Acessibilidade / Reportar erro

Divergence times of the Rhoadsia clade (Characiformes: Characidae)

Abstract

The family Characidae is the most diverse group of fishes in the Neotropics with challenging systematics. The three genera Carlana, Parastremma, and Rhoadsia, formerly considered the subfamily Rhoadsiinae, are now included in the subfamily Stethaprioninae. Previous phylogenetic analyses did not include all genera of Rhoadsiinae, specifically Parastremma. Here, we estimated the phylogenetic relationships and divergence times of the genera of Rhoadsiinae (the Rhoadsia clade) relative to the most representative genera of the Characidae. We used six molecular markers from the mitochondrial and nuclear genome to estimate the phylogeny and divergence times. We confirmed the monophyly of the Rhoadsia clade. Furthermore, we estimated that the Central American genus Carlana and the western Colombian genus Parastremma diverged approximately 13 Mya (95% HPD 8.36–18.11), consistent with the early-closure estimates of the Isthmus of Panama (~15 Mya). The genus Rhoadsia, endemic to Western Ecuador and Northern Peru, was estimated to originate at around 20 Mya (95% HPD 14.35–25.43), consistent with the Andean uplift (~20 Mya).

Keywords:
Biogeography; Freshwater fishes; Phylogeny; Stethaprioninae; Systematics

Resumen

La familia Characidae es el grupo más diverso de peces en el Neotrópico con una sistemática compleja. Los tres géneros Carlana, Parastremma y Rhoadsia, antes considerados en la subfamilia Rhoadsiinae, ahora se consideran dentro de la subfamilia Stethaprioninae. Los análisis filogenéticos publicados no incluyen todos los géneros de Rhoadsiinae, específicamente Parastremma. Aquí, estimamos las relaciones filogenéticas y los tiempos de divergencia de los géneros de Rhoadsiinae (el clado Rhoadsia) en relación con los géneros más representativos de Characidae. Utilizamos seis marcadores moleculares del genoma mitocondrial y nuclear para estimar la filogenia y el tiempo de divergencia. Confirmamos la monofilia del clado Rhoadsia. Además, estimamos que el género centroamericano Carlana y el género colombiano occidental Parastremma divergieron aproximadamente hace 13 millones de años (95% HPD 8.36–18.11), lo que es consistente con recientes estimaciones del cierre del Istmo de Panamá (~15 millones de años). Se estimó que el género Rhoadsia, endémico del oeste de Ecuador y el norte de Perú, se originó hace alrededor de 20 millones de años (95% HPD 14.35–25.43), consistente con el levantamiento de los Andes (~20 millones de años).

Palabras clave:
Biogeografía; Filogenia; Peces de agua dulce; Sistemática; Stethaprioninae

INTRODUCTION

The Family Characidae is the most diverse family of fishes in the Neotropics (Albert, Reis, 2011Albert JS, Reis RE. Historical biogeography of Neotropical freshwater fishes. Los Angeles: University of California Press; 2011.; Fricke et al., 2022Fricke R, Eschmeyer WN, Fong JD. Eschmeyer’s catalog of fishes: genera/species by family/subfamily [Internet]. San Francisco: California Academy of Science; 2022. Available from: https://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp#Table2
https://researcharchive.calacademy.org/r...
). Due to its great diversity, species of this large group are classified into various subfamilies. However, classifying the species into subfamilies is still challenging and constantly changing as new information becomes available. The use of molecular markers in combination with morphology has helped clarify a lot of the uncertainty within Characidae. That is the case of the former subfamily Rhoadsiinae with the three genera RhoadsiaFowler, 1911Fowler HW. New fresh-water from western Ecuador. Proc Acad Nat Sci Philadelphia. 1911; 63:493–520., Parastremma Eigenmann, 1912, and CarlanaStrand, 1928Strand E. Miscellanea nomenclatorica zoologica et palaeontologica. Arch Für Naturgeschichte. 1928; 92(8):30–75. (Cardoso, 2003Cardoso AR. Subfamily Rhoadsiinae. In: Reis RE, Kullander SO, Ferraris Jr. CJ, editors. Check list freshwater fishes South and Central America. Porto Alegre: EDIPUCRS; 2003.) (here also referred as the Rhoadsia clade). However, more recent total-evidence phylogenetic analysis prompted the reclassification of this group into a larger subfamily Stethaprioninae (Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
), which is consistent with phylogenomic evidence (Betancur-R. et al., 2019Betancur-R. R, Arcila D, Vari RP, Hughes LC, Oliveira C, Sabaj MH et al. Phylogenomic incongruence, hypothesis testing, and taxonomic sampling: The monophyly of characiform fishes*. Evolution (NY). 2019; 73(2):329–45. https://doi.org/10.1111/evo.13649
https://doi.org/10.1111/evo.13649...
).

