Scielo RSS <![CDATA[Brazilian Journal of Microbiology]]> vol. 49 num. 4 lang. en <![CDATA[SciELO Logo]]> <![CDATA[Changes induced by co-inoculation in nitrogen–carbon metabolism in cowpea under salinity stress]]> ABSTRACT To mitigate the deleterious effects of abiotic stress, the use of plant growth-promoting bacteria along with diazotrophic bacteria has been increasing. The objectives of this study were to investigate the key enzymes related to nitrogen and carbon metabolism in the biological nitrogen fixation process and to elucidate the activities of these enzymes by the synergistic interaction between Bradyrhizobium and plant growth-promoting bacteria in the absence and presence of salt stress. Cowpea plants were cultivated under axenic conditions, inoculated with Bradyrhizobium and co-inoculated with Bradyrhizobium sp. and Actinomadura sp., Bradyrhizobium sp. and Bacillus sp., Bradyrhizobium sp. and Paenibacillus graminis, and Bradyrhizobium sp. and Streptomycessp.; the plants were also maintained in the absence (control) and presence of salt stress (50 mmolL-1 NaCl). Salinity reduced the amino acids, free ammonia, ureides, proteins and total nitrogen content in nodules and increased the levels of sucrose and soluble sugars. The co-inoculations responded differently to the activity of glutamine synthetase enzymes under salt stress, as well as glutamate synthase, glutamate dehydrogenase aminating, and acid invertase in the control and salt stress. Considering the development conditions of this experiment, co-inoculation with Bradyrhizobium sp. and Bacillus sp. in cowpea provided better symbiotic performance, mitigating the deleterious effects of salt stress. <![CDATA[Phylogenetic MLSA and phenotypic analysis identification of three probable novel <em>Pseudomonas</em> species isolated on King George Island, South Shetland, Antarctica]]> ABSTRACT Antarctica harbors a great diversity of microorganisms, including bacteria, archaea, microalgae and yeasts. The Pseudomonas genus is one of the most diverse and successful bacterial groups described to date, but only eight species isolated from Antarctica have been characterized. Here, we present three potentially novel species isolated on King George Island. The most abundant isolates from four different environments, were genotypically and phenotypically characterized. Multilocus sequence analysis and 16S rRNA gene analysis of a sequence concatenate for six genes (16S, aroE, glnS, gyrB, ileS and rpoD), determined one of the isolates to be a new Pseudomonas mandelii strain, while the other three are good candidates for new Pseudomonas species. Additionally, genotype analyses showed the three candidates to be part of a new subgroup within the Pseudomonas fluorescens complex, together with the Antarctic species Pseudomonas antarctica and Pseudomonas extremaustralis. We propose terming this new subgroup P. antarctica. Likewise, phenotypic analyses using API 20 NE and BIOLOG® corroborated the genotyping results, confirming that all presented isolates form part of the P. fluorescens complex. Pseudomonas genus research on the Antarctic continent is in its infancy. To understand these microorganisms’ role in this extreme environment, the characterization and description of new species is vital. <![CDATA[Genomic identification and characterization of the elite strains <em>Bradyrhizobium yuanmingense</em> BR 3267 and <em>Bradyrhizobium pachyrhizi</em> BR 3262 recommended for cowpea inoculation in Brazil]]> ABSTRACT The leguminous inoculation with nodule-inducing bacteria that perform biological nitrogen fixation is a good example of an “eco-friendly agricultural practice”. Bradyrhizobium strains BR 3267 and BR 3262 are recommended for cowpea (Vigna unguiculata) inoculation in Brazil and showed remarkable responses; nevertheless neither strain was characterized at species level, which is our goal in the present work using a polyphasic approach. The strains presented the typical phenotype of Bradyrhizobium with a slow growth and a white colony on yeast extract-mannitol medium. Strain BR 3267 was more versatile in its use of carbon sources compared to BR 3262. The fatty acid composition of BR 3267 was similar to the type strain of Bradyrhizobium yuanmingense; while BR 3262 was similar to Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi. Phylogenetic analyses based on 16S rRNA and three housekeeping genes placed both strains within the genus Bradyrhizobium: strain BR 3267 was closest to B. yuanmingense and BR 3262 to B. pachyrhizi. Genome average nucleotide identity and DNA–DNA reassociation confirmed the genomic identification of B. yuanmingense BR 3267 and B. pachyrhizi BR 3262. The nodC and nifH gene analyses showed that strains BR 3267 and BR 3262 hold divergent symbiotic genes. In summary, the results indicate that cowpea can establish effective symbiosis with divergent bradyrhizobia isolated from Brazilian soils. <![CDATA[Cultivated bacterial diversity associated with the carnivorous plant <em>Utricularia breviscapa</em> (Lentibulariaceae) from floodplains in Brazil]]> ABSTRACT Carnivorous plant species, such as Utricularia spp., capture and digest prey. This digestion can occur through the secretion of plant digestive enzymes and/or by bacterial digestive enzymes. To comprehend the physiological mechanisms of carnivorous plants, it is essential to understand the microbial diversity related to these plants. Therefore, in the present study, we isolated and classified bacteria from different organs of Utricularia breviscapa (stolons and utricles) and from different geographic locations (São Paulo and Mato Grosso). We were able to build the first bacterium collection for U. breviscapa and study the diversity of cultivable bacteria. The results show that U. breviscapa bacterial diversity varied according to the geographic isolation site (São Paulo and Mato Grosso) but not the analyzed organs (utricle and stolon). We reported that six genera were common