Scielo RSS <![CDATA[Brazilian Journal of Plant Physiology]]> vol. 21 num. 4 lang. en <![CDATA[SciELO Logo]]> <![CDATA[<b>Expression analysis of a set of genes related to the ripening of bananas and mangoes</b>]]> During ripening many important physic-chemical changes contribute to fruit quality, and they are precisely determined by gene expression. Specific genes are essential to normal ripening; however, information on gene expression about the majority of tropical fruit, such as bananas and mangoes is limited. In this way, the present study was undertaken with the objective to provide preliminary access to the changes in expression of some genes potentially relevant to banana and mango ripening. To simultaneously evaluate the changes in gene expression, a small collection of genes related to ethylene biosynthesis, starch mobilization, cell wall disassembly, pigment synthesis and ascorbate metabolism was assembled in nylon membranes and probed with cDNA from unripe and ripe fruit. Some interesting differences were observed between gene expression in bananas and mangoes. In relation to starch metabolism, banana a-amylase was induced during ripening while phosphorylase was more induced in mangoes. Similarly, expression of cell wall-related genes for polygalacturonase and expansin were also different in those fruits. Fructanfructosyltransferase, chalcone synthase, and ascorbate oxidase genes were also induced in ripening mangoes, but not in bananas. Although the number of sequences involved was relatively small, this simple and feasible approach provided interesting preliminary data that can be starting points for more in depth studies. <![CDATA[<b>Changes in growth variables and potassium content in leaves of Black Barley in response to NaCl</b>]]> Much attention is being focused on the Black barley (Hordeum distichum L.) as a local cultivar offering good model for a cereal crop has traits of resistance to drought and salinity during vegetative growth stages. Although Black was sensitive to salt stress during germination, it developed gradual tolerance with age and proved very tolerant during growth and development stages. The data of study clearly revealed how this cultivar was superior over Arivat (Hordeum vulgare L.) in many physiological aspects such as leaf growth variables (i.e. rate and duration) and processes (i.e. cell division), tiller production and potassium content. Black barley had more tillers, faster rate and longer duration of growth processes which was accompanied with potassium accumulation, as sodium chloride concentration increased in the growth medium. Thus, the ability of Black cultivar to accumulate K+ could have promoted growth variables (i.e. faster rate and longer duration of growth processes). Arivat, on the other hand, might have suffered from K+ deficiency; which could explain the adverse effect of salt stress on leaf growth variables and processes. Moreover, the relative water content (RWC) and proline can clearly distinguish the two cultivars; RWC was higher and proline concentration was lower in leaves of Black as compared with Arivat. Therefore, Black barley proved efficient in maintaining growth, ion homeostasis, and might sacrifice less in growth under osmotic stress conditions. The possible mechanism of the effect of sodium chloride on potassium accumulation in Black barley is discussed. <![CDATA[<b>The role of </b><b>γ</b><b> -aminobutyric acid (Gaba) in somatic embryogenesis of <i>Acca sellowiana</i> Berg. (Myrtaceae)</b>]]> The γ-aminobutyric acid (Gaba) is a non-protein amino acid found in prokaryotes and eukaryotes. Its role in plant development has not been fully established. This study reports a quantification of the levels of endogenous Gaba, as well as investigation of its role in different stages of somatic embryogenesis in Acca sellowiana Berg. (Myrtaceae). Zygotic embryos were used as explants and they were inoculated into the culture medium contained different concentrations of Gaba (0,2, 4, 6, 8 and 10 µM). The highest concentrations of endogenous Gaba were detected between the third and nine days after inoculation, reaching the value of 12.77 µmol.g-1FW. High frequency of somatic embryogenesis was observed in response to 10 µM Gaba. This treatment also resulted in a large number of normal embryos, and the lowest percentage of formation of fused somatic embryos, phenotypic characteristic of most deformed embryos in all treatments. Also, all treatments promoted the formation of the somatic embryos with positive characteristics of development resumption, which however did not originate the seedlings.