The subfamilial recognition and membership of the Rhoadsia clade have shifted over time. For example, the Rhoadsia clade includes the genus Rhoadsia with two species recognized, R. minorEigenmann & Henn, 1914Eigenmann CH, Henn AW. On new species of fishes from Colombia, Ecuador, and Brazil. Contrib from Zool Lab Indiana Univ. 1914; 140:231–34. and R. altipinnaFowler, 1911Fowler HW. New fresh-water from western Ecuador. Proc Acad Nat Sci Philadelphia. 1911; 63:493–520., the genus Carlana with its only species C. eigenmanni (Meek, 1912), and the genus Parastremma with three species, P. album Dahl, 1960, P. pulchrum Dahl, 1960, and P. sadinaEigenmann, 1912Eigenmann CH. Some results from an ichthyological reconnaisance of Colombia, South America, Part I. Contrib from Zool Lab Indiana Univ. 1912; 16:20.. Cardoso, (2003)Cardoso AR. Subfamily Rhoadsiinae. In: Reis RE, Kullander SO, Ferraris Jr. CJ, editors. Check list freshwater fishes South and Central America. Porto Alegre: EDIPUCRS; 2003. defined the group as having a single series of teeth in the premaxilla when young and a two series when reaching adulthood (except for Carlana which does not develop an outer series). Adult specimens have two conical teeth in their outer series and five multicuspid teeth in their inner series. Mirande (2009Mirande JM. Weighted parsimony phylogeny of the family Characidae (Teleostei: Characiformes). Cladistics. 2009; 25(6):574–613. https://doi.org/10.1111/j.1096-0031.2009.00262.x
https://doi.org/10.1111/j.1096-0031.2009...
, 2010Mirande JM. Phylogeny of the family characidae (teleostei: Characiformes): From characters to taxonomy. Neotrop Ichthyol. 2010; 8(3):385–568. https://doi.org/10.1111/j.1096-0031.2009.00262.x
https://doi.org/10.1111/j.1096-0031.2009...
) proposed the inclusion of Nematocharax in the subfamily Rhoadsiinae sensuCardoso, (2003)Cardoso AR. Subfamily Rhoadsiinae. In: Reis RE, Kullander SO, Ferraris Jr. CJ, editors. Check list freshwater fishes South and Central America. Porto Alegre: EDIPUCRS; 2003., based on morphological phylogenetic analyses. The characters that unified the four genera were the form of teeth of inner premaxillary row with cusps aligned in straight series, without anterior concavity and five or more cusps of anterior maxillary teeth (Mirande, 2010Mirande JM. Phylogeny of the family characidae (teleostei: Characiformes): From characters to taxonomy. Neotrop Ichthyol. 2010; 8(3):385–568. https://doi.org/10.1111/j.1096-0031.2009.00262.x
https://doi.org/10.1111/j.1096-0031.2009...
). By contrast, a more recent phylogeny based on combined morphological and molecular data showed that these four genera are not monophyletic. That hypothesis recovered Nematocharax Weitzman, Menezes & Britski, 1986 closer to the polyphyletic genus Moenkhausia Eigenmann, 1903 (Mariguela et al., 2013Mariguela TC, Benine RC, Abe KT, Avelino GS, Oliveira C. Molecular phylogeny of Moenkhausia (Characidae) inferred from mitochondrial and nuclear DNA evidence. J Zool Syst Evol Res. 2013; 51(4):327–32. https://doi.org/10.1111/JZS.12025
https://doi.org/10.1111/JZS.12025...
; Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
), a group of medium size fish (~12 cm) widely distributed in the Amazon basin and adjacent drainages, which were classified as part of a tribe Stethaprionini. On the other hand, the genera Rhoadsia and Carlana were closer to species like Pseudochalceus kyburzi Schultz, 1966 and Nematobrycon palmeri Eigenmann, 1911 (Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
) mainly found in the northwestern South America; together, these were classified as members of a tribe Rhoadsiini. Other members of this Rhoadsiini tribe can also be found in the Amazon basin and Southeast Brazil. Consequently, these genera are now within the much larger subfamily Stethaprioninae (Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
). Although Parastremma was generally assumed to be within the Rhoadsia clade with Rhoadsia and Carlana, Parastremma has not been formally included in a phylogeny until recently, where it was used as an outgroup of populations of Rhoadsia sp. along with Carlana (Cucalón et al., 2022Cucalón RV, Valdiviezo-Rivera J, Jiménez-Prado P, Navarrete-Amaya R, Shervette VR, Torres-Noboa A et al. Phylogeography of the Chocó endemic rainbow characin (Teleostei: Rhoadsia). Ichthyol Herpetol. 2022; 110(1):138–55. https://doi.org/10.1643/i2020092
https://doi.org/10.1643/i2020092...
). However, Cucalón et al., (2022)Cucalón RV, Valdiviezo-Rivera J, Jiménez-Prado P, Navarrete-Amaya R, Shervette VR, Torres-Noboa A et al. Phylogeography of the Chocó endemic rainbow characin (Teleostei: Rhoadsia). Ichthyol Herpetol. 2022; 110(1):138–55. https://doi.org/10.1643/i2020092
https://doi.org/10.1643/i2020092...
did not sample other characid taxa to test the monophyly of the Rhoadsia clade, nor did they perform a fossil-calibrated divergence time analysis to estimate when members of the group diverged from each other.

