Acessibilidade / Reportar erro

Cyanobacteria detection in Guarapiranga Reservoir (São Paulo State, Brazil) using Landsat TM and ETM+ images

Detecção de cianobactérias no reservatório de Guarapiranga (Estado de São Paulo, Brasil) utilizando imagens Landsat TM e ETM+

Abstracts

Algae bloom is one of the major consequences of the eutrophication of aquatic systems, including algae capable of producing toxic substances. Among these are several species of cyanobacteria, also known as blue-green algae, that have the capacity to adapt themselves to changes in the water column. Thus, the horizontal distribution of cyanobacteria harmful algae blooms (CHABs) is essential, not only to the environment, but also for public health. The use of remote sensing techniques for mapping CHABs has been explored by means of bio-optical modeling of phycocyanin (PC), a unique inland waters cyanobacteria pigment. However, due to the small number of sensors with a spectral band of the PC absorption feature, it is difficult to develop semi-analytical models. This study evaluated the use of an empirical model to identify CHABs using TM and ETM+ sensors aboard Landsat 5 and 7 satellites. Five images were acquired for applying the model. Besides the images, data was also collected in the Guarapiranga Reservoir, in São Paulo Metropolitan Region, regarding the cyanobacteria cell count (cells/mL), which was used as an indicator of CHABs biomass. When model values were analyzed excluding calibration factors for temperate lakes, they showed a medium correlation (R²=0.81, p=0.036), while when the factors were included the model showed a high correlation (R²=0.96, p=0.003) to the cyanobacteria cell count. The empirical model analyzed proved useful as an important tool for policy makers, since it provided information regarding the horizontal distribution of CHABs which could not be acquired from traditional monitoring techniques.

phytoplankton; water quality; environmental health; satellite imagery


A eutrofização em sistemas aquáticos possui como uma de suas consequências as florações de algas, entre elas as algas com a capacidade de produzir toxinas. Dentre elas, algumas espécies de cianobactérias, também conhecidas como algas azul-esverdeadas, se destacam devido ao seu poder de adaptação na coluna da água. Dessa forma, a distribuição horizontal de suas florações é essencial, não apenas para o meio ambiente, mas também para a saúde pública. A utilização do sensoriamento remoto para o mapeamento dessas florações tem sido explorada por meio da modelagem bio-óptica da ficocianina, um pigmento único das cianobactérias de águas interiores. Entretanto, o baixo número de sensores com a banda espectral da absorção da ficociana dificulta o desenvolvimento de modelos semi-analíticos. O trabalho avaliou a utilização de um modelo empírico para a identificação qualitativa de florações de cianobactérias utilizando os sensores TM e ETM+ a bordo dos satélites Landsat 5 e 7. Cinco imagens foram adquiridas para a aplicação do modelo. Além das imagens foram utilizados dados coletados no reservatório de Guarapiranga, na região metropolitana de São Paulo, da contagem de cianobactéria (cel/mL), que foi utilizada como indicador de biomassa de cianobactéria. A análise dos valores do modelo sem a utilização dos fatores de calibração proposta para um lago temperado teve uma média correlação (R²=0.81, p=0.036) já com a utilização dos mesmos fatores de calibração houve uma alta correlação com os valores da contagem de cianobactérias (R²=0.96, p=0.003). O modelo empírico analisado mostrou-se capaz de ser utilizado como uma importante ferramenta para os tomadores de decisão, uma vez que fornece uma informação da distribuição horizontal das florações, que não pode ser obtida por meio das técnicas tradicionais de monitoramento.

