Acessibilidade / Reportar erro

A quantitative assessment of factors affecting the rooting of grapevine rootstocks (Vitis vinifera L.)

ABSTRACT.

Grapevine is a fruit species of great agronomic interest since both fresh fruit and wine are highly marketable products. Therefore, there is growing interest in this crop among researchers in the pursuit of increased yields and better cultivation conditions. Asexual propagation is the most commonly used method for propagating grapevine seedlings, with cuttings used for rootstock formation and subsequent grafting of materials to form the canopy. The rootstock is responsible for support, water, and nutrient uptake, thus determining the vigor of the plant; therefore, it is essential to understand the suitable conditions in which roots can thrive and thereby enhance plant growth. The type of cutting, type of substrate, and application of exogenous auxins are among the factors that interfere with the rooting of grapevine rootstocks, and determining and implementing the best combination of these factors could provide for more vigorous plants. Reviewing high-quality published scientific research from diverse countries is a method of identifying data, grouping information, and obtaining reliable answers. Furthermore, it can allow for the detection and grouping of the main factors affecting the rooting of grapevine cuttings, thus enabling a clearer recommendation and better understanding of the issue.

Keywords:
auxin; seedling; substrate

Introduction

Grapevine (Vitis vinifera L.) is a species of the Vitaceae family, native to the Mediterranean region, Central Europe, Southwest Asia, Morocco, from northern Portugal to southern Germany, and eastern to northern Iran. The genus Vitis includes many species worldwide. Its diffusion and importance are highlighted by the diverse usage of grapes, including by the consumption of fresh and dried fruits (raisins), and the production of wines, juices, vinegar, ethanol, jams, fertilizers, and antioxidant compounds. In addition, the medicinal properties of the grape aid in the prevention of cancer, heart disease, allergies, and diabetes (Neto, Ricardino, Souza, Aguiar, & Marques, 2020Neto, I. F. D. S., Ricardino, I. E. F., Souza, M. N. C., Aguiar, A. M., & Marques, A. E. F. (2020). Utilização da uva como fonte de corante natural: uma revisão integrativa. Revista Ciência (In) Cena, 1(11), 16-27.).

To obtain quality fruit, attention to all stages of cultivation is paramount, and seedling production is considered crucial for the successful installation of a vineyard. The sexual propagation of grapevines results in large plant heterogeneity as well as late and uneven fruit sets (Fronza & Hamann, 2015Fronza, D., & Hamann, J. J. (2015). Nurseries and seedling propagation. Santa Maria, RS: Rede e-Tec Brasil.). Therefore, the use of this technique is restricted to breeding programs (De Albuquerque & Choudhury, 1993De Albuquerque, T. C. S., & Choudhury, E. N. (1993). The influence of basal buds removal and rooting media on root formation and quality of grapevines rootstock (cv. Tropical). Revista Brasileira de Fruticultura, 15(1), 193-197. ; Villa et al., 2003Villa, F., Pio, R., Chalfun, N. N. J., Gontijo, T. C. A., Coelho, J. H. C., & Dutra, L. F. (2003). Enraizamento de estacas herbáceas do porta-enxerto de videira'Riparia de Traviú'tratadas com auxinas. Ciência e Agrotecnologia, 27(6), 1426-1431. DOI: https://doi.org/10.1590/S1413-70542003000600030
https://doi.org/https://doi.org/10.1590/...
). The rooting of cuttings is the most commonly used technique for producing grapevine seedlings (De Albuquerque & Choudhury, 1993De Albuquerque, T. C. S., & Choudhury, E. N. (1993). The influence of basal buds removal and rooting media on root formation and quality of grapevines rootstock (cv. Tropical). Revista Brasileira de Fruticultura, 15(1), 193-197. ), by using a small portion of the branch of a parent plant to produce a new plant by growing adventitious roots (Bettoni et al., 2014Bettoni, J. C., Gardin, J. P. P., Feldberg, N. P., Schumacher, R., Souza, J. A., & Furlan, C. (2014a). O uso de AIB melhora a qualidade de raízes em estacas herbáceas de porta-enxerto de videira. Evidência, 14(1), 47-56. DOI: https://doi.org/10.13140/2.1.1428.2884
https://doi.org/https://doi.org/10.13140...
a). The cutting technique is widely used for the preservation of rootstocks (Fronza & Hamann, 2015Fronza, D., & Hamann, J. J. (2015). Nurseries and seedling propagation. Santa Maria, RS: Rede e-Tec Brasil.) for subsequent grafting of a cultivar of interest and seedling production as the foundation of a vineyard (Regina, Souza, & Dias, 2012Regina, M. D. A., Souza, C. R. D., & Dias, F. A. N. (2012). Propagation of Vitis spp. by bench grafting table using different rootstocks and auxins. Revista Brasileira de Fruticultura, 34(3), 897-904. DOI: https://doi.org/10.1590/S0100-29452012000300032
https://doi.org/https://doi.org/10.1590/...
).

From a physiological and anatomical point of view, there is some complexity in root development by cuttings. Factors such as hormonal balance, cutting and substrate type (Nachtigal & Pereira, 2000Nachtigal, J. C., & Pereira, F. M. (2000). Propagação do pessegueiro (Prunus persica L. Batsch) cultivar Okinawa por meio de estacas herbáceas em câmara de nebulização. Revista Brasileira de Fruticultura, 22(2), 208-212. ), and hormone and plant growth regulators in the auxin group (Taiz & Zaiger, 2013Taiz, L., & Zeiger, E. (2013). Fisiologia vegetal. (5. ed.). Porto Alegre, RS: Artmed.; Vilarinho & Cândido, 2014Vilarinho, M. K. C., & Cândido, A. K. A. A. (2014). Effect of plant growth regulator on rooting of eritrina-green-yellow (Erythrina indica picta). Agrarian, 7(24), 251-256.) influence the dedifferentiation and redirection of totipotent cells for rooting.

The existence of qualitative and quantitative uncertainties of the aforementioned factors creates a demand for studies that present a clearer identification of the combinations that make the production of grapevine seedlings viable. Therefore, this study aimed to conduct a literature review on the main factors that affect the rooting of grapevine cuttings and to provide a clearer and more objective recommendation for more successful seedling production.

In this literature review, research results on the factors that interfere with the rooting of grapevine cuttings were raised and discussed.

Material and methods

Data collection methodology

We reviewed 55 scientific articles published in journals with different impact factors and data from the most diverse grape-producing countries and regions. We chose to search for a better geographic representation of the information collected in order to cover as many particularities of each location as possible, thus reducing the effect of environmental variability on our review and conclusions. The databases used for the research were Scielo, Google Scholar, Science Direct, and CAPES websites.

Table 1 shows the number of articles selected for each investigation period (years) and the countries in which each study was conducted. Twenty-five (25) of the 55 articles were from the last ten years, of which 14 were from the past five years. Thirty-four (34) were from Brazil, and 21 were from eight other countries.

Table 1
Number of articles compiled over the past 40 years on the production of grapevine rootstock seedlings.

The independent variables of the materials were grouped and defined as auxin dose (mg L-1), immersion time (seconds or hour), cutting type, cutting length (cm), auxin, rootstock, substrate, and presence or absence of a leaf (Table 2). Rooting percentage was regarded as a dependent variable, and we considered the highest rooting percentage (%) of each article in this study (Table 3). A total of 926 rooting percentages were found, with the amount of data per paper varying from 1 (minimum) to 108 (maximum). Since large variability of the data was observed in most of the papers, the use of the average value could result in low rooting percentage values. In addition, using the highest value allowed us to obtain a combination of variables that result in better rooting of grapevine rootstock cuttings, which makes it possible to verify the trend of the results and simplify future decisions regarding new studies and/or practical applications that seek better results in the rooting of grapevine cuttings. Table 2 also shows the number of articles in which the results represent the levels of each variable.