In this study, we investigated the phylogenetic relationships and divergence time of the Rhoadsia clade (Rhoadsiinae sensuCardoso, 2003Cardoso AR. Subfamily Rhoadsiinae. In: Reis RE, Kullander SO, Ferraris Jr. CJ, editors. Check list freshwater fishes South and Central America. Porto Alegre: EDIPUCRS; 2003.) relative to other members of the family Characidae, with the intension to provide a better understanding of the evolutionary history of the Rhoadsia clade within the Characidae.

MATERIAL AND METHODS

Data collection. Sequences for representative taxa within families of Characoidei (sans Crenuchoidea) were retrieved from GenBank using phylogenies estimated in Mirande, (2019)Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
and Terán et al., (2020)Terán GE, Benitez MF, Mirande JM. Opening the Trojan horse: Phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool J Linn Soc. 2020; 190(4):1217–34. https://doi.org/10.1093/zoolinnean/zlaa019
https://doi.org/10.1093/zoolinnean/zlaa0...
as guides to maximize phylogenetic diversity. Most extensive sampling was done within the family Characidae to achieve representative sampling of most clades within the subfamilies. In addition, clades outside of Characidae were represented with up to 6 species per family. We retrieved sequences representing three mitochondrial markers, 16S Ribosomal RNA (16S) (~600 bp), Cytochrome Oxidase I (COI) (~600 bp), and Cytochrome b (Cytb) (~600 bp), and up to three nuclear markers, Myosin Heavy Chain 6 (Myh6) (~1000 bp), Recombination Activating 1 (RAG1) (~1200 bp), and Recombination Activating 2 (RAG2) (~1200 bp), when available from GenBank. These markers were chosen since they are commonly used for phylogenetic reconstructions and were the most frequently available across taxa. Genes available from different individuals were chosen arbitrarily for each species, however whenever possible genes coming from the same individual were selected to reduce the likelihood of contamination (see Tab. S1). Mitochondrial genes were obtained from complete mitogenomes when available using a custom script (available from: https://doi.org/10.6084/m9.figshare.21367089.v1). The mitochondrial genes Cytb and COI of species of Rhoadsiinae sensuCardoso, (2003)Cardoso AR. Subfamily Rhoadsiinae. In: Reis RE, Kullander SO, Ferraris Jr. CJ, editors. Check list freshwater fishes South and Central America. Porto Alegre: EDIPUCRS; 2003. were retrieved from Cucalón et al., (2022)Cucalón RV, Valdiviezo-Rivera J, Jiménez-Prado P, Navarrete-Amaya R, Shervette VR, Torres-Noboa A et al. Phylogeography of the Chocó endemic rainbow characin (Teleostei: Rhoadsia). Ichthyol Herpetol. 2022; 110(1):138–55. https://doi.org/10.1643/i2020092
https://doi.org/10.1643/i2020092...
, including Rhoadsia altipinna, R. minor, Parastremma sadina, and Carlana eigenmanni. Other genes like 16S, RAG1 and RAG2 were amplified in the laboratory. We used primers reported from others studies for 16S (Palumbi, 1996Palumbi SR. Moleculas Systematics. Second Edi. Sunderland: Sinauer Associates; 1996.), RAG1 (López et al., 2004López JA, Chen WJ, Ortí G. Esociform phylogeny. Copeia. 2004; 2004(3):449–65. https://doi.org/10.1643/cg-03-087r1
https://doi.org/10.1643/cg-03-087r1...
; Li, Ortí, 2007Li C, Ortí G. Molecular phylogeny of Clupeiformes (Actinopterygii) inferred from nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol. 2007; 44(1):386–98. https://doi.org/10.1016/j.ympev.2006.10.030
https://doi.org/10.1016/j.ympev.2006.10....
; Oliveira et al., 2011Oliveira C, Avelino GS, Abe KT, Mariguela TC, Benine RC, Ortí G et al. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol Biol. 2011; 11(275):1471–2148. https://doi.org/10.1186/1471-2148-11-275
https://doi.org/10.1186/1471-2148-11-275...
), and RAG2 (Oliveira et al., 2011Oliveira C, Avelino GS, Abe KT, Mariguela TC, Benine RC, Ortí G et al. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol Biol. 2011; 11(275):1471–2148. https://doi.org/10.1186/1471-2148-11-275
https://doi.org/10.1186/1471-2148-11-275...
; this study) (see Tab. S2). The polymerase chain reaction (PCR) was carried out using the following volumes: For a 15 µl reaction we used 7.5 µl of GoTaq® master mix (www.promega.com), 0.3 µl of each primer at 10 µM (Tab. S2), 2 µl of DNA template, and complemented the reaction with molecular grade water. We performed a nested PCR for RAG1, and RAG2, and a regular PCR for the 16S, with the following thermocycler protocol. For the first PCR nested and the regular PCR, one cycle of denaturation for 1 min at 95°C, 30 cycles of denaturation at 95°C for 1 min, annealing (50–52°C) (Tab. S2), extension at 72°C for 2 min, and one cycle of final extension at 72°C for 10 min. The second PCR nested was similar as the first PCR except it ran for 35 cycles.

Alignment. Each gene was aligned independently using MAFFT version 7.453 (Katoh, Standley, 2013Katoh K, Standley DM. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013; 30(4):772–80. https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/molbev/mst010...
) using the option –auto recommended when unsure which alignment strategy to use based on data size. Then, the aligned genes were concatenated and converted to NEXUS format for further analyses using the tool AMAS (Alignment Manipulation And Summary) (Borowiec, 2016Borowiec ML. AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ. 2016; 2016(1). https://doi.org/10.7717/peerj.1660
https://doi.org/10.7717/peerj.1660...
).