to both sample sites (São Paulo and Mato Grosso). These genera have previously been reported to be beneficial to plants, as well as related to the bioremediation process, showing that these isolates present great biotechnological and agricultural potential. This is the first report of an Acidobacteria isolated from U. breviscapa. The role of these bacteria inside the plant must be further investigated in order to understand their population dynamics within the host. <![CDATA[Outstanding impact of soil tillage on the abundance of soil hydrolases revealed by a metagenomic approach]]> ABSTRACT The soil represents the main source of novel biocatalysts and biomolecules of industrial relevance. We searched for hydrolases in silico in four shotgun metagenomes (4,079,223 sequences) obtained in a 13-year field trial carried out in southern Brazil, under the no-tillage (NT), or conventional tillage (CT) managements, with crop succession (CS, soybean/wheat), or crop rotation (CR, soybean/maize/wheat/lupine/oat). We identified 42,631 hydrolases belonging to five classes by comparing with the KEGG database, and 44,928 sequences by comparing with the NCBI-NR database. The abundance followed the order: lipases &gt; laccases &gt; cellulases &gt; proteases &gt; amylases &gt; pectinases. Statistically significant differences were attributed to the tillage system, with the NT showing about five times more hydrolases than the CT system. The outstanding differences can be attributed to the management of crop residues, left on the soil surface in the NT, and mechanically broken and incorporated into the soil in the CT. Differences between the CS and the CR were slighter, 10% higher for the CS, but not statistically different. Most of the sequences belonged to fungi (Verticillium, and Colletotrichum for lipases and laccases, and Aspergillus for proteases), and to the archaea Sulfolobus acidocaldarius for amylases. Our results indicate that agricultural soils under conservative managements may represent a hotspot for bioprospection of hydrolases. <![CDATA[Bioflocculant production from <em>Streptomyces platensis</em> and its potential for river and waste water treatment]]> ABSTRACT A bacterium isolated from Sterkfontein dam was confirmed to produce bioflocculant with excellent flocculation activity. The 16S rDNA nucleotide sequence analyses revealed the bacteria to have 99% similarity to Streptomyces platensis strain HBUM174787 and the sequence was deposited in the Genbank as Streptomyces platensis with accession number FJ 486385.1. Culture conditions for optimal production of the bioflocculant included glucose as a sole carbon source, resulting in flocculating activity of 90%. Other optimal conditions included: peptone as nitrogen source; presence of Mg2+ as cations and inoculum size of 1.0% (v/v) at neutral pH of 7. Optimum dose of the purified bioflocculant for the clarification of 4 g/L kaolin clay suspension at neutral pH was 0.2 mg/mL. Energy Dispersive X-ray analysis confirmed elemental composition of the purified bioflocculant in mass proportion (%w/w): carbon (21.41), oxygen (35.59), sulphur (26.16), nitrogen (0.62) and potassium (7.48). Fourier Transform Infrared Spectroscopy (FTIR) indicated the presence of hydroxyl, carboxyl, methoxyl and amino group in the bioflocculant. The bioflocculant produced by S. platensis removed chemical oxygen demand (COD) in river water and meat processing wastewater at efficiencies of 63.1 and 46.6% respectively and reduced their turbidity by 84.3 and 75.6% respectively. The high flocculating rate and removal efficiencies displayed by S. platensis suggests its industrial application in wastewater treatment. <![CDATA[Composition of bacterial community in enrichment cultures of shale by-products from Irati Formation, Brazil]]> ABSTRACT We examined microbial communities from enriched fine and retorted shale particles using sequencing of V4 variable region of 16S rRNA. High number of microbial genera was found in both enriched shale by-products that were dominate by Actinobacteria, Firmicutes and Proteobacteria, showing differences due to microbial colonization after the pyrolysis process. <![CDATA[Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: optimization of the degradation process]]> ABSTRACT Pyrene and benzo[a]pyrene (BaP) are high molecular weight polycyclic aromatic hydrocarbons (PAHs) recalcitrant to microbial attack. Although studies related to the microbial degradation of PAHs have been carried out in the last decades, little is known about degradation of these environmental pollutants by fungi from marine origin. Therefore, this study aimed to select one PAHs degrader among three marine-derived basidiomycete fungi and to study its pyrene detoxification/degradation. Marasmiellus sp. CBMAI 1062 showed higher levels of pyrene and BaP degradation and was subjected to studies related to pyrene degradation optimization using experimental design, acute toxicity, organic carbon removal (TOC), and metabolite evaluation. The experimental design resulted in an efficient pyrene degradation, reducing the experiment time while the PAH concentration applied in the assays was increased. The selected fungus was able to degrade almost 100% of pyrene (0.08 mg mL-1) after 48 h of incubation under saline condition, without generating toxic compounds and with a TOC reduction of 17%. Intermediate metabolites of pyrene degradation were identified, suggesting that the fungus degraded the compound via the cytochrome P450 system and epoxide hydrolases. These results highlight the relevance of marine-derived fungi in the field of PAH bioremediation, adding value to the blue biotechnology. <![CDATA[Petroleum contamination and bioaugmentation in bacterial rhizosphere communities from <em>Avicennia schaueriana</em>]]> ABSTRACT Anthropogenic activity, such as accidental oil spills, are typical sources of urban mangrove pollution that may affect mangrove bacterial communities as well as their