Table 2
Distribution of the number of scientific articles and the variables that influence the production of grapevine rootstock seedlings.

Table 3 shows the information required for the selected materials and relates them to our results. The variables were grouped in columns, and the main information was summarized and standardized to facilitate interpretation.

Table 3
Data compiled from 55 articles through the search items “grapevine × auxin”, “grapevine × cutting” and “grapevine × substrate.”

Results and discussion

The results were grouped into four categories to facilitate data discussion. The groups were organized by the effect of the dose and immersion time, cutting type and length, auxin and rootstock, substrate type, and presence or absence of leaves.

Dose and time of immersion

Despite finding that the application of exogenous auxin improves histological characteristics through the formation of calluses and tissues and differentiation of vascular tissue (Mitra & Bose, 1954Mitra, G. C., & Bose, N. (1954). Rooting and histological responses of detached leaves to B-Indolebutyric acid with special reference to Boerhavia diffusa Linn. Phytomorphology, 7(3/4), 370-381. ; Singh, 2018Singh, K. K. (2018). A review: Multiplication of Bougainvillea species through cutting. International Journal of Chemical Studies, 6(2), 1961-1965.), it may be unnecessary in other circumstances for the grapevine crop. Our results showed that the highest rooting percentages (%) were obtained with the use of exogenous auxin (Figure 1A) at doses of 250, 500, 1500, and 3000 mg L-1, all of which were close to 100%. However, even at a dose of 0 mg L-1, the % values were above 80%. This may imply a recommendation other than the use of exogenous hormones to induce the root cuttings to reduce production costs. Several studies have reported little or no influence of plant growth regulators on the rooting of grapevine cuttings (Goode Jr. & Lane, 1983Goode Junior, D. Z., & Lane, R. P. (1983). Rooting leafy muscadine grape cuttings. HortScience, 18(6), 944-946.; Moretti & Borgo, 1985Moretti, G., & Borgo, M. (1985). Stimolazioni ed antagonismi nel campo dei fitoregolatori rizogeni in vitigni portinnesti. Vignevini, 12(11), 31-36.; Thomas & Schiefelbein, 2001Thomas, P., & Schiefelbein, J. W. (2001). Combined in vitro and in vivo propagation for rapid multiplication of grapevine cv. Arka Neelamani. HortScience, 36(6), 1107-1110. DOI: https://doi.org/10.21273/HORTSCI.36.6.1107
https://doi.org/https://doi.org/10.21273...
; Keeley, Preece, & Taylor, 2003Keeley, K., Preece, J. E., & Taylor, B. H. (2003). Increased rooting of “Norton” grape cuttings using auxins and gibberellin biosynthesis inhibitors. HortScience, 38(2), 281-283. DOI: https://doi.org/10.21273/HORTSCI.38.2.281
https://doi.org/https://doi.org/10.21273...
; Thomas & Schiefelbein, 2003Thomas, P., Lee, M. M., & Schiefelbein, J. (2003). Molecular identification of proline‐rich protein genes induced during root formation in grape (Vitis vinifera L.) stem cuttings. Plant, Cell & Environment, 26(9), 1497-1504. DOI: https://doi.org/10.1046/j.1365-3040.2003.01071.x
https://doi.org/https://doi.org/10.1046/...
; Villa et al., 2003Villa, F., Pio, R., Chalfun, N. N. J., Gontijo, T. C. A., Coelho, J. H. C., & Dutra, L. F. (2003). Enraizamento de estacas herbáceas do porta-enxerto de videira'Riparia de Traviú'tratadas com auxinas. Ciência e Agrotecnologia, 27(6), 1426-1431. DOI: https://doi.org/10.1590/S1413-70542003000600030
https://doi.org/https://doi.org/10.1590/...
; Keeley, Preece, Taylor, & Dami, 2004Keeley, K., Preece, J. E., Taylor, B. H., & Dami, I. E. (2004). Effects of high auxin concentrations, cold storage, and cane position on improved rooting of Vitis aestivalis Michx. Norton cuttings. American Journal of Enology and Viticulture, 55(3), 265-268.; Thomas & Schiefelbein, 2004Thomas, P., & Schiefelbein, J. W. (2004). Roles of leaf in regulation of root and shoot growth from single node softwood cuttings of grape (Vitis vinifera). Annals of Applied Biology, 144(1), 27-37. DOI: https://doi.org/10.1111/j.1744-7348.2004.tb00313.x
https://doi.org/https://doi.org/10.1111/...
; Botelho et al., 2005Botelho, R. V., Maia, A. J., Pires, E. J. P., Terra, M. M., & Schuck, E. (2005b). Effects of plant regulators on the vegetative propagation of vine rootstock ‘43-43’ (Vitis vinifera x V. rotundifolia). Revista Brasileira de Fruticultura, 27(1), 6-8.a; Tofanelli et al., 2014Tofanelli, M. B. D., Freitas, P. L., & Pereira, G. E. (2014). 2, 4-dichlorophenoxyacetic acid as an alternative auxin for rooting of vine rootstock cuttings. Revista Brasileira de Fruticultura, 36(3), 664-672. DOI: https://doi.org/10.1590/0100-2945-266/13.
https://doi.org/https://doi.org/10.1590/...
; Bartolini et al., 2017Bartolini, S., Carrozza, G. P., Scalabrelli, G., & Toffanin, A. (2017). Effectiveness of Azospirillum brasilence Sp245 on young plants of Vitis vinifera L. Open Life Science, 12(1), 365-372. DOI: https://doi.org/10.1515/biol-2017-0042
https://doi.org/https://doi.org/10.1515/...
). However, our results indicate that there was a slight increase in the percentage of cuttings rooted in the application of exogenous auxins. Thus, its use could be justified when seeking greater rooting efficiency or when there is a limited amount of material available for propagation.

The immersion time of the cuttings in exogenous auxins (Figure 1B) had little influence on rooting. All values were greater than 80%, except for at the immersion time of 15 s. However, studies that aimed at greater efficiency (values above 90%) appeared to use average standard immersion times of 10 s (Ahmed et al., 2017Ahmed, S., Jaffar, M. A., Ali, N., Ahmed, S., Ramzan, M., & Habib, Q. (2017). Effect of naphthalene acetic acid on sprouting and rooting of stem cuttings of graps. Science Letters, 5(3), 225-232. ; Chakraborty & Rajkumar, 2018Chakraborty, S., & Rajkumar, M. (2018). Effect of growth regulators and organic substances on rooting of grapes (Vitis vinifera L.) cv. Muscat. Asian Journal of Science and Technology, 9(7), 8418-8421.; Nascimento et al., 2019Nascimento, D. C., Dini, M., Moreira, R. M., Sampaio, N. V., & Schuch, M. W. (2019). Minicutting of chardonnay grapevine and SO4 grapevine rootstock. Revista Científica Rural, 21(3), 270-281. DOI: https://doi.org/10.30945/rcr-v21i3.3050
https://doi.org/https://doi.org/10.30945...
; Ismail et al., 2020Ismail, S. H., Shalamova, A. A., & Abramov, A. G. (2020). Rooting stimulation of “Victoria” and “Korinka russkaya” grape hardwood cuttings as influenced by potassium salt of Indolyl-3-Acetic Acid (KIAA). Vegetable Crops of Russia, 1, 70-73. DOI: https://doi.org/10.18619/2072-9146-2020-1-70-73.
https://doi.org/https://doi.org/10.18619...
) and 20 s (Köse, & Güleryüz, 2006Köse, C. & Güleryüz, M. (2006). Effects of auxins and cytokinins on graft union of grapevine (Vitis vinifera). New Zealand Journal of Crop and Horticultural Science, 34(2), 145-150. DOI: https://doi.org/10.1080/01140671.2006.9514399
https://doi.org/https://doi.org/10.1080/...
; Gökbayrak et al., 2010Gökbayrak, Z., Dardeniz, A., Arıkan, A., & Kaplan, U. (2010). Best duration for submersion of grapevine cuttings of rootstock 41B in water to increase root formation. Journal of Food, Agriculture & Environment, 8(3-4), 607-609.; Mohamed, 2017Mohamed, G. A. (2017). Water soaking duration, Indole butyric acid and rooting media and their effect on rooting ability of Ramsey grapevine rootstock cuttings. Middle East Journal of Applied Sciences, 7(4), 1080-1100.).