fitoplancton; qualidade da água; saúde ambiental; imagens de satélite


  • AGHA, R.; CIRÉS, S.; WORMER, L.; DOMÍNGUEZ, J.A.; QUESADA, A. Multi-scale strategies for the monitoring of freshwater cyanobacteria: Reducing the sources of uncertainty. Water Research, v. 46, p. 3043 - 3053, 2012. http://dx.doi.org/10.1016/j.watres.2012.03.005
  • AGOSTINHO, A. A.; PELICICE, F. M.; GOMES, L. C. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology, v. 68, n. 4, p. 1119-1132, 2008. http://dx.doi.org/10.1590/S1519-69842008000500019
  • ARVIDSON, T.; GOWARD, S.; GASCH, J.; WILLIAMS, D. Landsat-7 long-term acquisition plan: development and validation. Photogrammetric Engineering & Remote Sensing, v. 72, n. 10, p. 1137-1146, 2006.
  • AZEVEDO, S. M. F. O.; CARMICHAEL, W. W.; JOCHIMSEN, E. M.; RINEHART, K. L.; LAU, S.; SHAW, G. R. et al. Human intoxication by microcystins during renal dialysis treatment in Caruaru - Brazil. Toxicology, n. 181-182, p. 441 - 446, 2002. http://dx.doi.org/10.1016/S0300-483X(02)00491-2
  • BARTRAM, J.; CARMICHAEL, W.W.; CHORUS, I.; JONES, G.; SKULBERG, O.M. In: CHORUS, I.; BARTRAM, J. (Eds.). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London: UNESCO/WHO/UNEP, 1999. Chap. 1. p.12-24.
  • BEYRUTH, Z. Periodic disturbances, trophic gradient and phytoplankton characteristics related to cyanobacterial growth in Guarapiranga Reservoir, São Paulo State, Brazil. Hydrobiologia, n. 424, p. 51-65, 2000. http://dx.doi.org/10.1023/A:1003944726346
  • BUKATA, R. P.; JEROME, J. H.; BRUTON, J. E.; JAIN, S. C. Determination of inherent optical properties of Lake Ontario coastal waters. Applied Optics, v. 18, n. 23, p. 3926 - 3932, 1979. http://dx.doi.org/10.1364/AO.18.003926
  • BRASIL. Conselho Nacional do Meio Ambiente - CONAMA. Resolução nº 357 de 17 março 2005 Available at: http://www.mma.gov.br/port/conama/res/res05/res35705.pdf >. Access in: 28 Sep. 2012.
  • CARMICHAEL, W. W. Health effects of toxin-producing cyanobacteria: ''The CyanoHABs''. Human and Ecological Risk Assessment, v. 7, p. 1393-1407, 2001. http://dx.doi.org/10.1080/20018091095087
  • CARMICHAEL, W. W.; AZEVEDO, S. M. F. O.; AN, J. S.; MOLICA, R. J. R.; JOCHIMSEN, E. M.; LAU, S. et al.Human fatalities from Cyanobacteria: chemical and biological evidence for cyanotoxins. Environmental Health Perspectives, v. 109, n. 7, p. 663-668, 2001.
  • CHANDER, G.; MARKHAN, B. L.; HELDER, D. L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, v. 113, p. 893 - 903, 2009. http://dx.doi.org/10.1016/ j.rse.2009.01.007
  • CHAVEZ JR., P. S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, v. 24, n. 3, p. 459-479, 1988. http://dx.doi.org/10.1016/0034-4257(88)90019-3
  • CHORUS, I.; BARTRAM, J. (Eds.). Toxic Cyanobacteria in water: a guide to their public health consequences, monitoring and management. London: UNESCO/WHO/UNEP, 1999.
  • COMPANHIA DE SANEAMENTO BÁSICO DO ESTADO DE SÃO PAULO - SABESP. Complexo metropolitano Available at: <http://site.sabesp.com.br/site/interna/Default.aspx?secaoId=36> Access in: 01 Oct. 2012.
  • COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL - CETESB. São Paulo. Norma técnica L5.303 São Paulo, 2005. Available at: <http://www.cetesb.sp.gov.br/userfiles/file/servicos/normas/pdf/L5303.pdf>. Access in: 26 Sep. 2012.
  • DEKKER, A. G. Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing, 1993. 222p. PhD. (Thesis) - Vrije Universiteit, Amsterdam, 1993.
  • EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMPBRAPA. Banco de dados climáticos do Brasil Available in: <http://www.bdclima.cnpm.embrapa.br>. Access in: May 2014.
  • FALCONER, I. R.; HUMPAGE, A. R. Cyanobacterial (blue-green algal) toxins in water supplies: cylindrospermopsins. Environmental Toxicology, v. 21, n. 4, p. 299-304, 2006. http://dx.doi.org/10.1002/tox.20194
