonecrosis, but its role in the pathogenesis of necrotic enteritis is unclear. In this study, the presence of netB and tpeL genes in C. perfringens type A strains isolated from chickens with necrotic enteritis, their cytotoxic effects and role in adhesion and invasion of epithelial cells were evaluated. Six (27.3%) of the 22 C. perfringens type A strains were harboring the tpeL gene and produced morphological alterations in Vero cells after 6 h of incubation. Strains tpeL (-) induced strong cell rounding after 6 h of incubation and produced cell enlargement. None of the 22 strains harbored netB gene. All the six tpeL (+) gene strains were able to adhere to HEp-2 cells; however, only four of them (66.6%) were invasive. Thus, these results suggest that the presence of tpeL gene or TpeL toxin might be required for the adherence of bacteria to HEp-2 cells; however, it could not have any role in the invasion process. <![CDATA[Identification of co-infection by rotavirus and parvovirus in dogs with gastroenteritis in Mexico]]> ABSTRACT This is the first report on circulating canine rotavirus in Mexico. Fifty samples from dogs with gastroenteritis were analyzed used polymerase chain reaction and reverse transcription polymerase chain reaction in order to identify parvovirus and rotavirus, respectively; 7% of dogs were infected with rotavirus exclusively, while 14% were co-infected with both rotavirus and parvovirus; clinical signs in co-infected dogs were more severe. <![CDATA[Production of recombinant flagellin to develop ELISA-based detection of <em>Salmonella</em> Enteritidis]]> ABSTRACT Food-borne diseases, caused by the pathogenic bacteria, are highly prevalent in the world. Salmonella is one of the most important bacterial genera responsible for this. Salmonella Enteritidis (SE) is one of the non-typhoid Salmonellae that can be transmitted to human from poultry products, water, and contaminated food. In recent years, new and rapid detection methods such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) have been developed. In this study, recombinant FliC (rFliC) was produced to be used as an antigen. The immunization was conducted in mice with the purified recombinant FliC (rFliC). The mice were subcutaneously immunized with rFliC and elicited significant rFliC specific serum IgG antibodies. An indirect ELISA system was established for the detection of Salmonella Enteritidis. Our results confirmed that the recombinant flagellin can be one of the excellent indicators for the detection of Salmonella Enteritidis. <![CDATA[Evaluation of a selective chromogenic medium for detecting vancomycin-resistant enterococci]]> ABSTRACT Rapid identification of vancomycin-resistant enterococci (VRE) can assist in choosing the appropriate treatment and preventing VRE spread. The performance of chromIDTM VRE agar was evaluated using 184 clinical isolates of Enterococcus spp. and reference strains. The test had a sensitivity of 95.52% but a low specificity of 30%. <![CDATA[Combination of commercially available molecular assays and culture based methods in diagnosis of tuberculosis and drug resistant tuberculosis]]> ABSTRACT Early diagnosis of tuberculosis is of major clinical importance. Among 4733 clinical specimens collected from 3363 patients and subjected to Ziehl-Neelsen microscopy, 4109 were inoculated onto Löwenstein-Jensen slants and 3139 in Bactec/9000MB. Polymerase Chain Reaction (PCR) was performed in 3139 specimens, whereas, a genotypic assay was directly applied in 93 Mycobacterium tuberculosis complex PCR-positive for isoniazid and rifampicin resistance detection specimens (GenoType MTBDRplus). Recovered M. tuberculosis isolates (64) as well as, 21 more sent from Regional Hospitals were tested for antimycobacterial resistance with a phenotypic (manual MGIT-SIRE) and a genotypic assay (GenoType MTBDRplus). PCR in the clinical specimens showed excellent specificity (97.4%) and accuracy (96.8%), good sensitivity (70.4%), but low positive predictive value (40.3%). MGIT-SIRE performed to M. tuberculosis did not confer a reliable result in 16 isolates. Of the remaining 69 isolates, 15 were resistant to streptomycin, seven to isoniazid, seven to ethambutol and five to rifampicin. GenoType MTBDRplus correctly detected isoniazid (seven) and rifampicin-resistant M. tuberculosis strains (five), showing an excellent performance overall (100%). Susceptibility results by the molecular assay applied directly to clinical specimens were identical to those obtained from recovered isolates of the corresponding patients. Combining molecular and conventional methods greatly contribute to early diagnosis and accurate susceptibility testing of tuberculosis. <![CDATA[Inhibitor tolerance of a recombinant flocculating industrial <em>Saccharomyces cerevisiae</em> strain during glucose and xylose co-fermentation]]> ABSTRACT Lignocellulose-derived