mobile genetic elements. To evaluate remediation strategies, we followed over the time the effects of a petroleum hydrocarbon degrading consortium inoculated on mangrove tree Avicennia schaueriana against artificial petroleum contamination in a phytoremediation greenhouse experiment. Interestingly, despite plant protection due to the inoculation, denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene fragments amplified from the total community DNA indicated that the different treatments did not significantly affect the bacterial community composition. However, while the bacterial community was rather stable, pronounced shifts were observed in the abundance of bacteria carrying plasmids. A PCR-Southern blot hybridization analysis indicated an increase in the abundance of IncP-9 catabolic plasmids. Denaturing gradient gel electrophoresis of naphthalene dioxygenase (ndo) genes amplified from cDNA (RNA) indicated the dominance of a specific ndo gene in the inoculated petroleum amendment treatment. The petroleum hydrocarbon degrading consortium characterization indicated the prevalence of bacteria assigned to Pseudomonas spp., Comamonas spp. and Ochrobactrum spp. IncP-9 plasmids were detected for the first time in Comamonas sp. and Ochrobactrum spp., which is a novelty of this study. <![CDATA[Ammonia determines transcriptional profile of microorganisms in anaerobic digestion]]> ABSTRACT Anaerobic digestion is important for the management of livestock manure with high ammonia level. Although ammonia effects on anaerobic digestion have been comprehensively studied, the molecular mechanism underlying ammonia inhibition still remains elusive. In this study, based on metatranscriptomic analysis, the transcriptional profile of microbial community in anaerobic digestion under low (1500 mg L-1) and high NH4 + (5000 mg L-1) concentrations, respectively, were revealed. The results showed that high NH4 + concentrations significantly inhibited methane production but facilitated the accumulations of volatile fatty acids. The expression of methanogenic pathway was significantly inhibited by high NH4 + concentration but most of the other pathways were not significantly affected. Furthermore, the expressions of methanogenic genes which encode acetyl-CoA decarbonylase and methyl-coenzyme M reductase were significantly inhibited by high NH4 + concentration. The inhibition of the co-expressions of the genes which encode acetyl-CoA decarbonylase was observed. Some genes involved in the pathways of aminoacyl-tRNA biosynthesis and ribosome were highly expressed under high NH4 + concentration. Consequently, the ammonia inhibition on anaerobic digestion mainly focused on methanogenic process by suppressing the expressions of genes which encode acetyl-CoA decarbonylase and methyl-coenzyme M reductase. This study improved the accuracy and depth of understanding ammonia inhibition on anaerobic digestion. <![CDATA[Molecular characterization of feline calicivirus variants from multicat household and public animal shelter in Rio de Janeiro, Brazil]]> ABSTRACT The aim of this study was to perform the molecular characterization of conserved and variable regions of feline calicivirus capsid genome in order to investigate the molecular diversity of variants in Brazilian cat population. Twenty-six conjunctival samples from cats living in five public short-term animal shelters and three multicat life-long households were analyzed. Fifteen cats had conjunctivitis, three had oral ulceration, eight had respiratory signs (cough, sneeze and nasal discharge) and nine were asymptomatic. Feline calicivirus were isolated in CRFK cells and characterized by reverse transcription PCR target to both conserved and variable regions of open reading frame 2. The amplicons obtained were sequenced. A phylogenetic analysis along with most of the prototypes available in GenBank database and an amino acid analysis were performed. Phylogenetic analysis based on both conserved and variable region revealed two clusters with an aLTR value of 1.00 and 0.98 respectively and the variants from this study belong to feline calicivirus genogroup I. No association between geographical distribution and/or clinical signs and clustering in phylogenetic tree was observed. The variants circulating in public short-term animal shelter demonstrated a high variability because of the relatively rapid turnover of carrier cats constantly introduced of multiple viruses into this location over time. <![CDATA[Prostaglandin A<sub>1</sub> inhibits the replication of bovine viral diarrhea virus]]> ABSTRACT Bovine viral diarrhea virus can cause acute disease in livestock, leading to economic losses. We show that Prostaglandin A1 inhibits bovine viral diarrhea virus replication in Madin-Darby bovine kidney cells (94% inhibition using 5 µg/mL). Light and electron microscopy of infected cells shows that Prostaglandin A1 also prevents virus-induced vacuolization, but at higher concentrations (10 µg/mL). <![CDATA[Identification of enteric viruses circulating in a dog population with low vaccine coverage]]> ABSTRACT Although the use of vaccines has controlled enteric diseases in dogs in many developed countries, vaccine coverage is still under optimal situation in Brazil. There is a large population of nonimmunized dogs and few studies about the identification of the viruses associated with diarrhea. To address this situation, stool samples from 325 dogs were analyzed by polymerase chain reaction for the detection of common enteric viruses such as Canine adenovirus (CAdV), Canine coronavirus (CCoV), Canine distemper virus (CDV), Canine rotavirus (CRV) and Carnivorous protoparvovirus 1 (canine parvovirus 2; CPV-2). At least one of these species was detected in 56.6% (184/325) of the samples. The viruses detected most frequently in either diarrheic or nondiarrheic dog feces were CPV-2 (54.3% of the positive samples), CDV (45.1%) and CCoV (30.4%), followed by CRV (8.2%) and CAdV (4.9%). Only one agent was detected in the majority of the positive samples (63%), but co-infections were present in 37% of the positive samples and mainly included CDV and CPV-2. The data presented herein can improve the clinical knowledge in regions with low vaccine coverage and highlight the need to improve the methods used to control these infectious diseases in domestic dogs. <![CDATA[Occurrence of serological reactions for serogroup Sejroe (CTG and Prajtino) in female buffalo in the state of Pernambuco, Brazil]]> ABSTRACT The objective of this study was to evaluate the occurrence of anti-Leptospira spp. antibodies in female buffalo in the state of Pernambuco. A total of 123 female buffalo blood samples were collected from five properties distributed in the state of Pernambuco. The microscopic agglutination test was used to study anti-Leptospira spp. antibodies. The occurrence of anti-Leptospira spp. antibodies was 28.5% (35/123; CI 20.7–37.3%) and on different properties, the occurrence ranged from 28.6% to 80.0%, with 100% of the properties showing animals with positive results. The serovars of the serogroup Sejroe with a higher incidence were Hardjoprajtino (CTG strain, 49.1%) and Hardjo (Prajtino genotype, 43.2%), followed by serogroup Grippotyphosa with the Grippotyphosa serovar (3.9%), serogroup Pomona with the Pomona serovar (1.9%), and the Icterohaemorrhagiae serovar Copenhageni (1.9%). This was the first record of the occurrence of anti-Lepstospira spp. antibodies in female buffalo in the state of Pernambuco. Control measures are necessary to prevent health and economic losses, given that the agent involved affects animal reproduction, triggering drops in conception rates or even clinical cases of abortion. <![CDATA[Direct identification of bovine mastitis pathogens by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in pre-incubated milk]]> ABSTRACT The present study aimed to compare two MALDI-TOF identification methods [(a) direct sample identification after pre-incubation; or (b) use of bacteria isolated on pre-culture)] to standard, traditional bench microbiology. A total of 120 quarter milk samples from 40 Holstein lactating cows were screened based on culture-positive results obtained by microbiological culture (reference method) with the following numbers of quarters positive per cow: 4 cows with 1, 8 cows with 2, 12 cows with 3 and 16 cows with 4 infected quarters per cow. For direct identification method, quarter milk samples (n = 120) were skimmed by centrifugation (10,000 × g/10 min) and pre-incubated at 37 ºC for 12 h. After pre-incubation, quarter milk samples were submitted to total bacterial count by flow cytometry and for a preparation protocol for bacterial ribosomal protein extraction followed by MALDI-TOF MS analysis. The direct MALDI-TOF MS identification method compared to microbiological culture correctly identified isolates of coagulase-negative Staphylococci (27.2%), Streptococcus agalactiae (21.8%), Staphylococcus aureus (14.2%), and Streptococcus uberis (5.2%). The pre-incubation protocol of milk samples, associated to the direct identification method by MALDI-TOF MS, did not increase the identification at species level (score &gt;2.0) of pathogens causing subclinical mastitis in comparison to the method without previous incubation. <![CDATA[<em>Saccharomyces cerevisiae</em> populations and other yeasts associated with indigenous beers (<em>chicha</em>) of Ecuador]]> ABSTRACT Chicha, a type of beer made mainly with maize or cassava, is a traditional fermented beverage of the Andean region. There have only been a few studies on yeasts associated with chicha fermentation, and the species diversity occurring during the production of this beverage is not known. The objective of this study was to determine the biodiversity of yeasts in chicha, and to characterize the Saccharomyces cerevisiae populations associated with the production of chicha de jora, seven-grain chicha, chicha de yuca, and chicha de morocho in Ecuador. The molecular diversity of S. cerevisiae populations was determined by restriction polymorphism mitochondrial profiles. The beverages were characterized based on their physicochemical parameters. Twenty-six species were identified, and the most prevalent species were S. cerevisiae and Torulaspora delbrueckii. Other yeast species were isolated at low frequencies. Among 121 isolates of S. cerevisiae, 68 different mtDNA molecular profiles were identified. These results showed that chichas are fermented by a high number of different strains of S. cerevisiae. Some other species provided a minor contribution to the fermentation process. The chicha presented generally similar physicochemical parameters to those observed for other traditional fermented beverages, and can be considered as an acid fermented beverage. <![CDATA[Streptomyces globosus DK15 and Streptomyces ederensis ST13 as new producers of factumycin and tetrangomycin antibiotics]]> ABSTRACT Fifty seven soil-borne actinomycete strains were assessed for the antibiotic production. Two of the most active isolates, designed as Streptomyces ST-13 and DK-15 exhibited a broad range of antimicrobial activity and therefore they were selected for HPLC fractionation against the most suppressed bacteria Staphylococcus aureus (ST-13) and Chromobacterium violaceum (DK-15). LC/MS analysis of extracts showed the presence of polyketides factumycin (DK15) and tetrangomycin (ST13). The taxonomic position of the antibiotic-producing actinomycetes was determined using a polyphasic approach. Phenotypic characterization and 16S rRNA gene sequence analysis of the isolates matched those described for members of the genus Streptomyces. DK-15 strain exhibited the highest 16S rRNA gene sequence similarity to Streptomyces globosus DSM-40815 (T) and Streptomyces toxytricini DSM-40178 (T) and ST-13 strain to Streptomyces ederensis DSM-40741 (T) and Streptomyces phaeochromogenes DSM-40073 (T). For the proper