Scielo RSS <![CDATA[Revista Brasileira de Medicina do Esporte]]> http://www.scielo.br/rss.php?pid=1517-869220030002&lang=en vol. 9 num. 2 lang. en <![CDATA[SciELO Logo]]> http://www.scielo.br/img/en/fbpelogp.gif http://www.scielo.br http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922003000200001&lng=en&nrm=iso&tlng=en <![CDATA[<b>Guidelines of the Brazilian Society of Sports Medicine</b>: <b>Dietary changes, fluid replacement, food supplements and drugs: demonstration of ergogenic action and potential health risks</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922003000200002&lng=en&nrm=iso&tlng=en <![CDATA[<b>Hypotensive effects of resistance exercises performed at different intensities and same work volumes</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922003000200003&lng=en&nrm=iso&tlng=en The aim of this paper was to compare the effects of two sequences of resistance exercises (RE), with different intensities but same training volume, on post-exercise blood pressure responses. Sixteen young subjects with previous experience in RE were evaluated during three non-following days in chest press, legpress, pulley pull down, leg curl, shoulder press, and biceps curl. On the first day, the load associated with six maximal repetitions (6RM) were determined for each exercise. On the second day, three sets of 6RM were performed (SEQ6), with a two minute interval between the sets. On the last day, the same procedure was repeated, but using 12 repetitions with 50% of 6RM load (SEQ12). Rest BP was measured before the sequences by auscultatory method. Post-exercise resting BP was measured each 10 minutes by ambulatory BP monitoring during 60 minutes. The magnitude and duration of BP variability were compared by repeated ANOVA measures followed by Tuckey post-hoc test (p < 0.05). A significant reduction in diastolic blood pressure (DBP) was observed in the first 20 minutes after SEQ12, but not after SEQ6. SEQ12 elicited significant decline in systolic blood pressure (SBP), at least during the first 50 minutes after the exercise, while significant reductions were observed in all measures after SEQ6. There were no significant differences between the absolute values of DBP and SBP after both sequences. In conclusion: a) RE had hypotensive effects on blood pressure, mainly SBP; b) the absolute decline of SBP seem not to be influenced by different interactions between workload and number of repetitions; c) higher workloads seem to extend the total time of SBP post-exercise reduction; d) the number of repetitions seems to have more influence on DBP than SBP, but for a short period of time. <![CDATA[<b>Do continuous and intermittent exercises sets induce similar cardiovascular responses in the elderly women?</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922003000200004&lng=en&nrm=iso&tlng=en There is a lack of information about elderly acute cardiovascular responses in the elderly during exercise involving different muscle groups and strategies of load/repetition interaction (LRI) in continuous and intermittent sets. The purpose of this study was to compare heart rate (HR), systolic blood pressure (SBP), rate-pressure product (RPP) and quality of exercise performance (QEx) of upper and lower body exercises (arms abduction and hip flexion) in different situations of LRI. Twelve healthy women aged 65 to 85 years old volunteered to this study. The subjects performed both exercises at 12 maximal repetitions workload, continuously (2 sets of 12 reps) and alternately (4 sets of 6 reps). HR was measured with a cardiotachometer and SBP through auscultation technique at the end of the last repetition of each set. The exercises were recorded in video to evaluate QEx. At least for the selected exercises, LRI did not influence QEx. However, SBP and RPP values for the intermittent sets were significantly higher than for continuous situations (p < 0.05). The authors concluded that continuous sets seem to be associated to greater cardiovascular stress in elder subjects, mainly because of SBP responses during the exercise. <![CDATA[<b>Relationship between postural changes and injuries of the locomotor system in indoor soccer athletes</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922003000200005&lng=en&nrm=iso&tlng=en Nowadays, the sport practice has been initiated precociously. These precocious beginning of competitive sports may result in changes on the young athletes' posture alignment, because the child's bone and muscle systems are still developing and these systems are more susceptible to stress and injuries. The purpose of this study was to verify the indoor soccer (Futsal) injuries and the changes of posture alignment in players between 9 to 16 years old. We examined the posture of 50 volunteers young futsal male players, volunteers, from a first division club team. These athletes were divided in two different groups: the group one (G1) was formed by those players who have suffered injuries related to Futsal; and group two (G2) was composed by athletes who did not have injuries related to futsal. First, the athletes or their parents answered a questionnaire about anthropometric characteristics of the subjects, player position, how long they have been practicing Futsal, how often they practiced Futsal and previous injuries related to Futsal practice. Then, we evaluated the postural alignment using an specific protocol to check the postural alterations. Both groups showed changes on the body alignment. The most common changes seen were in ankle and knee in both groups. The changes of the alignment in lumbar spine was more common in group 1. Considering injuries in group 1, the most common injury was in ankle (45.2% of all injuries) and the second most common injury was in knee (19% of all injuries). Considering the kind of injury, sprain and fracture/dislocate were the two most common (26.2% each one) and muscle injury comes in second with 21.4% of all kinds of injuries. We could discuss the relationship between the changes of posture alignment and sports injuries, once the changes of posture alignment result in stress in muscle and ligaments and it may result in injuries. We couldn't find a relationship between the cause and the consequence of these factors. <![CDATA[<b>Effects of aerobic training on heart rate</b>]]> http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922003000200006&lng=en&nrm=iso&tlng=en Regular physical exercise is an important factor to reduce the indexes of cardiovascular and all causes morbimortality. However, there is, apparently, additional and independent benefits of the regular practice of physical exercise and the improvement of the level of aerobic condition. Heart rate (HR) is mediated primarily by the direct activity of the autonomic nervous system (ANS), specifically through the sympathetic and parasympathetic branches activities over the sinus node autorhythmicity, with predominance of the vagal activity (parasympathetic) at rest, that is progressively inhibited since the onset of the exercise. The HR behavior has been widely studied during different conditions and protocols associated to the exercise. A reduction of the cardiac vagal tone (parasympathetic function) and consequently a diminished HR variability in rest, independently of the protocol of measurement used, is related to an autonomic dysfunction, chronic-degenerative diseases and increased mortality risk. Individuals with high levels of aerobic condition have a lower resting HR, along with a larger parasympathetic activity or smaller sympathetic activity, but it is not necessarily a direct consequence of the exercise training, as long as other inherent adaptations to the aerobic conditioning can influence the resting HR. The HR response in the onset of the exercise represents the integrity of the vagus nerve, and the HR recovery on the post-exercise transient also denotes important prognostic information; by the way, individuals that have a slow HR recovery in the first minute post-exercise have increased mortality risk. In conclusion, the physiological mechanisms modulating HR during or after an exercise program are not totally clear, and further studies are needed.