Figure 1
Average highest rooting percentages (%) of grapevine cuttings for dose (mg L-1) (A) and immersion time (seconds) (B) of exogenous auxin.

Cutting type and length

The data for cutting type showed the best results for rooting with hardwood cuttings (Figure 2A). In this cutting type, the average was 91.23%, while the averages for semi-hardwood and herbaceous cuttings were 76.72 and 84.00%, respectively. In general, rooting of hardwood grapevine cuttings is straight-forward (Biasi et al., 1997Biasi, L. A., Pommer, C. V., & Pino, P. A. G. S. (1997). Propagação de porta-enxertos de videira mediante estaquia semilenhosa. Bragantia, 56(2), 367-376. DOI: https://doi.org/10.1590/S0006-87051997000200016
https://doi.org/https://doi.org/10.1590/...
), and often 100% rooting can be obtained (Da Silva et al., 1986Silva, A. L., Fachinello, J. C., & Machado, A. A. (1986). Effect of indolbutyric acid in grapevine grapting and rooting. Pesquisa Agropecuária Brasileira, 21(8), 865-871.; Roberto et al., 2004Roberto, S. R., Pereira, F. M., Neves, C. S. V. J., Jubileu, B. D. S., & Azevedo, M. C. B. D. (2004a). Herbaceous cutting rooting of ‘Campinas’ (IAC 766) and ‘Jales’ (IAC 572) vine roostocks on different growth medium. Ciência Rural, 34(5), 1633-1636. DOI: https://doi.org/10.1590/S0103-84782004000500051
https://doi.org/https://doi.org/10.1590/...
c; Köse & Güleryüz, 2006Köse, C. & Güleryüz, M. (2006). Effects of auxins and cytokinins on graft union of grapevine (Vitis vinifera). New Zealand Journal of Crop and Horticultural Science, 34(2), 145-150. DOI: https://doi.org/10.1080/01140671.2006.9514399
https://doi.org/https://doi.org/10.1080/...
; Sozim & Ayub, 2006Sozim, M., & Ayub, R. A. (2006). Propagation of vine rootstocks (Vitis sp.) treated with IBA. Publicações da UEPG Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 12(02), 37-41.; Amaral et al., 2009Amaral, U., Bini, D. A., & Martins, C. R. (2009). Rapid propagation of rootstock of grapevine semihardwood cuttings in Uuguaiana-RS. Revista da FZVA, 15(2), 85-93.; Gökbayrak et al., 2010Gökbayrak, Z., Dardeniz, A., Arıkan, A., & Kaplan, U. (2010). Best duration for submersion of grapevine cuttings of rootstock 41B in water to increase root formation. Journal of Food, Agriculture & Environment, 8(3-4), 607-609.; Ahmed et al., 2017Ahmed, S., Jaffar, M. A., Ali, N., Ahmed, S., Ramzan, M., & Habib, Q. (2017). Effect of naphthalene acetic acid on sprouting and rooting of stem cuttings of graps. Science Letters, 5(3), 225-232. ; Sabir & Sabir, 2018Sabir, F. K., & Sabir, A. (2018). Effects of different storage conditions on rooting and shooting performance of grapevine (Vitis vinifera L.) cuttings in hydroponic culture system. International Journal of Sustainable Agricultural Research, 5(3), 46-53. DOI: https://doi.org/10.18488/journal70.2018.53.46.53.
https://doi.org/https://doi.org/10.18488...
), compared to semi-hardwood (Bordin et al., 2005Bordin, I., Hidalgo, P. C., Bürkle, R., & Roberto, S. R. (2005). Effect of leaf presence on semihardwood cutting rooting of grapevine rootstocks. Ciência Rural, 35(1), 215-218.; Botelho et al., 2005Botelho, R. V., Maia, A. J., Pires, E. J. P., Terra, M. M., & Schuck, E. (2005b). Effects of plant regulators on the vegetative propagation of vine rootstock ‘43-43’ (Vitis vinifera x V. rotundifolia). Revista Brasileira de Fruticultura, 27(1), 6-8.b; Denega et al., 2009Denega, S., Biasi, L. A., Zanette, F., Nascimento, I. R., & Blaskevics, S. J. (2009). Rooting of indole-3-butyric acid-treated cuttings of nine Vitis rotundifolia cultivars performed during spring and summer. Scientia Agraria, 10(3), 199-207.) and herbaceous cuttings (Leão, 2003Leão, P. C. S. (2003). Effects of different kinds of cuttings in the scion production grapevine rootstocks, CV. IAC 572 ‘Jales’. Ciência Rural, 33(1), 165-168.; Villa et al., 2003Villa, F., Pio, R., Chalfun, N. N. J., Gontijo, T. C. A., Coelho, J. H. C., & Dutra, L. F. (2003). Enraizamento de estacas herbáceas do porta-enxerto de videira'Riparia de Traviú'tratadas com auxinas. Ciência e Agrotecnologia, 27(6), 1426-1431. DOI: https://doi.org/10.1590/S1413-70542003000600030
https://doi.org/https://doi.org/10.1590/...
; Nascimento et al., 2019Nascimento, D. C., Dini, M., Moreira, R. M., Sampaio, N. V., & Schuch, M. W. (2019). Minicutting of chardonnay grapevine and SO4 grapevine rootstock. Revista Científica Rural, 21(3), 270-281. DOI: https://doi.org/10.30945/rcr-v21i3.3050
https://doi.org/https://doi.org/10.30945...
) with percentageages below 85%. However, with the expansion of cultivation areas, the use of semi-hardwood (Alley, 1980Alley, C. J. (1980). Propagation of grapevines. California Agriculture, 34(7), 29-30.; Egger, Moretti, & Borgo, 1985Egger, E., Moretti, G., & Borgo, M. (1985). Confronto di substrati per la moltiplicazione rapida di talee verdi ed apici vegetativi di portinnesti della vite in serra. Vignevini, 12(4), 43-49.; Moretti & Borgo, 1985Moretti, G., & Borgo, M. (1985). Stimolazioni ed antagonismi nel campo dei fitoregolatori rizogeni in vitigni portinnesti. Vignevini, 12(11), 31-36.) and herbaceous cuttings (Winkler, Cook, Kliewerer, & Lider, 1974Winkler, A. J., Cook, J. H., Kliewer, W. M., & Lider, L. A. (1974). General viticulture. Berkeley and Los Angeles, US: University of California Press. ) are viable alternatives to respond to the demand for healthy and high-quality plant material. When there is a need to produce a large number of cuttings from a limited amount of available materials, shorter cuttings and a reduced number of buds can be used.

