Scielo RSS <![CDATA[Journal of Venomous Animals and Toxins including Tropical Diseases]]> vol. 21 num. lang. en <![CDATA[SciELO Logo]]> <![CDATA[Post-exposure treatment of Ebola virus using passive immunotherapy: proposal for a new strategy]]> Background Better treatments are urgently needed for the management of Ebola virus epidemics in Equatorial Africa. Methods We conducted a systematic review of the literature on the use of passive immunotherapy for the treatment or prevention of Ebola virus disease. We placed findings from this review into the context of passive immunotherapy currently used for venom-induced disease, and recent improvements in manufacturing of polyvalent antivenom products. Results Passive immunotherapy appears to be one of the most promising specific treatments for Ebola. However, its potential has been incompletely evaluated, considering the overall experience and recent improvement of immunotherapy. Development and use of heterologous serum derivatives could protect people exposed to Ebola viruses with reasonable cost and logistics. Conclusion Hyperimmune equine IgG fragments and purified polyclonal whole IgG deserve further consideration as treatment for exposure to the Ebola virus. <![CDATA[Seroepidemiological analysis of toxoplasmosis in college students]]> Background Toxoplasmosis is a zoonosis caused by an obligate intracellular parasite, Toxoplasma gondii, which affects warm-blooded animals including humans. Its prevalence rates usually vary in different regions of the planet. Methods In this study, an analysis of the seroprevalence of toxoplasmosis among Brazilian students was proposed by means of IgG specific antibodies detection. The presence of anti-Toxoplasma gondiiantibodies by indirect fluorescent antibody test (IFAT) was also evaluated in order to compare it with enzyme-linked immunosorbent assay (ELISA) and to assess the use of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and o-phenylenediamine dihydrochloride chromogens. Results The IFAT method showed a seroprevalence of 22.3%. These results were similar to those obtained by ELISA (24.1%). The seroprevalence was directly estimated from the IgG avidity, which showed that in a sample of 112 students, three of them had acute infection, an incidence of 1.6% in the studied population. Conclusion In this study, the use of different chromogenic substrates in immunoenzymatic ELISA assays did not display different sensitivity in the detection of T. gondii-reagent serum. The extrapolation of results to this population must be carefully considered, since the investigation was conducted on a reduced sample. However, it allows us to emphasize the importance of careful and well prepared studies to identify risk factors for toxoplasmosis, to adopt preventive measures and to offer guidance to at-risk populations about the disease. <![CDATA[The red seaweed <em>Plocamium brasiliense</em> shows anti-snake venom toxic effects]]> Background Snakebite is considered a neglected tropical disease by the World Health Organization. In Brazil, about 70% of the envenomation cases are caused by Bothrops snakes. Its venom may provoke hemorrhage, pain, necrosis, hemolysis, renal or cardiac failure and even death in victims. Since commercial antivenom does not efficiently neutralize the local toxic effects of venoms, natural products have been tested in order to provide alternative or complementary treatment to serum therapy. Therefore, the present study aimed to evaluate the ability of the seaweed Plocamium brasiliense and its active derivatives to neutralize hemorrhagic, edematogenic, hemolytic, coagulant and proteolytic activities of B. jararaca venom. Methods Specimens of P. brasiliense were collected in Rio de Janeiro state, Brazil, dried and submitted to oil extraction using four solvents of increasing polarities, n-hexane (HEX), dichloromethane (DCM), ethyl acetate (ETA) and hydroalcoholic solution (HYD). The solvents were evaporated, yielding HEX, DCM, ETA and HYD extracts. Further, all extracts were dissolved in dimethylsulfoxide. In addition, two monoterpenes (8-bromo-3,4,7-trichloro-3,7-dimethyl-1E, 5E-octadiene and 1,8-dibromo-3,4,7-trichloro-3,7-dimethyl-1E, 5E-octadiene) and a cholesterol fraction were isolated from the extract of P. brasiliense prepared in hexane. Algal samples were incubated for 30 minutes with B. jararaca venom, and then tested for lethality; hemorrhagic, edematogenic, hemolytic, coagulant and proteolytic effects. Results Most of the algal extracts inhibited the toxic effects with different potencies. The DCM extract was the most effective, since it inhibited all types of toxic activity. On the other hand, the HYD extract failed to inhibit any effect. Moreover, the isolated products inhibited proteolysis and protected mice from hemorrhage in 30% of the cases, whereas 8-bromo-3,4,7-trichloro-3,7-dimethyl-1E, 5E-octadiene inhibited 100% and 20% of the hemorrhagic and proteolytic activities, respectively. None of the algal products were toxic to mice. Conclusion Seaweeds may be a promising source of inhibitors against toxic effects caused by B. jararacaenvenomation, which may contribute to antivenom treatment. <![CDATA[Biodegradation of [D-Leu<sup>1</sup>] microcystin-LR by a bacterium isolated from sediment of Patos Lagoon estuary, Brazil]]> Background Toxic cyanobacterial blooms are recurrent in Patos Lagoon, in southern Brazil. Among