Phylogenetic analysis. We used Maximum Likelihood (ML) to reconstruct the phylogeny of the Rhoadsia clade relative to the family Characidae. Species from the other families within Characoidei (sans Crenuchoidea) were used as outgroup taxa. The ML analysis was carried out using IQ-TREE2 v. 2.0.6 (Minh et al., 2020Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the Genomic Era. Mol Biol Evol. 2020; 37(5):1530–34. https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.1093/molbev/msaa015...
), using a partitioned model (Chernomor et al., 2016Chernomor O, Von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016; 65(6):997–1008. https://doi.org/10.1093/sysbio/syw037
https://doi.org/10.1093/sysbio/syw037...
), with 1000 iterations of ultrafast bootstrap (Hoang et al., 2017Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. BioRxiv. 2017; 35(2):518–22. https://doi.org/10.1101/153916
https://doi.org/10.1101/153916...
). To determine the best partitioned substitution model for phylogenetic analysis, we implemented ModelFinder (Kalyaanamoorthy et al., 2017Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods. 2017; 14:587–89. https://doi.org/10.1038/nmeth.4285
https://doi.org/10.1038/nmeth.4285...
) to simultaneously estimate each gene’s best-fit substitution model and best-fit alignment partitioning model scheme (option --merge). ModelFinder selects the best-fit model that minimizes the Bayesian Information Criterion (BIC) score. We enforced the relationship of some of the deep nodes based on phylogenomic results from Betancur-R et al., (2019)Betancur-R. R, Arcila D, Vari RP, Hughes LC, Oliveira C, Sabaj MH et al. Phylogenomic incongruence, hypothesis testing, and taxonomic sampling: The monophyly of characiform fishes*. Evolution (NY). 2019; 73(2):329–45. https://doi.org/10.1111/evo.13649
https://doi.org/10.1111/evo.13649...
as followed: Chalceidae + Characidae, sister to Alestoidea and Erythrinoidea + Curimatoidea. The ML tree was edited for visualization using the R packages phytools v1.0-1 (Revell, 2012Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012; 3(2):217–23. https://doi.org/10.1111/j.2041-210X.2011.00169.x
https://doi.org/10.1111/j.2041-210X.2011...
) and ggtree v3.2.1 (Yu et al., 2017Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017; 8(1):28–36. https://doi.org/10.1111/2041-210X.12628
https://doi.org/10.1111/2041-210X.12628...
).