Figure 2
Average highest rooting percentages (%) of grapevine cuttings for type (A) and length (cm) (B).

Figure 2B shows higher values of with increasing cutting length. Cuttings lengths of 25-45 cm showed percentages above 90%. There are two possible reasons for these results. First, it is reasonable to relate the cutting length to the type; Figure 2B shows a direct relationship between the highest percentage and hardwood, which generally has longer cuttings. (Figure 5) (Leão, 2003Leão, P. C. S. (2003). Effects of different kinds of cuttings in the scion production grapevine rootstocks, CV. IAC 572 ‘Jales’. Ciência Rural, 33(1), 165-168.; Monteguti et al., 2008Monteguti, D., Biasi, L. A., Peresuti, R. A., Sachi, A. D. T., De Oliveira, O. R., & Skalitz, R. (2008). Rooting of grapevine rootstock hardwood cuttings by using organic fertilizer. Scientia. Agraria, 9(1), 99-103. DOI: http://dx.doi.org/10.5380/rsa.v9i1.10144
https://doi.org/http://dx.doi.org/10.538...
; Daskalakis, Biniari, Bouza, & Stavrakaki, 2018Daskalakis, I., Biniari, K., Bouza, D., & Stavrakaki, M. (2018). The effect that indolebutyric acid (IBA) and position of cane segment have on the rooting of cuttings from grapevine rootstocks and from Cabernet franc (Vitis vinifera L.) under conditions of a hydroponic culture system. Scientia Horticulturae, 227, 79-84. DOI: http://dx.doi.org/10.1016/j.scienta.2017.09.024.
https://doi.org/http://dx.doi.org/10.101...
; Jesus et al., 2018Jesus, A. M. S., Villa, F., & Chalfun, N. N. J. (2018). Épocas de enxertia e indução radicular através de aquecimento basal para obtenção antecipada de mudas de videira. Scientia Agraria Paranaensis, 17(1), 35-40.; Daskalakis et al., 2019Daskalakis, I., Biniari, K., & Bouza, D. (2019). Effect of indolebutyric acid (IBA) and cane position on rooting of rootstock’s cuttings. Acta Horticulturae, 1242, 767-773. DOI: https://doi.org/10.17660/ActaHortic.2019.1242.114
https://doi.org/https://doi.org/10.17660...
). There is evidence that the degree of lignification of cuttings has a greater influence on the number of rooted cuttings compared to the length or number of buds per cutting (Leão, 2003Leão, P. C. S. (2003). Effects of different kinds of cuttings in the scion production grapevine rootstocks, CV. IAC 572 ‘Jales’. Ciência Rural, 33(1), 165-168.). Second, there is likely a greater amount of nutritional reserves present and available for rooting in longer cuttings (Nicoloso, Cassol, & Fortunato, 2001Nicoloso, F. T., Cassol, L. F., & Fortunato, R. P. (2001). Shoot cutting length on rooting of brazilian ginseng (Pfaffia glomerata). Ciência Rural, 31(1), 57-60. DOI: https://doi.org/10.1590/S0103-84782001000100009
https://doi.org/https://doi.org/10.1590/...
).

Auxin and rootstock

The average value with the use of indole-3-butyric acid (IBA) as an exogenous inducer was 84.3% (Table 3). When combined, indole-3-acetic acid (IAA) and naphthalene acetic acid (NAA) represented only 6% of the selected studies (Table 2). Due to the small number of articles, it is not possible to generate conclusive information about the best auxin for inducing the rooting of grapevine cuttings.

The large number of studies which assessed IBA as a plant growth regulator suggests that this is the main synthetic hormone used for the rooting of grapevine cuttings (Machado et al., 2005Machado, M. P., Mayer, J. L. S., Ritter, M., & Biasi, L. A. (2005). Indole butyric acid on rooting ability of semihardwood cutting of grapevine rootstock 'VR 043-43' (Vitis vinifera x Vitis rotundifolia). Revista Brasileira de Fruticultura, 27(3), 476-479. DOI: https://doi.org/10.1590/S0100-29452005000300032
https://doi.org/https://doi.org/10.1590/...
). However, factors such as cultivar, time of year, and cutting type, reported 25 years ago (Fachinello, Hoffmann, Nachtigal, Kersten, & Fortes, 1995Fachinello, J. C., Hoffmann, A., Nachtigal, J. C., Kersten, E., & Fortes, G. D. L. (1995?). Propagação de plantas frutiferas de clima temperado. Pelotas, RS: UFPEL-Ed. Universitaria.) still appear to cause variability in the results.

In view of the diverse range of rootstocks available for grapevine propagation, the main four (Table 2 and Figure 3) have a good rooting potential, particularly IAC 766 and Paulsen 1103 with close to 100% success.

Figure 3
Average highest rooting percentages (%) of grapevine cuttings for rootstock varieties.

Presence or absence of leaves and type of substrate

The presence of leaves proved to be a significant factor in the rooting of cuttings (Figure 4A). Despite the small number of articles in our database that compared rooting with and without leaves (Table 2), it is worth mentioning that the average was above 80% in the presence of leaves (regardless of the measurement unit) (Figure 4A). The presence of leaves in the rooting of herbaceous and semi-hardwood cuttings is essential for obtaining positive results with grapevine (Biasi et al., 1997Biasi, L. A., Pommer, C. V., & Pino, P. A. G. S. (1997). Propagação de porta-enxertos de videira mediante estaquia semilenhosa. Bragantia, 56(2), 367-376. DOI: https://doi.org/10.1590/S0006-87051997000200016
https://doi.org/https://doi.org/10.1590/...
), showing superior performance to that using hardwood cuttings (Zuffellato-Ribas & Rodrigues, 2001Zuffellato-Ribas, K. C., & Rodrigues, J. D. (2001). Estaquia: uma abordagem dos principais aspectos fisiológicos. Curitiba, PR: K. C. Zuffellato-Ribas.; Botelho et al., 2005Botelho, R. V., Maia, A. J., Pires, E. J. P., Terra, M. M., & Schuck, E. (2005b). Effects of plant regulators on the vegetative propagation of vine rootstock ‘43-43’ (Vitis vinifera x V. rotundifolia). Revista Brasileira de Fruticultura, 27(1), 6-8.b). Genetic materials that are generally challenging to root with hardwood cuttings (Goode Junior, Krewer, Lane, Daniell, & Couvillon, 1982Goode Junior, D. Z., Krewer, G. W., Lane, R. P., Daniell, J. W., & Couvillon, G. A. (1982). Rooting studies of dormant muscadine grape cuttings. HortScience, 17(4), 644-645.) can provide good results with cuttings in the presence of leaves collected during the plant growth period (Goode Junior & Lane, 1983Goode Junior, D. Z., & Lane, R. P. (1983). Rooting leafy muscadine grape cuttings. HortScience, 18(6), 944-946.).

Figure 4
Average highest rooting percentages (%) of grapevine cuttings for 0.3 (30% of a leaf), 0.5 (50% of a leaf), 1 (100% of a leaf )(A) and substrate type (B).