identification, MALDI-TOF/MS profile of whole-cell proteins led to the identification of S. globosus DK-15 (accession number: KX527570) and S. ederensis ST13 (accession number: KX527568). To our knowledge, there is no report about the production of these antibiotics by S.globosus and S. ederensis, thus isolates DK15 and ST13 identified as S. globosus DK-15 and S.ederensis ST-13 can be considered as new sources of these unique antibacterial metabolites. <![CDATA[Selection of starter cultures for the production of sour cassava starch in a pilot-scale fermentation process]]> ABSTRACT Sour cassava starch (Polvilho azedo) is obtained from a spontaneous fermentation conducted by microorganisms from raw materials and fermentation tanks. This product is traditionally used in the baking industry for the manufacture of biscuits and Brazilian cheese breads. However, the end of fermentation is evaluated empirically, and the process occurs without standardization, which results in products of inconsistent quality. Predominant microbiota from a cassava flour manufacturer was isolated in order to select starter cultures for the production of sour cassava starch in a pilot-scale fermentation process. Lactic acid bacteria and yeasts were isolated, enumerated and grouped by Restriction Fragment Length Polymorphism, and PCR fingerprinting, respectively. One isolate of each molecular profile was identified by sequencing of the rRNA gene. LAB were prevalent throughout the entire process. Lactobacillus brevis (21.5%), which produced the highest values of acidity, and Lactobacillus plantarum (13.9%) were among the most frequent species. Pichia scutulata (52.2%) was the prevalent yeast and showed amylolytic activity. The aforementioned species were tested as single and mixed starter cultures in a pilot-scale fermentation process for 28 days. L. plantarum exhibited better performance as a starter culture, which suggests its potential for the production of sour cassava starch. <![CDATA[Screening of medium constituents for clavulanic acid production by <em>Streptomyces clavuligerus</em>]]> ABSTRACT Clavulanic acid is a β-lactam compound with potent inhibitory activity against β-lactamases. Studies have shown that certain amino acids play essential roles in CA biosynthesis. However, quantitative evaluations of the effects of these amino acids are still needed in order to improve CA production. Here, we report a study of the nutritional requirements of Streptomyces clavuligerus for CA production. Firstly, the influence of the primary nitrogen source and the salts composition was investigated. Subsequently, soybean protein isolate was supplemented with arginine (0.0–3.20 g L-1), threonine (0.0–1.44 g L-1), ornithine (0.0–4.08 g L-1), and glutamate (0.0–8.16 g L-1), according to a two-level central composite rotatable design. A medium containing ferrous sulfate yielded CA production of 437 mg L-1, while a formulation without this salt produced only 41 mg L-1 of CA. This substantial difference suggested that Fe2+ is important for CA biosynthesis. The experimental design showed that glutamate and ornithine negatively influenced CA production while arginine and threonine had no influence. The soybean protein isolate provided sufficient C5 precursor for CA biosynthesis, so that supplementation was unnecessary. Screening of medium components, together with experimental design tools, could be a valuable way of enhancing CA titers and reducing the process costs. <![CDATA[The potential of compounds isolated from <em>Xylaria</em> spp. as antifungal agents against anthracnose]]> ABSTRACT Anthracnose is a crop disease usually caused by fungi in the genus Colletotrichum or Gloeosporium. These are considered one of the main pathogens, causing significant economic losses, such as in peppers and guarana. The current forms of control include the use of resistant cultivars, sanitary pruning and fungicides. However, even with the use of some methods of controlling these cultures, the crops are not free of anthracnose. Additionally, excessive application of fungicides increases the resistance of pathogens to agrochemicals and cause harm to human health and the environment. In order to find natural antifungal agents against guarana anthracnose, endophytic fungi were isolated from Amazon guarana. The compounds piliformic acid and cytochalasin D were isolated by chromatographic techniques from two Xylaria spp., guided by assays with Colletotrichum gloeosporioides. The isolated compounds were identified by spectrometric techniques, as NMR and mass spectrometry. This is the first report that piliformic acid and cytochalasin D have antifungal activity against C. gloeosporioides with MIC 2.92 and 2.46 µmol mL-1 respectively. Captan and difenoconazole were included as positive controls (MIC 16.63 and 0.02 µmol mL-1, respectively). Thus, Xylaria species presented a biotechnological potential and production of different active compounds which might be promising against anthracnose disease. <![CDATA[Cloning and high-level expression of <em>Thermus thermophilus</em> RecA in <em>E. coli</em>: purification and novel use in HBV diagnostics]]> ABSTRACT We studied the role of Thermus thermophilus Recombinase A (RecA) in enhancing the PCR signals of DNA viruses such as Hepatitis B virus (HBV). The RecA gene of a thermophilic eubacterial strain, T. thermophilus, was cloned and hyperexpressed in Escherichia coli. The recombinant RecA protein was purified using a single heat treatment step without the use of any chromatography steps, and the purified protein (&gt;95%) was found to be active. The purified RecA could enhance the polymerase chain reaction (PCR) signals of HBV and improve the detection limit of the HBV diagnosis by real time PCR. The yield of recombinant RecA was ∼35 mg/L, the highest yield reported for a recombinant RecA to date. RecA can be successfully employed to enhance detection sensitivity for the diagnosis of DNA viruses such as HBV, and this methodology