Divergence time estimation. Divergence times among clades were estimated using BEAST version 2.6.4 (Bouckaert et al., 2019Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019; 15(4):e1006650. https://doi.org/10.1371/journal.pcbi.1006650
https://doi.org/10.1371/journal.pcbi.100...
). We constrained the analysis using a starting tree with estimated divergence time based on the penalized likelihood (PL) method (Cole et al., 2014Cole SR, Chu H, Greenland S. Maximum likelihood, profile likelihood, and penalized likelihood: A primer. Am J Epidemiol. 2014; 179(2):252–60. https://doi.org/10.1093/aje/kwt245
https://doi.org/10.1093/aje/kwt245...
) implemented in the software treePL (Smith, O’meara, 2012Smith SA, O’meara BC. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics. 2012; 28(20). https://doi.org/10.1093/bioinformatics/bts492
https://doi.org/10.1093/bioinformatics/b...
) following Maurin, (2020)Maurin KJL. An empirical guide for producing a dated phylogeny with treePL in a maximum likelihood framework. ArXiv. 2020.. We used the rooted ML tree generated from IQ-TREE as the input tree for treePL and calibrated the nodes using 13 calibration nodes used in Kolmann et al., (2021)Kolmann MA, Hughes LC, Hernandez LP, Arcila D, Betancur-R R, Sabaj MH et al. Phylogenomics of piranhas and pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. Syst Biol. 2021; 70(3):576–92. https://doi.org/10.1093/sysbio/syaa065
https://doi.org/10.1093/sysbio/syaa065...
. See Tab. S3 for detailed information about the node calibration including, taxa calibrated, mean age, minimum and maximum age, fossil species name, and tips (i.e., species in the tree) used to inform treePL which node to calibrate. Most parameters were set through the program BEAUti version 2.6.4 (Bouckaert et al., 2019Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019; 15(4):e1006650. https://doi.org/10.1371/journal.pcbi.1006650
https://doi.org/10.1371/journal.pcbi.100...
) included in the BEAST2 package. The parameters were as followed: We assumed that all genes had the same molecular clock and tree topology by linking the “Clock” and “Tree” model for all partitions. The “Site model” was left unliked across partitions to use the best-fit substitution model. The substitution model was estimated using ModelFinder (Kalyaanamoorthy et al., 2017Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods. 2017; 14:587–89. https://doi.org/10.1038/nmeth.4285
https://doi.org/10.1038/nmeth.4285...
) from IQTREE2 v. 2.0.6 (Minh et al., 2020Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the Genomic Era. Mol Biol Evol. 2020; 37(5):1530–34. https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.1093/molbev/msaa015...
) using the option “TESTONLY” to exclude testing of the free rate model (assumed by default), since this is not currently implemented in BEAST2. The option “--merge” was also set to estimate the best substitution model scheme to optimize the number of parameters used during the analysis. The molecular clock model was set as an uncorrelated relaxed clock log-normal to allow for rate heterogeneity across branches. We used the birth-death (Gernhard, 2008Gernhard T. The conditioned reconstructed process. J Theor Biol. 2008; 253(4):769–78. https://doi.org/10.1016/j.jtbi.2008.04.005