<hr/>O ácido γ-aminobutírico (Gaba) é um aminoácido não protéico encontrado em procariontes e eucariontes. Seu papel em plantas ainda não está bem estabelecido. No presente estudo procurou-se quantificar os teores endógenos de Gaba, bem como investigar seu papel nos diferentes estágios da embriogênese somática em Acca sellowiana Berg. (Myrtaceae). Foram empregados embriões zigóticos como explantes e os mesmos foram inoculados em meio de cultura contendo diferentes concentrações de Gaba: 0 (controle), 2, 4, 6, 8 e 10 µM. As maiores concentrações de gaba endógeno foram detectadas no período compreendido entre o 3º e o 9º dia após a inoculação, tendo alcançado, neste último dia, o valor de 12,77 µmol.g-1FW. Alta freqüência de embriogênese somática foi observada em resposta a 10 µM de Gaba. Este tratamento também resultou em grande número de embriões normais, bem como o menor percentual de formação de embriões cupuliformes, característica fenotípica da maioria dos embriões deformados em todos os tratamentos. Em todos os tratamentos ocorreram embriões somáticos que apresentaram características positivas quanto à retomada de desenvolvimento, mas que não resultaram na formação de plântulas. <![CDATA[<b>Influence of shoot inclination on irradiance and morphophysiological leaf traits along shoots in cerrado trees with distinct leaf deciduousness</b>]]> This study investigated the relationship among shoot inclination, irradiance and morphophysiological traits of basal (BL) and distal (DL) leaves in six cerrado trees with distinct leaf deciduousness. Deciduous species showed plagiotropic shoots (44º) and larger leaf area than semideciduous and evergreen species, which showed orthotropic shoots (56º and 63º, respectively). Despite larger leaf area, irradiance at shoot base in deciduous was around 85% in relation to full irradiance, while in semideciduous and evergreen only 23% of irradiance reached on BL. Likewise, maximum net photosynthesis (Pnmax) was similar between BL and DL in deciduous. Contrastingly, semideciduous and evergreen showed significant decreasing of Pnmax in BL. Plagiotropic shoots of deciduous allow similar irradiance along shoots, resulting in similar Pnmax along shoot. On the other hand, orthotropic shoots of semideciduous and evergreen resulted in shading and decreasing of Pnmax on BL. However, considering BL and DL together, there was not significant difference of leaf-life-span or Pnmax among deciduous, semideciduous and evergreen. Therefore, shoot inclination and shading among leaves on same shoot should be significant influencing leaf morphophysiological traits along shoots in cerrado trees. On the other hand, similar leaf-life-span among phenological groups resulted in absence of Pnmax differences when BL and DL were considered together.<hr/>As relações entre a inclinação do ramo, irradiância e as características morfofisiológicas de folhas basais (FB) e distais (FD) foram investigadas em seis espécies arbóreas de Cerrado com distintas fenologias foliares. Espécies decíduas apresentaram ramos plagiotrópicos (44º) e maior área foliar do que espécies semidecíduas e sempreverdes com ramos ortotrópicos (56º e 63º, respectivamente). Nas espécies decíduas a irradiância solar foi de 85% na base do ramo, mas nas espécies semidecíduas e sempreverdes menos de 23% da irradiância incidiu nas FB. As decíduas apresentaram fotossíntese líquida máxima (Pnmax) equivalente entre FB e FD, porém, nas semidecíduas e sempreverdes ocorreu uma diminuição significativa de Pnmax nas FB. Os ramos plagiotrópicos das decíduas permitiram uma equivalente irradiância solar e similar Pnmax ao longo do ramo. De forma contrastante, os ramos ortotrópicos das semidecíduas e sempreverdes resultaram em intenso sombreamento e diminuição de Pnmax nas FB. Considerando conjuntamente FB e FD, não houve um gradiente significativo dos valores do tempo de vida da folha (TVF) ou Pnmax entre decíduas, semidecíduas e sempreverdes. A inclinação do ramo e o sombreamento correspondente entre as folhas são importantes fatores para a determinação de Pnmax ao longo dos ramos nas espécies arbóreas de Cerrado. Por outro lado, quando FB e FD foram consideradas conjuntamente não houve diferença de Pnmax entre os grupos fenológicos estudados devido à similaridade do TVF. <![CDATA[<b>Identification of aluminum resistant Andean common bean (<i>Phaseolus vulgaris </i>L.) genotypes</b>]]> Aluminum (Al) toxicity is the principal abiotic constraint in acid soils of the tropics. Common bean, meanwhile, is for the most part very sensitive to this stress although certain genotypes within the species show some level of resistance, justifying screening of germplasm from both the Andean and Mesoamerican genepools to identify better performing sources. The objective of this study was to evaluate 36 genotypes of common bean under hydroponic conditions to identify root morphological traits that could be associated with Al resistance. A total of five root traits (elongation rate of the primary root, total root length, root biomass, average root diameter and specific root length) were measured using a simple nutrient solution with or without Al (20 µM) over a 48 hour growth period with the experiments conducted in five replicates. We found that genotypes from the Andean gene pool were more resistant to Al than Mesoamerican genotypes under these conditions, based on a smaller decrease in the elongation rate of the primary root, total root length, specific root length and a lesser increase in root diameter in the presence of Al in nutrient solution. These root traits but not root biomass can serve as selection criteria to distinguish between Al-resistant and Al-sensitive genotypes. <![CDATA[<b>Leaf anatomy changes related to physiological adaptations to flooding in Amazonian tree species</b>]]> In trees of the seasonally flooded forest of the Mapire River in Venezuela, early flooding induces a reversible diminution in leaf conductance and photosynthetic rate. With the aim of finding an anatomical explanation for the observed responses of leaf gas exchange, the characteristics of emerged leaves developed under drainage or after three months of flooding were examined in the tree species Acosmium nitens, Campsiandra laurifolia, Duroia fusifera, Eschweilera tenuifolia, Pouteria orinocoensis and Symmeria paniculata and in leaves developed only under flooding in Inga spuria and Tachigali davidsei. Anatomy was remarkably similar among species and families and consisted of a bi-layered palisade parenchyma, a 5-6-cell-thick spongy parenchyma and large whole-leaf thickness. Anatomy also resembled that of xerophytes or evergreen species by possessing thick cuticles, large epidermal cells, thickened anticlinal epidermal cell walls and an abundance of sclerenchyma. Leaves of flooded v. un-flooded trees were not qualitatively different. Specific leaf area resembled values of deciduous species in tropical dry forests. No quantitative differences were found between leaves developed in un-flooded and flooded trees, with the exception of a reduction in whole-leaf thickness of E. tenuifolia, P. orinocoensis and S. paniculata and a change in the contribution of palisade parenchyma to leaf thickness in E. tenuifolia. Both stomatal size and density in these exclusively hypostomatous species remained unaffected by flooding. A decrease under flooding in whole-leaf thickness may have resulted in an increase in mesophyll conductance and therefore photosynthetic rate.<hr/>Nas árvores da floresta sazonalmente inundada do rio Mapire em Venezuela, a inundação cedo induz uma diminuição reversível na condutância foliar e na taxa fotossintética. Com o objetivo de encontrar uma explanação anatômica para as respostas observadas na trocas gasosas nas folhas, as características das folhas emersas desenvolvidas sob a drenagem ou após três meses de inundação foram examinadas nas espécies nas espécies arbóreas Acosmium nitens, Campsiandra laurifolia, Duroia fusifera, Eschweilera tenuifolia Pouteria orinocoensis e Symmeria paniculata, e nas folhas desenvolvidas somente sob inundação de Inga spuria e Tachigali davidsei. A anatomia foi notavelmente similar entre as espécies e as famílias e consistiu em um parênquima paliçádico bi-celular, um parênquima lacunoso de 5-6 células e grande espessura da folha inteira. A anatomia assemelhou-se também àquele das xerófitas ou das espécies sempre-verdes possuindo cutículas grossas, células epidérmicas grandes, paredes anticlinais das epidermes engrossadas e uma abundância de esclerênquima. Folhas das árvores inundadas v. não inundadas não eram qualitativamente diferentes. A área foliar específica assemelhou-se a valores de espécies decíduas em florestas secas tropicais. Nenhuma diferença quantitativa foi encontrada entre as folhas desenvolvidas em árvores não inundadas e inundadas, à exceção de uma redução na espessura da folha inteira do