could be particularly useful for clinical samples with HBV viral loads of less than 10 IU/mL, which is interesting and novel. <![CDATA[Free fatty acids reduce metabolic stress and favor a stable production of heterologous proteins in <em>Pichia pastoris</em>]]> ABSTRACT The growth of yeasts in culture media can be affected by many factors. For example, methanol can be metabolized by other pathways to produce ethanol, which acts as an inhibitor of the heterologous protein production pathway; oxygen concentration can generate aerobic or anaerobic environments and affects the fermentation rate; and temperature affects the central carbon metabolism and stress response protein folding. The main goal of this study was determine the implication of free fatty acids on the production of heterologous proteins in different culture conditions in cultures of Pichia pastoris. We evaluated cell viability using propidium iodide by flow cytometry and thiobarbituric acid reactive substances to measure cell membrane damage. The results indicate that the use of low temperatures and low methanol concentrations favors the decrease in lipid peroxidation in the transition phase from glycerol to methanol. In addition, a temperature of 14 ºC + 1%M provided the most stable viability. By contrast, the temperature of 18 ºC + 1.5%M favored the production of a higher antibody fragment concentration. In summary, these results demonstrate that the decrease in lipid peroxidation is related to an increased production of free fatty acids. <![CDATA[Statistical optimization of kojic acid production by a UV-induced mutant strain of <em>Aspergillus terreus</em>]]> ABSTRACT The ability of four Aspergillus strains for biosynthesis of kojic acid was evaluated among which Aspergillus terreus represented the highest level (2.21 g/L) of kojic acid production. Improvement kojic acid production ability of A. terreus by random mutagenesis using different exposure time to ultraviolet light (5–40 min) was then performed to obtain a suitable mutant of kojic acid production (designated as C5-10, 7.63 g/L). Thereafter, design of experiment protocol was employed to find medium components (glucose, yeast extract, KH2PO4 (NH4)2SO4, and pH) influences on kojic acid production by the C5-10 mutant. A 25-1 fractional factorial design augmented to central composite design showed that glucose, yeast extract, and KH2PO4 were the most considerable factors within the tested levels (p &lt; 0.05). The optimum medium composition for the kojic acid production by the C5-10 mutant was found to be glucose, 98.4 g/L; yeast extract, 1.0 g/L; and KH2PO4, 10.3 mM which was theoretically able to produce 120.2 g/L of kojic acid based on the obtained response surface model for medium optimization. Using these medium compositions an experimental maximum Kojic acid production (109.0 ± 10 g/L) was acquired which verified the efficiency of the applied method. <![CDATA[Carotenoid production in sugarcane juice and synthetic media supplemented with nutrients by <em>Rhodotorula rubra</em> l02]]> ABSTRACT In order for the use of biological carotenoids to become feasible, it is necessary to have adequate low cost sources and improved methods of cultivation. The aim of this study was to evaluate the effect of supplementation with nitrogen, phosphorus, zinc, and magnesium, on the biomass and carotenoid volumetric production by yeast Rhodotorula rubra L02 using a complex medium (sugarcane juice) and synthetic media (sucrose and maltose) as substrates. The experimental design used for each substrate was randomized in blocks with 16 treatments and 3 repetitions. The treatments were compound for 15 different combinations of nutrients (N; Mg; Zn; P, N + Mg; N + Zn; N + P; Mg + Zn; Mg + P; Zn + P; N + P + Zn; N + P + Mg; N + Zn + Mg; P + Zn + Mg; N + Zn + Mg + P) alone and combined, and a control. The results were submitted to analysis of variance and Tukey test at 5% significance level. Among the treatments evaluated, the highest production of dry biomass, with both maltose and sucrose, was observed for Mg (1.60 g/L and 1.94 g/L, respectively). Additionally, another treatment that stood out in terms of biomass production was the control treatment with maltose (1.54 g/L). After the incubation time, killer activity was not observed since there was no formation of inhibition halo around the L02 yeast. <![CDATA[Multi-enzyme complex of white rot fungi in saccharification of lignocellulosic material]]> ABSTRACT The multi-enzyme complex (crude extract) of white rot fungi Pleurotus ostreatus, Pleurotus eryngii, Trametes versicolor, Pycnosporus sanguineus and Phanerochaete chrysosporium were characterized, evaluated in the hydrolysis of pretreated pulps of sorghum straw and compared efficiency with commercial enzyme. Most fungi complexes had better hydrolysis rates compared with purified commercial enzyme. <![CDATA[Performance of “RESIST-3 O.K.N. K-SeT” immunochromatographic assay for the detection of OXA-48 like, KPC, and NDM carbapenemases in <em>Klebsiella pneumoniae</em> in Turkey]]> ABSTRACT In this study, the performance of the “RESIST-3 O.K.N. K-SeT” (Coris BioConcept, Gembloux, Belgium) immunochromatographic assay was evaluated in 132 Klebsiella pneumoniae comprising 102 carbapenem resistant and 30 carbapenem susceptible isolates. Genotypically known isolates of Gram negative bacteria (n = 22) including various species were also tested by the assay as controls. The isolates tested by the immunochromatographic assay and also were run PCR for bla KPC, bla IMP, bla VIM, bla NDM, and bla OXA-48. The rates of bla NDM, bla OXA-48, and bla KPC in carbapenem resistant isolates were found at 52.9%, 39.2%, and 2.0%, respectively. Both bla NDM and bla OXA-48 were found in six (5.9%) isolates. The results of the assay showed 100% concordance with those obtained by PCR in 132 K. pneumoniae. The agreement between the two methods was found to be identical at the isolate level. The assay also correctly