This strong rooting of cuttings is justified by the fact that the leaf is an important auxin source (Hartman, Kester, Davies Junior, & Geneve, 2011Hartman, H. T., Kester, D. E., Davies Junior, F. T., & Geneve, R. L. (2011). Plant propagation: principels and practices (8th ed.). Boston, US: Prentice-Hall. ), in addition to assisting in the production and transport of carbohydrates from the photosynthetic process to the base of the cutting (Pires & Biasi, 2003Pires, E. J. P., Biasi, L. A. (2003). Propagação da videira. In C. V. Pommer (Ed.), Uva: tecnologia de produção, pós-colheita, mercado (p. 295-319). Porto Alegre, RS: Cinco Continentes. ). However, the grapevine has large leaves, and a large leaf area is not preferable due to the increased risk of excessive dehydration, which can hinder rooting (Bordin et al., 2005Bordin, I., Hidalgo, P. C., Bürkle, R., & Roberto, S. R. (2005). Effect of leaf presence on semihardwood cutting rooting of grapevine rootstocks. Ciência Rural, 35(1), 215-218.).

The best results were 95, 92, and 89% obtained with nutrient solution, sand, and soil, respectively (Figure 4B). Based on the knowledge of the functionality of the substrate as a means for developing seedlings where structure, aeration, water retention, and absence of pathogens are essential, it is reasonable to conclude that the aforementioned substrates serve these functions well. Furthermore, sand and sandy soils are considered the most widely used substrates (De Albuquerque & Choudhury, 1993De Albuquerque, T. C. S., & Choudhury, E. N. (1993). The influence of basal buds removal and rooting media on root formation and quality of grapevines rootstock (cv. Tropical). Revista Brasileira de Fruticultura, 15(1), 193-197. ). However, despite the high average values, there is evidence of the formation of thick roots with little branching and brittleness when sand is used as a substrate (De Albuquerque & Choudhury, 1993; Hartmann et al., 2011Hartman, H. T., Kester, D. E., Davies Junior, F. T., & Geneve, R. L. (2011). Plant propagation: principels and practices (8th ed.). Boston, US: Prentice-Hall. ). As a result, it is more advantageous to use soil because of its low cost, increased possibility of forming a healthy root system, and the likelihood of higher rooting percentages, as shown by our research data. However, it is not possible to generalize the use of soil as a substrate for grapevines. Specific recommendations have been made, such as vermiculite for herbaceous and hardwood cuttings (Gonçalves & Minami, 1994Gonçalves, A. L., & Minami, K. (1994). Artificial substract effect on the rooting of calanchoe (Kalanchoe x Blssfeldiana cv. Singapur, CRASSULACEAE) cuttings. Scientia Agricola, 51(2), 240-244. DOI: https://doi.org/10.1590/S0103-90161994000200007
https://doi.org/https://doi.org/10.1590/...
) and rice husks for the rooting of herbaceous cuttings of IAC 766 and IAC 572 rootstocks (Roberto et al., 2004Roberto, S. R., Pereira, F. M., Neves, C. S. V. J., Jubileu, B. D. S., & Azevedo, M. C. B. D. (2004a). Herbaceous cutting rooting of ‘Campinas’ (IAC 766) and ‘Jales’ (IAC 572) vine roostocks on different growth medium. Ciência Rural, 34(5), 1633-1636. DOI: https://doi.org/10.1590/S0103-84782004000500051
https://doi.org/https://doi.org/10.1590/...
a).

Recommendations for the grapevine

Figure 5 shows data on the relationship between the qualitative variable (cutting type) and the quantitative variables (length, rooting percentage, and immersion time). The Microsoft Excel "=AVERAGEIF (QUALITATIVE COLUMN, CRITERION, QUANTITATIVE COLUMN)" function allowed the grouping of this information.

It is possible to make recommendations based on the information presented in Figure 5, such as the fact that it is reasonable to consider applying higher doses of exogenous auxin to hardwood grapevine cuttings, in the absence of leaves at the time of cutting. To achieve a high rooting percentage (close to 100%) with the use of hardwood cuttings of approximately 25 cm (or 3 knots), we recommend using an auxin dose close to or above 1500 mg L-1. However, this implies an increase in production costs with the purchase of exogenous auxin and increased consumption of plant material because of the larger size of the cuttings.

Figure 5
Average length (cm), rooting percentage (%), immersion time (seconds), and auxin dose for different types of grapevine cuttings.

The use of semi-hardwood and herbaceous cuttings for the propagation of grapevine rootstocks can be a viable alternative in situations where the availability of materials is limited, as the smaller size required for these cutting types maximizes the use of materials. Furthermore, the use of cuttings with leaves reduces the need for exogenous auxin application (Figures 4A and 5). Therefore, doses of 500 to 800 mg L-1 are sufficient to meet crop needs and obtain a good rooting percentage (close to 80%), thus reducing the costs for seedling production, and thereby allowing for increased net profit.

Conclusion

The use of hardwood cuttings for the propagation of grapevine rootstocks had the highest rooting percentage of all wood types evaluated, but with a presumed increase in the cost of seedling production due to the use of synthetic auxins. The presence of leaves in semi-hardwood and herbaceous cuttings increases seedling production efficiency and reduces the cost of purchasing plant growth regulators. For cultivars and/or varieties in which the amount of material available for propagation is limited, the use of semi-hardwood and herbaceous cuttings is recommended.