cyanotoxins, [D-Leu1] microcystin-LR is the predominant variant whose natural cycle involves water and sediment compartments. This study aimed to identify and isolate from sediment a bacterial strain capable of growing on [D-Leu1] microcystin-LR. Sediment and water samples were collected at two distinct aquatic spots: close to the Oceanographic Museum (P1), in Rio Grande City, and on São Lourenço Beach (P2), in São Lourenço do Sul City, southern Brazil. Methods [D-Leu1] microcystin-LR was isolated and purified from batch cultures of Microcystis aeruginosastrain RST9501. Samples of water and sediment from Rio Grande and São Lourenço do Sul were collected. Bacteria from the samples were allowed to grow in flasks containing solely [D-Leu1] microcystin-LR. This strain named DMSX was isolated on agar MSM with 8 g L−1 glucose and further purified on a cyanotoxin basis growth. Microcystin concentration was obtained by using the ELISA immunoassay for microcystins whereas bacterial count was performed by epifluorescence microscopy. The genus Pseudomonas was identified by DNA techniques. Results Although several bacterial strains were isolated from the samples, only one, DMXS, was capable of growing on [D-Leu1] microcystin-LR. The phylogenetic analysis of the 16S rRNA gene from DMXS strain classified the organism as Pseudomonas aeruginosa. DMXS strain incubated with [D-Leu1] microcystin-LR lowered the amount of toxin from 1 μg.L−1 to &lt; 0.05 μg.L−1. Besides, an increase in the bacterial count–from 71 × 105 bacteria.mL−1 to 117 × 105 bacteria.mL−1–was observed along the incubation. Conclusions The use of bacteria isolated from sediment for technological applications to remove toxic compounds is viable. Studies have shown that sediment plays an important role as a source of bacteria capable of degrading cyanobacterial toxins. This is the first Brazilian report on a bacterium–of the genus Pseudomonas–that can degrade [D-Leu1] microcystin-LR, the most frequent microcystin variant in Brazilian freshwaters. <![CDATA[<em>Paederus</em> beetles: the agent of human dermatitis]]> Background Rove beetles of the genus Paederus cause dermatitis when they come in contact with human skin. This condition is prevalent in some tropical and subtropical regions, such as in northern Pakistan, where it was recorded for the first time by US troops. Despite much research from other countries on this subject, few studies, mostly clinical, have been performed in a Pakistani context. A survey was carried out in villages, towns and cities of Punjab province, Pakistan, to explore the rove beetle population dynamics and to develop a model to elucidate the symptoms, preventive measures and treatment strategies for this dermatitis. Methods The prospective observational and patient surveys were performed bimonthly over a period of two years, in different districts of Punjab province. Collection was carried out in fields, gardens and houses during every visit with the aid of a pitfall trap, light trap, flight intercept trap, Berlese funnel trap and sweep netting. These traps were installed for four days during every visit. Interviews of ten individuals of different ages and sexes from each site were recorded during each visit. Results Out of 980 individuals, 26.4% were found to suffer from Paederus dermatitis. Lesions were most commonly found on the neck followed by the face. In July-August during the rainy season, this skin irritation was most prevalent and the population of these beetles peaked (36.2%). During May-June, the beetle population was lowest (7.85%) due to soil dryness. About 70% of such irritation cases were from individuals living in farming villages or in farmhouses. Their houses typically (80%) had broken doors and screen-less windows while 97% of the residents were unaware of how they may have come into contact with these beetles. In most cases (91% from villages/small towns and 24% from cities and adjoining areas) the local residents were unaware of modern treatment strategies. Conclusions Paederus dermatitis is extremely frequent in villages with poor housing facilities and could be avoided via community awareness. <![CDATA[Antimycobacterial and cytotoxicity activity of microcystins]]> Background The present work aimed to evaluate the antimycobacterial activity and cytotoxicity of Microcystis aeruginosa toxins, the MC-LR variant and purified extract of [D-Leu1] microcystin-LR. Methods The antimicrobial activity of M. aeruginosa extract and microcystin was evaluated by resazurin microtiter assay against Mycobacterium tuberculosis, M. terrae, M. chelonae and M. kansasii. The cytotoxicity assay was performed by trypan blue exclusion against the HTC cell line. Results Antimicrobial activity was observed in the hexanic extract of M. aeruginosa (RST 9501 strain) against M. tuberculosis, including sensitive and resistant strains with minimal inhibitory concentrations (MIC) between 1.93 μM and 0.06 μM. The high activity of M. aeruginosa hexanic extract could be attributed to the major presence of the toxins MC-LR and [D-Leu1] MC-LR that showed activity at MIC between 53 and 0.42 μM against tested mycobacterial strains. Even at the highest concentration tested, no toxicity of M. aeruginosa extracts was identified against HTC cells. Conclusions These preliminary results suggest that [D-Leu1] MC-LR is a promising candidate for the development of a new antimycobacterial agent.