  • FRANCIS, G. Poisonous Australian Lake. Nature, v. 18, p. 11-12, 1878. http://dx.doi.org/10.1038/018011d0
  • GONS, H. J. Optical Teledetection of Chlorophyll-a in turbid inland waters. Environmental Science & Technology, v. 33, n. 7, p. 1127-1132, 1999. http://dx.doi.org/10.1021/es9809657
  • GORDON, H. R.; BROWN, O. B.; JACOBS, M. M. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Applied Optics, v. 14, n. 2, 1975. http://dx.doi.org/10.1364/AO.14.000417
  • GORDON, H. R.; MOREL, A.Y. Remote assessment of ocean color for interpretation of satellite visible imagery: a review. New York: Springer-Verlag, 1983.
  • HUNTER, P. D.; TYLER, A. N.; CARVALHO, L.; CODD, G. A.; MABERLY, S. C. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sensing of Environment, v. 114, p. 2705-2718, 2010. http://dx.doi.org/10.1016/j.rse.2010.06.006
  • INTERNATIONAL OCEAN-COLOUR COORDINATING GROUP - IOCCG. Why ocean colour? The societal benefits of ocean-colour technology. In: PLATT, T.; HOEPFFNER, N.; STUART, V.; BROWN, C. (Eds.). Reports of the International Ocean-Colour Coordinating Group, No. 7. Dartmouth: IOCCG, 2008.
  • IRONS, J. R.; DWYER, J. L.; BARSI, J. A. The next Landsat satellite: the Landsat Data continuity mission. Remote Sensing of Environment, v. 122, p. 11 - 21, 2012. http://dx.doi.org/10.1016/j.rse.2011.08.026
  • MIERZWA, J. C.; SILVA, M. C. C.; VERAS, L. R. V.; SUBTIL, E. L.; RODRIGUES, R.; LI, T.; LANDENBERGER, K. R. Enhancing spiral-wound ultrafiltration performance for direct drinking water treatment through operational procedures improvement: A feasible option for the Sao Paulo Metropolitan Region. Desalination, v. 307, p. 68-75, 2012. http://dx.doi.org/10.1016/j.desal.2012.09.006
  • MISHRA, S.; MISHRA, D. R.; SCHLUCHTER, W. M. A novel algorithm for predicting phycocyanin concentrations in Cyanobacteria: a proximal hyperspectral remote sensing approach. Remote Sensing, v.1, p. 758-775, 2009. http://dx.doi.org/10.3390/rs1040758
  • MORAIS, M. A.; CASTRO, W. A. C.; TUNDISI, J. G. Climatologia de frentes frias sobre a Região Metropolitana de São Paulo (RMSP), e sua influência na limnologia dos reservatórios de abastecimento de água. Revista Brasileira de Meteorologia, v.25, n.2, 205-217, 2010.
  • MUDROCH, A. (Ed.). Planning and management of lakes and reservoirs, an integrated approach to Eutrophication Shiga: UNEP International Environmental Technology Centre, 1999. (Tech. Publ. Ser. 11).
  • OGASHAWARA, I.; ZAVATTINI, J. A.; TUNDISI, J. G. The climatic rhythm and blooms of Cyanobacteria in a tropical reservoir in São Paulo, Brazil. Brazilian Journal of Biology, (in press).
  • OGASHAWARA, I.; MISHRA, D. R.; MISHRA, S.; CURTARELLI, M. P.; STECH, J. L. A performance review of reflectance based algorithms for predicting Phycocyanin concentrations in inland waters. Remote Sensing, v. 5, p . 4774 - 4798, 2013. http://dx.doi.org/10.3390/rs5104774
  • PRADO, R. B.; NOVO, E. M. L. M.; PEREIRA, M. N. Avaliação da dinâmica do uso e cobertura da terra na bacia hidrográfica de contribuição para o reservatório de Barra Bonita - SP. Revista Brasileira de Cartografia, v. 59, n. 2, 2007.
  • REINART, A.; KUTSER, T. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sensing of Environment, v. 102, p. 74 - 85, 2006. http://dx.doi.org/10.1016/j.rse.2006.02.013
  • RUIZ-VERDÚ, A.; SIMIS, S. G. H.; HOYOS, C.; GONS, H. J.; PEÑA-MARTÍNEZ, R. An evaluation of algorithms for the remote sensing of cyanobacterial biomass. Remote Sensing of Environment, v. 112, p. 3996-4008, 2008. http://dx.doi.org/10.1016/j.rse.2007.11.019
  • SANT'ANNA, C. L.; MELCHER, S. S.; CARVALHO, M. C.; GEMELGO, M. P.; AZEVEDO, M. T. P. Planktic Cyanobacteria from upper Tietê Basin reservoirs, SP, Brazil. Revista Brasileira de Botânica, v. 30, n. 1, p. 1 - 15, 2007. http://dx.doi.org/10.1590/S0100-84042007000100002