References

  • Abu-qaoud, H. (1999). Performance of different grape cultivars for rooting and grafting. An-Najah University Journal for Research, 13, 1-8.
  • Ahmed, S., Jaffar, M. A., Ali, N., Ahmed, S., Ramzan, M., & Habib, Q. (2017). Effect of naphthalene acetic acid on sprouting and rooting of stem cuttings of graps. Science Letters, 5(3), 225-232.
  • Alley, C. J. (1980). Propagation of grapevines. California Agriculture, 34(7), 29-30.
  • Amaral, U., Bini, D. A., & Martins, C. R. (2009). Rapid propagation of rootstock of grapevine semihardwood cuttings in Uuguaiana-RS. Revista da FZVA, 15(2), 85-93.
  • Bartolini, G., Fabbri, M., & Tattini, M. (1988). Effect of phenolic acids on rhizogenesis in a grape rootstock (“140 Ruggeri”) cuttings. Acta Horticulturae, 227, 242-247.
  • Bartolini, S., Carrozza, G. P., Scalabrelli, G., & Toffanin, A. (2017). Effectiveness of Azospirillum brasilence Sp245 on young plants of Vitis vinifera L. Open Life Science, 12(1), 365-372. DOI: https://doi.org/10.1515/biol-2017-0042
    » https://doi.org/https://doi.org/10.1515/biol-2017-0042
  • Bettoni, J. C., Gardin, J. P. P., Feldberg, N. P., Schumacher, R., Souza, J. A., & Furlan, C. (2014a). O uso de AIB melhora a qualidade de raízes em estacas herbáceas de porta-enxerto de videira. Evidência, 14(1), 47-56. DOI: https://doi.org/10.13140/2.1.1428.2884
    » https://doi.org/https://doi.org/10.13140/2.1.1428.2884
  • Bettoni, J. C., Gardin, J. P. P., Feldberg, N. P., Schumacher, R. L., Souza, J. A., & Petri, J. L. (2014b). Rooting for the stakes rootstock vine vr043-43 under application of lesion and auxins applications. Evidência, 14(2), 129-138.
  • Biasi, L. A., & Boszczowski, B. (2005). Semihardwood cutting propagation of Vitis rotundifolia cv. Magnolia and Topsail. Revista Brasileira de Agrociência, 11(4), 405-407.
  • Biasi, L. A., Pommer, C. V., & Pino, P. A. G. S. (1997). Propagação de porta-enxertos de videira mediante estaquia semilenhosa. Bragantia, 56(2), 367-376. DOI: https://doi.org/10.1590/S0006-87051997000200016
    » https://doi.org/https://doi.org/10.1590/S0006-87051997000200016
  • Bordin, I., Hidalgo, P. C., Bürkle, R., & Roberto, S. R. (2005). Effect of leaf presence on semihardwood cutting rooting of grapevine rootstocks. Ciência Rural, 35(1), 215-218.
  • Botelho, R. V., Maia, A. J., Pires, E. J. P., Terra, M. M., & Schuck, E. (2005a). Cutting of the vine rootstock ’43-43’ (V. vinifera x V. rotundifolia) resistant to Eurhizococchus brasiliensis Revista Brasileira de Fruticultura, 27(3), 480-483.
  • Botelho, R. V., Maia, A. J., Pires, E. J. P., Terra, M. M., & Schuck, E. (2005b). Effects of plant regulators on the vegetative propagation of vine rootstock ‘43-43’ (Vitis vinifera x V. rotundifolia). Revista Brasileira de Fruticultura, 27(1), 6-8.
  • Botelho, R. V., Souza, J., Schreider, E, Pires, E. J. P., & Terra, M. M. (2009). Propagation of the ‘niagara rosada’ grapevine (Vitis labrusca), grafted on the rootstock ‘VR-043-43’ (V. vinifera x V. rotundifolia). Scientia Agraria, 10(5), 359-364. DOI: http://dx.doi.org/10.5380/rsa.v10i5.15190
    » https://doi.org/http://dx.doi.org/10.5380/rsa.v10i5.15190
  • Carvalho, A. R. J., Nunes, V. X., & Pereira, M. C. T. T. (2014). Seedlings of Italia grapevine grown on different substrates and IBA in semiarid conditions. Revista Agrotecnologia, 5(1), 62-74.
  • Chakraborty, S., & Rajkumar, M. (2018). Effect of growth regulators and organic substances on rooting of grapes (Vitis vinifera L.) cv. Muscat. Asian Journal of Science and Technology, 9(7), 8418-8421.
  • Coradini, D. M., Silva, E. S. B., & Korte, K. P. (2014). Rooting of semiharwood cuttings of grapevine rootstock treated with indolebutyric acid. Revista de Ciências Exatas e da Terra e Ciências Agrárias, 9(2), 80-85.
  • Cristoferi, G., Filiti, N., & Rossi, F. (1988). The effects of reversed polarity and acropetal centrifugation on the rooting of hardwood cuttings of grapevine rootstock Kober 5BB. Acta Horticulturae, 227, 150-154. DOI: https://doi.org/10.17660/ActaHortic.1988.227.23
    » https://doi.org/https://doi.org/10.17660/ActaHortic.1988.227.23
  • Dardeniz, A., Gökbayrak, Z., Müftüoglu, N. M., Türkmen, C., & Be§er, K. (2008). Cane Quality Determination of 5 BB and 140 Ru Grape Rootstocks. European Journal of Horticultural Science, 73(6), 254-258.
  • Daskalakis, I., Biniari, K., & Bouza, D. (2019). Effect of indolebutyric acid (IBA) and cane position on rooting of rootstock’s cuttings. Acta Horticulturae, 1242, 767-773. DOI: https://doi.org/10.17660/ActaHortic.2019.1242.114
    » https://doi.org/https://doi.org/10.17660/ActaHortic.2019.1242.114
  • Daskalakis, I., Biniari, K., Bouza, D., & Stavrakaki, M. (2018). The effect that indolebutyric acid (IBA) and position of cane segment have on the rooting of cuttings from grapevine rootstocks and from Cabernet franc (Vitis vinifera L.) under conditions of a hydroponic culture system. Scientia Horticulturae, 227, 79-84. DOI: http://dx.doi.org/10.1016/j.scienta.2017.09.024.
    » https://doi.org/http://dx.doi.org/10.1016/j.scienta.2017.09.024.
  • De Albuquerque, T. C. S., & Choudhury, E. N. (1993). The influence of basal buds removal and rooting media on root formation and quality of grapevines rootstock (cv. Tropical). Revista Brasileira de Fruticultura, 15(1), 193-197.
  • Denega, S., Biasi, L. A., Zanette, F., Nascimento, I. R., & Blaskevics, S. J. (2009). Rooting of indole-3-butyric acid-treated cuttings of nine Vitis rotundifolia cultivars performed during spring and summer. Scientia Agraria, 10(3), 199-207.
  • Dogan, A., Uyak, C., & Kazankaya, A. (2016). Effects of indole-butyric acid dese, differents roting media and cutting thicknesses on rooting ratios and rot qualities of 41B, 5BB and 420A american grapevine. Journal of Applied Biological Sciences, 10(2), 8-15.
  • Egger, E., Moretti, G., & Borgo, M. (1985). Confronto di substrati per la moltiplicazione rapida di talee verdi ed apici vegetativi di portinnesti della vite in serra. Vignevini, 12(4), 43-49.
  • Fachinello, J. C., Hoffmann, A., Nachtigal, J. C., Kersten, E., & Fortes, G. D. L. (1995?). Propagação de plantas frutiferas de clima temperado Pelotas, RS: UFPEL-Ed. Universitaria.
  • Faria, A. P., Roberto, S. R., Sato, A. J., Rodrigues, E. B., Silva, J. V., Sachs, P. J. D., ... Unemoto, L. K. (2007). Rooting of semi hardwood cuttings of ‘IAC 572 - Jales’ grapevive rootstock treated with different concentrations of indolbutyric acid. Semina: Ciências Agrárias, 28(3), 393-398.
  • Fronza, D., & Hamann, J. J. (2015). Nurseries and seedling propagation Santa Maria, RS: Rede e-Tec Brasil.
  • Gökbayrak, Z., Dardeniz, A., Arıkan, A., & Kaplan, U. (2010). Best duration for submersion of grapevine cuttings of rootstock 41B in water to increase root formation. Journal of Food, Agriculture & Environment, 8(3-4), 607-609.