inhibitors have negative effects on the ethanol fermentation capacity of Saccharomyces cerevisiae. In this study, the effects of eight typical inhibitors, including weak acids, furans, and phenols, on glucose and xylose co-fermentation of the recombinant xylose-fermenting flocculating industrial S. cerevisiae strain NAPX37 were evaluated by batch fermentation. Inhibition on glucose fermentation, not that on xylose fermentation, correlated with delayed cell growth. The weak acids and the phenols showed additive effects. The effect of inhibitors on glucose fermentation was as follows (from strongest to weakest): vanillin &gt; phenol &gt; syringaldehyde &gt; 5-HMF &gt; furfural &gt; levulinic acid &gt; acetic acid &gt; formic acid. The effect of inhibitors on xylose fermentation was as follows (from strongest to weakest): phenol &gt; vanillin &gt; syringaldehyde &gt; furfural &gt; 5-HMF &gt; formic acid &gt; levulinic acid &gt; acetic acid. The NAPX37 strain showed substantial tolerance to typical inhibitors and showed good fermentation characteristics, when a medium with inhibitor cocktail or rape straw hydrolysate was used. This research provides important clues for inhibitors tolerance of recombinant industrial xylose-fermenting S. cerevisiae. <![CDATA[Isolation and characterization of a novel endo-β-1,4-glucanase from a metagenomic library of the black-goat rumen]]> ABSTRACT The various types of lignocellulosic biomass found in plants comprise the most abundant renewable bioresources on Earth. In this study, the ruminal microbial ecosystem of black goats was explored because of their strong ability to digest lignocellulosic forage. A metagenomic fosmid library containing 115,200 clones was prepared from the black-goat rumen and screened for a novel cellulolytic enzyme. The KG35 gene, containing a novel glycosyl hydrolase family 5 cellulase domain, was isolated and functionally characterized. The novel glycosyl hydrolase family 5 cellulase gene is composed of a 963-bp open reading frame encoding a protein of 320 amino acid residues (35.1 kDa). The deduced amino acid sequence showed the highest sequence identity (58%) for sequences from the glycosyl hydrolase family 5 cellulases. The novel glycosyl hydrolase family 5 cellulase gene was overexpressed in Escherichia coli. Substrate specificity analysis revealed that this recombinant glycosyl hydrolase family 5 cellulase functions as an endo-β-1,4-glucanase. The recombinant KG35 endo-β-1,4-glucanase showed optimal activity within the range of 30-50 °C at a pH of 6-7. The thermostability was retained and the pH was stable in the range of 30-50 °C at a pH of 5-7. <![CDATA[A novel expression vector for the secretion of abaecin in <em>Bacillus subtilis</em>]]> ABSTRACT This study aimed to describe a Bacillus subtilis expression system based on genetically modified B. subtilis. Abaecin, an antimicrobial peptide obtained from Apis mellifera, can enhance the effect of pore-forming peptides from other species on the inhibition of bacterial growth. For the exogenous expression, the abaecin gene was fused with a tobacco etch virus protease cleavage site, a promoter Pglv, and a mature beta-glucanase signal peptide. Also, a B. subtilis expression system was constructed. The recombinant abaecin gene was expressed and purified as a recombinant protein in the culture supernatant. The purified abaecin did not inhibit the growth of Escherichia coli strain K88. Cecropin A and hymenoptaecin exhibited potent bactericidal activities at concentrations of 1 and 1.5 µM. Combinatorial assays revealed that cecropin A and hymenoptaecin had sublethal concentrations of 0.3 and 0.5 µM. This potentiating functional interaction represents a promising therapeutic strategy. It provides an opportunity to address the rising threat of multidrug-resistant pathogens that are recalcitrant to conventional antibiotics. <![CDATA[Roles of quorum sensing molecules from <em>Rhizobium etli</em> RT1 in bacterial motility and biofilm formation]]> ABSTRACT Strain RT1 was isolated from root nodules of Lens culinaris (a lentil) and characterized as Rhizobium etli (a Gram-negative soil-borne bacterium) by 16S rDNA sequencing and phylogenetic analysis. The signaling molecules produced by R. etli (RT1) were detected and identified by high-performance liquid chromatography coupled with mass spectrometry. The most abundant and biologically active N-acyl homoserine lactone molecules (3-oxo-C8-HSL and 3-OH-C14-HSL) were detected in the ethyl acetate extract of RT1. The biological role of 3-oxo-C8-HSL was evaluated in RT1. Bacterial motility and biofilm formation were affected or modified on increasing concentrations of 3-oxo-C8-HSL. Results confirmed the existence of cell communication in RT1 mediated by 3-oxo-C8-HSL, and positive correlations were found among quorum sensing, motility and biofilm formation in RT1.