detected all genotypically known isolates of Escherichia coli, Serratia marcescens, Citrobacter freundii, Enterobacter cloacae, K. pneumoniae carrying bla KPC, bla NDM, and/or bla OXA-48. On the other hand, the assay did not exhibit any cross-reaction in control isolates harboring bla IMP and bla VIM. We conclude that the RESIST-3 O.K.N. K-SeT is a reliable, rapid, and user friendly test and we recommend it for routine diagnostic laboratories. <![CDATA[Antimicrobial susceptibility and fluctuations in clonal complexes of serogroup 6 <em>Streptococcus pneumoniae</em> isolates collected from children in Beijing, China, between 1997 and 2016]]> ABSTRACT This study examined the antimicrobial susceptibility patterns and clonal complex (CC) characteristics of serogroup 6 Streptococcus pneumoniae isolates collected from children in Beijing, China, between 1997 and 2016. Serotypes were determined using the Quellung reaction, and the antimicrobial susceptibility profiles of the isolates were determined using the disc-diffusion method or by E-test. Sequence types (STs) were assigned based on multilocus sequence typing. A total of 250 isolates were examined, with 55.2%, 30.0%, 12.8%, and 2.0% of isolates identified as serotypes 6A, 6B, 6C, and 6D, respectively. All of the isolates were susceptible to levofloxacin and vancomycin, and the non-suceptibitility rate to penicillin was 41.6%. Eighty-two distinct STs, assigned to 13 CCs and 28 singletons, were identified. CC982 was the most prevalent CC amongst serotype 6A isolates (34%), followed by CC9789 and CC3173. Amongst serotype 6B isolates, CC90 and CC4542 were the most common, accounting for 25.3% and 14.7% of isolates respectively. Over the study period, the prevalence of CC982, CC4542, and CC4536 isolates showing susceptibility to penicillin and cefuroxime decreased, and the proportion of CC3173, CC9789, CC855, and CC902 isolates showing non-susceptibility to these two antibiotics increased. <![CDATA[Identification of pathogenic and nonpathogenic <em>Leptospira</em> species of Brazilian isolates by Matrix Assisted Laser Desorption/Ionization and Time Flight mass spectrometry]]> ABSTRACT Matrix Assisted Laser Desorption/Ionization and Time of Flight mass spectrometry (MALDI-TOF MS) is a powerful tool for the identification of bacteria through the detection and analysis of their proteins or fragments derived from ribosomes. Slight sequence variations in conserved ribosomal proteins distinguish microorganisms at the subspecies and strain levels. Characterization of Leptospira spp. by 16S RNA sequencing is costly and time-consuming, and recent studies have shown that closely related species (e.g., Leptospira interrogans and Leptospira kirschneri) may not be discriminated using this technology. Herein, we report an in-house Leptospira reference spectra database using Leptospira reference strains that were validated with a collection of well-identified Brazilian isolates kept in the Bacterial Zoonosis Laboratory at the Veterinary Preventive Medicine and Animal Health Department at Sao Paulo University. In addition, L. interrogans and L. kirschneri were differentiated using an in-depth mass spectrometry analysis with ClinProTools™ software. In conclusion, our in-house reference spectra database has the necessary accuracy to differentiate pathogenic and non-pathogenic species and to distinguish L. interrogans and L. kirschneri. <![CDATA[Comparison of GeneXpert MTB/RIF assay and LED-FM microscopy for the diagnosis of extra pulmonary tuberculosis in Khyber Pakhtunkhwa, Pakistan]]> ABSTRACT GeneXpert is one of the recent technological instruments used to diagnose tuberculosis in a short span of time. In this study, the performance of GeneXpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis (EPTB) was compared with light-emitting diode Fluorescent Microscopy (LED-FM) in Khyber Pakhtunkhwa, Pakistan. A total of 737 EPTB samples were collected from tuberculosis (TB) suspected patients. Out of these samples, male to female ratio was 53% (n = 390) to 47% (n = 347) respectively. The sensitivity and specificity was 73% and 100% for GeneXpert, while 40% and 100% for LED-FM microscopy. This shows that the sensitivity of GeneXpert is 40–50%, higher than LED-FM microscopy. GeneXpert also detected low number of bacilli as compared to LED-FM microscopy. <![CDATA[Performance of rapid tests for carbapenemase detection among Brazilian <em>Enterobacteriaceae</em> isolates]]> ABSTRACT The global emergence of carbapenemases led to the need of developing new methods for their rapid detection. The aim of this study was to evaluate the performance of the rapid tests for carbapenemase-producing and non-producing Enterobacteriaceae. Carbapenem non-susceptible Enterobacteriaceae from a surveillance study submitted to a multiplex real time PCR for carbapenemase detection were included in this study. The isolates were subjected to the rapid phenotypic tests Carba NP, Blue-Carba and Carbapenem Inactivation Method (CIM). A total of 83 carbapenemase-producing (43) and non-producing (40) isolates were included in the study. The sensitivity/specificity were 62.7%/97.5%, 95.3%/100%, and 74.4%/97.5% for Carba NP, Blue-Carba and CIM, respectively. Both Carba NP and Blue-Carba presented their final results after 75 min of incubation; the final results for CIM were obtained only after 8 h. Failure to detect OXA-370 carbapenemase was the main problem for Carba NP and CIM assays. As the Blue-Carba presented the highest sensitivity, it can be considered the best screening test. Conversely, CIM might be the easiest to perform, as it does not require special reagents. The early detection of carbapenemases aids to establish infection control measures and prevent carbapenemases to spread reducing the risk of healthcare associated infections and therapeutic failure. <![CDATA[The occurrence of aflatoxigenic <em>Aspergillus</em> spp. in dairy cattle feed in Southern Brazil]]> ABSTRACT The presence of