  • Gonçalves, A. L., & Minami, K. (1994). Artificial substract effect on the rooting of calanchoe (Kalanchoe x Blssfeldiana cv. Singapur, CRASSULACEAE) cuttings. Scientia Agricola, 51(2), 240-244. DOI: https://doi.org/10.1590/S0103-90161994000200007
    » https://doi.org/https://doi.org/10.1590/S0103-90161994000200007
  • Goode Junior, D. Z., & Lane, R. P. (1983). Rooting leafy muscadine grape cuttings. HortScience, 18(6), 944-946.
  • Goode Junior, D. Z., Krewer, G. W., Lane, R. P., Daniell, J. W., & Couvillon, G. A. (1982). Rooting studies of dormant muscadine grape cuttings. HortScience, 17(4), 644-645.
  • Hartman, H. T., Kester, D. E., Davies Junior, F. T., & Geneve, R. L. (2011). Plant propagation: principels and practices (8th ed.). Boston, US: Prentice-Hall.
  • Ismail, S. H., Shalamova, A. A., & Abramov, A. G. (2020). Rooting stimulation of “Victoria” and “Korinka russkaya” grape hardwood cuttings as influenced by potassium salt of Indolyl-3-Acetic Acid (KIAA). Vegetable Crops of Russia, 1, 70-73. DOI: https://doi.org/10.18619/2072-9146-2020-1-70-73.
    » https://doi.org/https://doi.org/10.18619/2072-9146-2020-1-70-73.
  • Jesus, A. M. S., Villa, F., & Chalfun, N. N. J. (2018). Épocas de enxertia e indução radicular através de aquecimento basal para obtenção antecipada de mudas de videira. Scientia Agraria Paranaensis, 17(1), 35-40.
  • Kacar, E., & İsfendiyaroğlu, M. (2019). Effects of Different Pre-Sized Rooting Blocks and IBA Concentrations on the Rooting of Ramsey Grapevine Rootstock Cuttings. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56(1), 1-6. DOI: https://doi.org/10.20289/zfdergi.396612.
    » https://doi.org/https://doi.org/10.20289/zfdergi.396612.
  • Keeley, K., Preece, J. E., Taylor, B. H., & Dami, I. E. (2004). Effects of high auxin concentrations, cold storage, and cane position on improved rooting of Vitis aestivalis Michx. Norton cuttings. American Journal of Enology and Viticulture, 55(3), 265-268.
  • Keeley, K., Preece, J. E., & Taylor, B. H. (2003). Increased rooting of “Norton” grape cuttings using auxins and gibberellin biosynthesis inhibitors. HortScience, 38(2), 281-283. DOI: https://doi.org/10.21273/HORTSCI.38.2.281
    » https://doi.org/https://doi.org/10.21273/HORTSCI.38.2.281
  • Köse, C. & Güleryüz, M. (2006). Effects of auxins and cytokinins on graft union of grapevine (Vitis vinifera). New Zealand Journal of Crop and Horticultural Science, 34(2), 145-150. DOI: https://doi.org/10.1080/01140671.2006.9514399
    » https://doi.org/https://doi.org/10.1080/01140671.2006.9514399
  • Kracke, H., & Cristoferi, G. (1983). Effect of IBA and NAA treatments on the endogenous hormones in grapevine rootstock hardwood cuttings. Growth Regulators, XXI IHC 137(9), 95-102. DOI: https://doi.org/10.17660/ActaHortic.1983.137.9
    » https://doi.org/https://doi.org/10.17660/ActaHortic.1983.137.9
  • Leão, P. C. S. (2003). Effects of different kinds of cuttings in the scion production grapevine rootstocks, CV. IAC 572 ‘Jales’. Ciência Rural, 33(1), 165-168.
  • Leonel, S., & Rodrigues, J. D. (1993). Efeito da época de estaquia, fitorreguladores e ácido bórico no enraizamento de estacas de porta-enxertos de videira. Scientia Agricola, 50(1), 27-32. DOI: https://doi.org/10.1590/S0103-90161993000100005
    » https://doi.org/https://doi.org/10.1590/S0103-90161993000100005
  • Lone, A. B., López, E. L., Rovaris, S. R. S., Klesener, D. F., Higashibara, L., Ataíde, L. T., & Roberto, S. R. (2010). Effect of IBA on the rotting of herbaceous cuttings of VR 43-43 grapevine rootstoks in different substrates. Semina: Ciências Agrárias, 31(3), 599-604.
  • Machado, M. P., Mayer, J. L. S., Ritter, M., & Biasi, L. A. (2005). Indole butyric acid on rooting ability of semihardwood cutting of grapevine rootstock 'VR 043-43' (Vitis vinifera x Vitis rotundifolia). Revista Brasileira de Fruticultura, 27(3), 476-479. DOI: https://doi.org/10.1590/S0100-29452005000300032
    » https://doi.org/https://doi.org/10.1590/S0100-29452005000300032
  • Mayer, J. L. S., Biasi, L. A., & Bona, C. (2006). Capacidade de enraizamento de estacas de quatro cultivares de Vitis L. (Vitaceae) relacionada com os aspectos anatômicos. Acta Botanica Brasilica, 20(3), 563-568. DOI: https://doi.org/10.1590/S0102-33062006000300006
    » https://doi.org/https://doi.org/10.1590/S0102-33062006000300006
  • Mitra, G. C., & Bose, N. (1954). Rooting and histological responses of detached leaves to B-Indolebutyric acid with special reference to Boerhavia diffusa Linn. Phytomorphology, 7(3/4), 370-381.
  • Mohamed, G. A. (2017). Water soaking duration, Indole butyric acid and rooting media and their effect on rooting ability of Ramsey grapevine rootstock cuttings. Middle East Journal of Applied Sciences, 7(4), 1080-1100.
  • Monteguti, D., Biasi, L. A., Peresuti, R. A., Sachi, A. D. T., De Oliveira, O. R., & Skalitz, R. (2008). Rooting of grapevine rootstock hardwood cuttings by using organic fertilizer. Scientia. Agraria, 9(1), 99-103. DOI: http://dx.doi.org/10.5380/rsa.v9i1.10144
    » https://doi.org/http://dx.doi.org/10.5380/rsa.v9i1.10144
  • Moretti, G., & Borgo, M. (1985). Stimolazioni ed antagonismi nel campo dei fitoregolatori rizogeni in vitigni portinnesti. Vignevini, 12(11), 31-36.
  • Nachtigal, J. C., & Pereira, F. M. (2000). Propagação do pessegueiro (Prunus persica L. Batsch) cultivar Okinawa por meio de estacas herbáceas em câmara de nebulização. Revista Brasileira de Fruticultura, 22(2), 208-212.
  • Nascimento, D. C., Dini, M., Moreira, R. M., Sampaio, N. V., & Schuch, M. W. (2019). Minicutting of chardonnay grapevine and SO4 grapevine rootstock. Revista Científica Rural, 21(3), 270-281. DOI: https://doi.org/10.30945/rcr-v21i3.3050
    » https://doi.org/https://doi.org/10.30945/rcr-v21i3.3050
  • Neto, I. F. D. S., Ricardino, I. E. F., Souza, M. N. C., Aguiar, A. M., & Marques, A. E. F. (2020). Utilização da uva como fonte de corante natural: uma revisão integrativa. Revista Ciência (In) Cena, 1(11), 16-27.
  • Nicoloso, F. T., Cassol, L. F., & Fortunato, R. P. (2001). Shoot cutting length on rooting of brazilian ginseng (Pfaffia glomerata). Ciência Rural, 31(1), 57-60. DOI: https://doi.org/10.1590/S0103-84782001000100009
    » https://doi.org/https://doi.org/10.1590/S0103-84782001000100009
  • Pires, E. J. P., Biasi, L. A. (2003). Propagação da videira In C. V. Pommer (Ed.), Uva: tecnologia de produção, pós-colheita, mercado (p. 295-319). Porto Alegre, RS: Cinco Continentes.
  • Regina, M. D. A., Souza, C. R. D., & Dias, F. A. N. (2012). Propagation of Vitis spp. by bench grafting table using different rootstocks and auxins. Revista Brasileira de Fruticultura, 34(3), 897-904. DOI: https://doi.org/10.1590/S0100-29452012000300032
    » https://doi.org/https://doi.org/10.1590/S0100-29452012000300032
  • Rezende, L. D. P., & Pereira, F. M. (2001). Production of ‘Rubi’ grapevine scion by bench-grafting of IAC 313 ´Tropical` and IAC 766 ´Campinas` herbaceous cuttings. Revista Brasileira de Fruticultura, 23(3), 662-667.