https://doi.org/10.1016/j.jtbi.2008.04.0...
) model tree prior and calibrated the nodes of the phylogeny using prior settings following the 13 calibration fossils used in Kolmann et al., (2021)Kolmann MA, Hughes LC, Hernandez LP, Arcila D, Betancur-R R, Sabaj MH et al. Phylogenomics of piranhas and pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. Syst Biol. 2021; 70(3):576–92. https://doi.org/10.1093/sysbio/syaa065
https://doi.org/10.1093/sysbio/syaa065...
(Tab. S3). For details on fossil calibration and rationale see materials and methods described in Kolmann et al., (2021)Kolmann MA, Hughes LC, Hernandez LP, Arcila D, Betancur-R R, Sabaj MH et al. Phylogenomics of piranhas and pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. Syst Biol. 2021; 70(3):576–92. https://doi.org/10.1093/sysbio/syaa065
https://doi.org/10.1093/sysbio/syaa065...
. The prior distribution for each calibration was set as exponential to account for increasing uncertainty at further points in the past, except for the root node that was uniform distribution, following Kolmann et al., (2021)Kolmann MA, Hughes LC, Hernandez LP, Arcila D, Betancur-R R, Sabaj MH et al. Phylogenomics of piranhas and pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. Syst Biol. 2021; 70(3):576–92. https://doi.org/10.1093/sysbio/syaa065
https://doi.org/10.1093/sysbio/syaa065...
. To fix the tree topology during the Markov Chain Monte Carlo (MCMC) chain, we modified the XML file by removing the lines that contained the operators “wide-exchange,” “narrow-exchange,” “subtree-slide,” and “Wilson-balding” following the instruction from the BEAST2 website (www.beast2.org). We ran the analysis with 100 million MCMC iterations, sampling every 5000 generations. The log file was inspected in Tracer (Rambaut et al., 2014Rambaut A, Suchard M, Xie D, AJ D. Tracer v1.6. Mol Evol Phylogenet Epidemiol. 2014. Available from: http://beast.bio.ed.ac.uk/Tracer
http://beast.bio.ed.ac.uk/Tracer...
) for convergence of the MCMC. We summarized the maximum clade credibility (MCC) tree discarding 10% burn-in in TreeAnnotator from the BEAST package version 2.6.3 (Bouckaert et al., 2019Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019; 15(4):e1006650. https://doi.org/10.1371/journal.pcbi.1006650
https://doi.org/10.1371/journal.pcbi.100...
). The time calibrated (i.e., MCC tree) and ML trees were visualized in FigTree (Rambaut, 2016Rambaut A. FigTree v1.4.3. Mol Evol Phylogenet Epidemiol. 2016. Available from: http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtre...
). We used the R package MCMCtreeR (Puttick, 2019Puttick MN. MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics. 2019; 35(24):5321–22. https://doi.org/10.1093/BIOINFORMATICS/BTZ554
https://doi.org/10.1093/BIOINFORMATICS/B...
) to visualize the posterior ages distribution of the MCC tree.