E. tenuifolia, P. orinocoensis e S. paniculata e uma mudança na contribuição do parênquima paliçádico a espessura foliar em E. tenuifolia. O tamanho e a densidade estomáticos nestas espécies exclusivamente hipostomáticas permanesceram não afetados pela inundação. Uma diminuição sob inundação na espessura foliar pode estar relacionado ao aumento da condutância mesofilar e conseqüentemente da taxa fotossintética. <![CDATA[<b>Changes in growth and photosynthetic capacity of cucumber seedlings in response to nitrate stress</b>]]> The effects of three nitrate levels - 14(CK), 56(T-1), and 140 mmol L-1 (T-2) - on growth and photosynthetic capacity of cucumber (Cucumis sativus L. cv. Xintaimici) seedlings grown in hydroponic culture were investigated. The results showed that at 12 d after treatment plant height, stem diameter, leaf area, and leaf number of cucumber seedlings were stimulated by 56 mmol L-1 nitrate, whereas were inhibited significantly by 140 mmol L-1 nitrate compared with CK. Short-term stimulation in photosynthetic rate occurred under T-1 treatment, and then recovered to the level of CK. Photosynthetic rate of T-2 seedlings significantly decreased over treatment course with respect to CK. Photosynthetic pigment content of T-1 and T-2 increased during the first 2 d, and gradually recovered to the level of CK thereafter. Chlorophyll a/b and carotenoids/chlorophyll of T-1 had no significant difference from CK during treatment period. During the first 4 d, there was no significant difference in chlorophyll a/b and carotenoids/chlorophyll between T-2 and CK. After 4 d, chlorophyll a/b of T-2 increased gradually, whereas carotenoids/chlorophyll decreased. Actual PSII efficiency (ΦPSII) and photochemical quenching (qP) of T-1 had no significant difference from CK, and non-photochemical quenching (qN) was a little higher than CK after 2 d. During the first 2 d, there was little difference in ΦPSII and qP between T-2 and CK. After 2 d, both ΦPSII and qP of T-2 decreased to a great extend. A significant increase in qN of T-2 occurred over treatment course. With respect to CK, Hill reaction activity of T-1 slightly decreased, and T-2 treatment resulted in a significant decrease of Hill reaction activity. This evidence indicates that high-level nitrate stress may reduce photosynthesis through its effects not only on stomatal conductance but on the photosynthetic apparatus. <![CDATA[<b>Physiological disturbances promoted by ozone in five cultivars of <i>Phaseolus vulgaris</i> L.</b>]]> Bean seedlings of Fepagro 26, Guapo Brilhante, Iraí, Macotaço and US Pinto 111 cultivars were submitted to treatments with or without addition of ozone to the ambient air, in order to evaluate the effects of exposure on photosynthesis, relative electrolyte leakage, foliar abscission and biomass of the seedlings. Exposure to ozone caused significant decreases in the net assimilation of all cultivars except Iraí. It also caused a significant increase in electrolyte leakage from the Pinto cultivar, but only when AOT40 was the highest. It also produced significant anticipation in the time of foliar abscission in the Pinto, Fepagro and Guapo cultivars. The variability observed in the biomass measurements reflected the limitations to perform long-term controlled-environment studies, one of the major challengers yet to be overcome in order to obtain more conclusive data on damages induced on crop species resulting from tropospheric ozone enrichment.<hr/>Plântulas de feijão das cultivares Fepagro 26, Guapo Brilhante, Iraí, Macotaço e US pinto 111 foram submetidas aos tratamentos com e sem adição de ozônio ao ar ambiente, com o objetivo de avaliar os efeitos da exposição sobre a fotossíntese, permeabilidade relativa a eletrólitos, abscisão foliar e biomassa das plântulas. A exposição ao ozônio causou decréscimos significativos na assimilação líquida de todas as cultivares, exceto na Iraí. Causou também um aumento significativo na permeabilidade relativa a eletrólitos da cultivar Pinto, mas apenas quando a AOT40 foi a mais elevada. Além disso, produziu uma antecipação significativa no tempo de abscisão foliar nas cultivares Pinto, Fepagro e Guapo. A variabilidade observada nas medidas de biomassa total, refletiu as limitações para se executar estudos de longo prazo em condições ambientais controladas, um dos principais desafios ainda por ser superado antes que se possa obter dados mais conclusivos sobre os danos em espécies cultivadas resultantes do enriquecimento do ozônio toposférico.