  • Roberto, S. R., Kanai, H. T., & Yano, M. Y. (2004c). Rooting and shoot growth of six grapevine rootstocks submitted to the stratification of hardwood cuttings. Acta Scientiarum. Agronomy, 26(1), 79-84. DOI: https://doi.org/10.4025/actasciagron.v26i1.1963
    » https://doi.org/https://doi.org/10.4025/actasciagron.v26i1.1963
  • Roberto, S. R., Neves, C. S. V. J., Jubileu, B. S, & de Azevedo, M. C. B. (2004b). Evaluation of herbaceous vine roostocks rooting on different growth media through image analysis. Acta Scientiarum. Agronomy, 26(1), 85-90.
  • Roberto, S. R., Pereira, F. M., Neves, C. S. V. J., Jubileu, B. D. S., & Azevedo, M. C. B. D. (2004a). Herbaceous cutting rooting of ‘Campinas’ (IAC 766) and ‘Jales’ (IAC 572) vine roostocks on different growth medium. Ciência Rural, 34(5), 1633-1636. DOI: https://doi.org/10.1590/S0103-84782004000500051
    » https://doi.org/https://doi.org/10.1590/S0103-84782004000500051
  • Roberto, S. R., Zietemann, C., Colombo, L. A., Assis, A. M., Santos, C. E., Aguiar, R. S., & Moraes, V. J. (2006). Rooting of softwood cuttings of IAC 572 ‘Jales’ and IAC 766 ‘Campinas’ rootstocks in nebulization chambers. Acta Scientiarum. Agronomy, 28(4), 479-482.
  • Sabir, F. K., & Sabir, A. (2018). Effects of different storage conditions on rooting and shooting performance of grapevine (Vitis vinifera L.) cuttings in hydroponic culture system. International Journal of Sustainable Agricultural Research, 5(3), 46-53. DOI: https://doi.org/10.18488/journal70.2018.53.46.53.
    » https://doi.org/https://doi.org/10.18488/journal70.2018.53.46.53
  • Salibe, A. B., Braga, G. C., Pio, R., Tsutsumi, C. Y., Jandrey, P. E., Rossol, C. D., ... Silva, T. P. D. (2010). Rooting cuttings of rootstocks of grape vine ‘vr 043-43’ submitted to the stratification, indolebutyric acid and boric acid. Bragantia, 69(3), 617-622. DOI: https://doi.org/10.1590/S0006-87052010000300013
    » https://doi.org/https://doi.org/10.1590/S0006-87052010000300013
  • Silva, A. L., Fachinello, J. C., & Machado, A. A. (1986). Effect of indolbutyric acid in grapevine grapting and rooting. Pesquisa Agropecuária Brasileira, 21(8), 865-871.
  • Singh, K. K. (2018). A review: Multiplication of Bougainvillea species through cutting. International Journal of Chemical Studies, 6(2), 1961-1965.
  • Soltekin, O., & Altindisli, A. (2017). Effects of hot water treatments on dormant grapevine propagation materials used for grafted vine production. In BIO Web of Conferences, 40th World Congress of Vine and Wine, 9, 1-7. DOI: https://doi.org/10.1051/bioconf/20170901003
    » https://doi.org/https://doi.org/10.1051/bioconf/20170901003
  • Somkuwar, R. G., Bondage, D. D., Surange, M. S., & Ramteke, S. D. (2011). Rooting behaviour, polyphenol oxidase activity, and biochemical changes in grape rootstocks at different growth stages. Turkish Journal of Agriculture and Forestry, 35(3), 281-287. DOI: https://doi.org/10.3906/tar-0911-62
    » https://doi.org/https://doi.org/10.3906/tar-0911-62
  • Somkuwar, R. G., Sharma, J., Satisha, J., Khan, I., & Itroutwar, P. (2013). Effect of zinc application to mothervines of Dogridge rootstock on rooting success and establishment under nursery condition. International Journal of Scientific & Technology Research, 2(9), 198-201.
  • Souza, E. R., Lenk, F. L., Ono, E. O., & Rodrigues, J. D. (2015). Carbohydrate content in vine cuttings of rootstock cv. IAC 572. Brazilian Journal of Applied Technology for Agricultural Science, 8(2), 7-15. DOI: https://doi.org/10.5935/PAeT.V8.N2.01
    » https://doi.org/https://doi.org/10.5935/PAeT.V8.N2.01
  • Sozim, M., & Ayub, R. A. (2006). Propagation of vine rootstocks (Vitis sp.) treated with IBA. Publicações da UEPG Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 12(02), 37-41.
  • Taiz, L., & Zeiger, E. (2013). Fisiologia vegetal (5. ed.). Porto Alegre, RS: Artmed.
  • Tecchio, M. A., Moura, M. F., Hernandes, J. L., Pio, R., & Wyler, P. (2007). Evaluation of rooting, development of roots and shoot biomass from rootstock of grapevine, in field conditions. Ciência e Agrotecnologia, 31(6), 1857-1861.
  • Thomas, P., & Schiefelbein, J. W. (2001). Combined in vitro and in vivo propagation for rapid multiplication of grapevine cv. Arka Neelamani. HortScience, 36(6), 1107-1110. DOI: https://doi.org/10.21273/HORTSCI.36.6.1107
    » https://doi.org/https://doi.org/10.21273/HORTSCI.36.6.1107
  • Thomas, P., & Schiefelbein, J. W. (2004). Roles of leaf in regulation of root and shoot growth from single node softwood cuttings of grape (Vitis vinifera). Annals of Applied Biology, 144(1), 27-37. DOI: https://doi.org/10.1111/j.1744-7348.2004.tb00313.x
    » https://doi.org/https://doi.org/10.1111/j.1744-7348.2004.tb00313.x
  • Thomas, P., Lee, M. M., & Schiefelbein, J. (2003). Molecular identification of proline‐rich protein genes induced during root formation in grape (Vitis vinifera L.) stem cuttings. Plant, Cell & Environment, 26(9), 1497-1504. DOI: https://doi.org/10.1046/j.1365-3040.2003.01071.x
    » https://doi.org/https://doi.org/10.1046/j.1365-3040.2003.01071.x
  • Tofanelli, M. B. D., Freitas, P. L., & Pereira, G. E. (2014). 2, 4-dichlorophenoxyacetic acid as an alternative auxin for rooting of vine rootstock cuttings. Revista Brasileira de Fruticultura, 36(3), 664-672. DOI: https://doi.org/10.1590/0100-2945-266/13.
    » https://doi.org/https://doi.org/10.1590/0100-2945-266/13.
  • Uzunoğlu, Ö., & Gökbayrak, Z. (2018). Influence of IAA, 28-homobrassinolide and 24-epibrassinolide on Adventitious Rooting in Grapevine. COMU Journal of Agriculture Faculty, 6(1), 23-30.
  • Vilarinho, M. K. C., & Cândido, A. K. A. A. (2014). Effect of plant growth regulator on rooting of eritrina-green-yellow (Erythrina indica picta). Agrarian, 7(24), 251-256.
  • Villa, F., Pio, R., Chalfun, N. N. J., Gontijo, T. C. A., Coelho, J. H. C., & Dutra, L. F. (2003). Enraizamento de estacas herbáceas do porta-enxerto de videira'Riparia de Traviú'tratadas com auxinas. Ciência e Agrotecnologia, 27(6), 1426-1431. DOI: https://doi.org/10.1590/S1413-70542003000600030
    » https://doi.org/https://doi.org/10.1590/S1413-70542003000600030
  • Winkler, A. J., Cook, J. H., Kliewer, W. M., & Lider, L. A. (1974). General viticulture Berkeley and Los Angeles, US: University of California Press.
  • Zuffellato-Ribas, K. C., & Rodrigues, J. D. (2001). Estaquia: uma abordagem dos principais aspectos fisiológicos. Curitiba, PR: K. C. Zuffellato-Ribas.

Publication Dates

  • Publication in this collection
    03 Mar 2023
  • Date of issue
    2023

History

  • Received
    27 Feb 2021
  • Accepted
    09 June 2021
Editora da Universidade Estadual de Maringá - EDUEM Av. Colombo, 5790, bloco 40, 87020-900 - Maringá PR/ Brasil, Tel.: (55 44) 3011-4253, Fax: (55 44) 3011-1392 - Maringá - PR - Brazil
E-mail: actaagron@uem.br