RESULTS

Sampling and phylogenetic analysis. Sequences for a total of 211 species of the Characoidei group were obtained for the phylogenetic reconstruction. The total length of the concatenated sequence alignment after trimming was 8276 bp. Accession number of the gene sequences used including the ones obtained from this study for the Rhoadsia clade can be found in Tab. S1. The best scheme substitution models selected by ModelFinder for the ML method allowing the incorporation of the free rate model were GTR+F+R5 (16S), GTR+F+I+G4 (COI), GTR+F+I+G4 (Cytb), and TIM2e+R5 (Myh6, RAG1, RAG2). For the Bayesian divergence time analysis (without allowing for free rate model), the best substitution model scheme was GTR+F+I+G4 (16S), GTR+F+I+G4 (COI), GTR+F+I+G4 (Cytb), and TIM2e+I+G4 (Myh6, RAG1, RAG2). The MCMC run reached stationarity with ESS greater than 200.

Phylogenetic relationships of theRhoadsiaclade. The ML tree placed the Rhoadsia clade (ultrafast bootstrap [BS]: 100) within the subfamily Stethaprioninae (Fig. 1). Rhoadsia was reconstructed as monophyletic (BS: 100), and this clade was sister to a highly supported clade formed by Carlana eigenmanni and Parastremma sadina (BS: 100). The closest relative to the Rhoadsia clade was the species Pseudochalceus kyburzi (BS: 100). That clade was sister of Nematobrycon palmeri (BS: 99) and followed by Inpaichthys kerri Géry & Junk, 1977 (BS: 83). Refer to Fig. S4 for full ML tree and BS support values for all nodes.

The divergence time of members of the Rhoadsia clade. Based on the Bayesian estimation, the genus Rhoadsia diverged from its sister clade, including the Central American Carlana and Colombian Parastremma, about 19.72 Mya (95% HPD 14.35–25.43). The genera Carlana and Parastremma diverged about 13.02 Mya (95% HPD 8.36–18.11). Refer to Fig. S5 for full maximum clade credibility tree with 95% HPD for all nodes.

FIGURE 1 |
Maximum likelihood phylogeny (left) of representative members of family Characidae and Bayesian chronogram (right) of the subfamily Stethaprioninae. Only species names of the subfamily Stethaprioninae are displayed in both trees (full trees in Figs. S4 and S5). Nodes with ultrafast bootstrap support ≥95 are shown with a black dot (left). The nodes on the time tree depict the posterior distribution of the age estimates (right). Abbreviations of geological ages left to right, top to bottom: Ne = Neogene, Q = Quaternary, P = Paleocene, Eo = Eocene, Ol = Oligocene, Mi = Miocene, P = Pliocene.