mycotoxins or related fungi in animal feed is a major problem for animal and human health. Silage and concentrated feed samples were collected from 21 dairy farms in the Western part of Paraná state in Southern Brazil. Water activity and pH of all samples were measured, and each sample was analyzed to check for the presence of aflatoxigenic Aspergillus. Water activity was observed to be lower in the concentrated feed samples. The pH was lower in the silage samples, indicating fermentation processes. Two silage samples and four concentrated feed samples were contaminated with Aspergillus spp. Seven isolates of Aspergillus spp. were obtained and their potential to produce aflatoxins was evaluated. Four of the isolates, two from the silage samples and two from the concentrated feed samples, produced the aflatoxins B1, B2, G1, and G2 in culture media. These isolates were identified as Aspergillus parasiticus and Aspergillus nomius. The presence of aflatoxigenic isolates of Aspergillus spp. in silage and concentrated feed samples is a matter of concern, because of the risk of aflatoxin production and contamination of the animal feed. <![CDATA[Antifungal activity of nanoemulsions encapsulating oregano (<em>Origanum vulgare</em>) essential oil: <em>in vitro</em> study and application in Minas Padrão cheese]]> ABSTRACT The objective of this study was to evaluate the antifungal activity of nanoemulsions encapsulating essential oil of oregano (Origanum vulgare), both in vitro and after application on Minas Padrão cheese. Nanodispersions were obtained by the phase inversion temperature method. Cladosporium sp., Fusarium sp., and Penicillium sp. genera were isolated from cheese samples and used to evaluate antifungal activity. Minimal inhibitory concentrations of non-encapsulated and encapsulated oregano essential oil were determined, and they were influenced by the encapsulation of the essential oil depending on the type of fungus. The antifungal activity of the nanoencapsulated oregano essential oil in cheese slices showed no evidence of an effect of the MICs, when applied in the matrix. On the other hand, an influence of contact time of the nanoemulsion with the cheese was observed, due to the increase in water activity. It was concluded that nanoencapsulated oregano essential oil presented an inhibitory effect against the three genera of fungi evaluated. If environmental parameters, such as storage temperature and water activity, were controlled, the inhibitory effect of nanoemulsions of oregano oil could possibly be greatly improved, and they could be presented as a potential alternative for the preservation of Minas Padrão cheese against fungal contamination. <![CDATA[Shigatoxigenic and atypical enteropathogenic <em>Escherichia coli</em> in fish for human consumption]]> ABSTRACT Shigatoxigenic and enteropathogenic Escherichia coli with virulence and multidrug resistance profile were isolated from Nile tilapia. This study finding is of great importance to public health because they help understand this pathogen epidemiology in fish and demonstrate how these animals can transmit E. coli related diseases to humans. <![CDATA[Adopt a Bacterium – an active and collaborative learning experience in microbiology based on social media]]> ABSTRACT The “Adopt a Bacterium” project is based on the use of social network as a tool in Microbiology undergraduate education, improving student learning and encouraging students to participate in collaborative learning. The approach involves active participation of both students and teachers, emphasizing knowledge exchange, based on widely used social media. Students were organized in groups and asked to adopt a specific bacterial genus and, subsequently, submit posts about “adopted genus”. The formative assessment is based on posting information on Facebook®, and the summative assessment involves presentation of seminars about the adopted theme. To evaluate the project, students filled out three anonymous and voluntary surveys. Most of the students enjoyed the activities and positively evaluated the experience. A large amount of students declared a change in their attitude towards the way they processed information, especially regarding the use of scientific sources. Finally, we evaluated knowledge retention six months after the end of the course and students were able to recall relevant Microbiology concepts. Our results suggest that the “Adopt a Bacterium” project represents a useful strategy in Microbiology learning and may be applied to other academic fields. <![CDATA[First identification of clinical isolate of a Novel “NDM-4” producing <em>Escherichia coli</em> ST405 from urine sample in Pakistan]]> ABSTRACT The “Adopt a Bacterium” project is based on the use of social network as a tool in Microbiology undergraduate education, improving student learning and encouraging students to participate in collaborative learning. The approach involves active participation of both students and teachers, emphasizing knowledge exchange, based on widely used social media. Students were organized in groups and asked to adopt a specific bacterial genus and, subsequently, submit posts about “adopted genus”. The formative assessment is based on posting information on Facebook®, and the summative assessment involves presentation of seminars about the adopted theme. To evaluate the project, students filled out three anonymous and voluntary surveys. Most of the students enjoyed the activities and positively evaluated the experience. A large amount of students declared a change in their attitude towards the way they processed information, especially regarding the use of scientific sources. Finally, we evaluated knowledge retention six months after the end of the course and students were able to recall relevant Microbiology concepts. Our results suggest that the “Adopt a Bacterium” project represents a useful strategy in Microbiology learning and may be applied to other academic fields.