  • SCHALLES, J. F.; YACOBI, Y. Z. Remote detection and seasonal patterns of phycocyanin, carotenoid, and chlorophyll pigments in eutrophic waters. Archives Hydrobiologica Special Issues on Advanced Limnology, v. 55, p. 153-168, 2000.
  • SIMIS, S. G. H.; PETERS, S. W. M.; GONS, H. J. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnology and Oceanography, v. 50, p. 237-245, 2005. http://dx.doi.org/10.4319/lo.2005.50.1.0237
  • SIMIS, S. G. H.; RUIZ-VERDU, A.; DOMINGUEZ, J. A.; PENA-MARTINEZ, R.; PETERS, S. W. M.; GONS, H. J. Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass. Remote Sensing of Environment, v. 106, p. 414-427, 2007. http://dx.doi.org/10.1016/j.rse.2006.09.008
  • SINGH, R. K.; SHANMUNGAN, P. A novel method for estimation of aerosol radiance and its extrapolation in the atmospheric correction of satellite data over optically complex oceanic waters. Remote Sensing of Environment, v. 142, p. 188-206, 2014. http://dx.doi.org/10.1016/j.rse.2013.12.001
  • STRASKRABA, M.; TUNDISI, J. G. Reservoir water quality management: guidelines of lake management. Kusatsu: International Lake Environmental Committee, 1999. Vol. 9. 227 p.
  • SUN, D.; Li, Y.; WANG, Q.; GAO, J.; LV, H.; LE, C. et al. Light scattering properties and their relation to the biogeochemical composition of turbid productive waters: a case study of Lake Taihu. Applied Optics, v. 48, n. 11, p. 1979-1989, 2009. http://dx.doi.org/10.1364/AO.48.001979
  • TUNDISI, J. G.; MATSUMURA-TUNDISI, T.; ARANTES JUNIOR, J. D.; TUNDISI, J. E. M.; MANZINI, N. F.; DUCROT, R. The response of Carlos Botelho (Lobo, BROA) Reservoir to the passage of cold fronts as reflected by physical, chemical, and biological variables. Brazilian Journal of Biology, v. 64, n. 1, p. 177-186, 2004. http://dx.doi.org/10.1590/S1519-69842004000100020
  • TUNDISI, J. G. Recursos hídricos no futuro: problemas e soluções. Estudos Avançados, v. 22, n. 63, p. 7-16, 2008.
  • TUNDISI, J. G.; MATSUMURA-TUNDISI, T.; TUNDISI, J. E. M. Reservoirs and human well being: new challenges for evaluating impacts and benefits in the neotropics. Brazilian Journal of Biology, v. 68, n. 4, p. 1119-1132, 2008. http://dx.doi.org/10.1590/S1519-69842008000500020
  • TUNDISI, J. G.; MATSUMURA-TUNDISI, T.; PEREIRA, K. C.; LUZIA, A. P.; PASSERINI, M. D.; CASTRO, W. C. C. et al. Cold fronts and reservoir limnology: an integrated approach towards the ecological dynamics of freshwater ecosystems. Brazilian Journal of Biology, v. 70, n. 3 (suppl.), p. 815-824, 2010. http://dx.doi.org/10.1590/S1519-69842010000400012
  • UNITED STATES. Geological Survey - USGS. Landsat Project. 2006a. Available at: <http://landsat.usgs.gov>. Access in: 08 Mar. 2013.
  • UNITED STATES. Geological Survey - USGS. Earth Resources Observation and Science - EROS. Landsat Enhanced Thematic Mapper Plus (ETM+). 2006b. Available at: <http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/ETM>. Access in 08 Mar. 2013.
  • UNITED STATES. Geological Survey - USGS. Earth Resources Observation and Science - EROS. Landsat Thematic Mapper (TM). 2006c. Available at: <http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/TM>. Access in 08 Mar. 2013.
  • VINCENT, R. K.; QIN, X.; McKAY, R. M. L.; MINER, J.; CZAJKOWSKI, K.; SAVINO, J. et al. Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sensing of Environment, v. 89, p. 381 - 392, 2004. http://dx.doi.org/10.1016/j.rse.2003.10.014

Publication Dates

  • Publication in this collection
    30 June 2014
  • Date of issue
    June 2014

History

  • Received
    25 Feb 2014
  • Accepted
    03 June 2014
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil
E-mail: ambi.agua@gmail.com