DISCUSSION

We herein inferred the phylogenetic relationships and divergence times of the Rhoadsia clade (Rhoadsiinae sensu Cardoso, 2003), based on six molecular markers from the mitochondrial and nuclear genome. The phylogenetic relationships of Rhoadsia and Carlana to other characids were consistent with previous reports (Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
; Terán et al., 2020Terán GE, Benitez MF, Mirande JM. Opening the Trojan horse: Phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool J Linn Soc. 2020; 190(4):1217–34. https://doi.org/10.1093/zoolinnean/zlaa019
https://doi.org/10.1093/zoolinnean/zlaa0...
). The three genera of the Rhoadsia clade — Rhoadsia, Carlana, and Parastremma — showed a monophyletic relationship (Fig. 1) within the subfamily Stethaprioninae. Of this group, the divergence time of the genus Rhoadsia was estimated to be 19.72 Mya (95% HPD 14.35–25.43), while Carlana and Parastremma were estimated at about 13.02 Mya (95% HPD 8.36–18.11).

Relationships of the Rhoadsia cladeand closest relativewithin the subfamily Stethaprioninae. The phylogenetic relationships of the Rhoadsia clade were consistent with the most recent phylogeny of the group based on morphological and molecular data (Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
; Terán et al., 2020Terán GE, Benitez MF, Mirande JM. Opening the Trojan horse: Phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool J Linn Soc. 2020; 190(4):1217–34. https://doi.org/10.1093/zoolinnean/zlaa019
https://doi.org/10.1093/zoolinnean/zlaa0...
). In this study, we added Parastremma sadina to the analysis. The genus Parastremma with three valid species, P. album, P. pulchrum, and P. sadina (the latter analyzed here) has been previously designated within Rhoadsiinae sensuCardoso (2003)Cardoso AR. Subfamily Rhoadsiinae. In: Reis RE, Kullander SO, Ferraris Jr. CJ, editors. Check list freshwater fishes South and Central America. Porto Alegre: EDIPUCRS; 2003. based on morphology but without formal phylogenetic analysis (Cardoso, 2003Cardoso AR. Subfamily Rhoadsiinae. In: Reis RE, Kullander SO, Ferraris Jr. CJ, editors. Check list freshwater fishes South and Central America. Porto Alegre: EDIPUCRS; 2003.; Mirande, 2010Mirande JM. Phylogeny of the family characidae (teleostei: Characiformes): From characters to taxonomy. Neotrop Ichthyol. 2010; 8(3):385–568. https://doi.org/10.1111/j.1096-0031.2009.00262.x
https://doi.org/10.1111/j.1096-0031.2009...
; Jimenez-Prado et al., 2015Jimenez-Prado P, Aguirre W, Laaz-Moncayo E, Navarrete-Amaya R, Nugra-Salazar F, Rebolledo-Monsalve E et al. Guia de peces para aguas continentales en la vertiente occidental del Ecuador. Esmeraldas, Ecuador: 2015.). The genus Parastremma is endemic to the Chocó-Darien ecoregion in Colombia (DoNascimiento et al., 2017DoNascimiento C, Herrera-Collazos EE, Herrera-R. GA, Ortega-Lara A, Villa-Navarro FA, Usma Oviedo JS et al. Checklist of the freshwater fishes of Colombia: a Darwin Core alternative to the updating problem. Zookeys. 2017; 708:25–138. https://doi.org/10.3897/zookeys.708.13897
https://doi.org/10.3897/zookeys.708.1389...
). The phylogeny presented here shows Parastremma sadina sister to the monotypic Carlana from Central America, corroborating its place within the Rhoadsia clade (Fig. 1). The genus Carlana with its only species Carlana eigenmanni has been regarded previously as a junior synonym of Rhoadsia by some authors (Eigenmann, Myers, 1921Eigenmann CH, Myers GS. The American Characidae. Mem Mus Comp Zool. 43: 457–63; 1921.; Géry, 1977Géry J. Characoids of the world. Neptune City, New Jersey. T.F.H: Publications; 1977.) while other authors associated Carlana with the subfamily Cheirodontinae after observing that Carlana was the only member of the Rhoadsia clade keeping a single tooth series in the premaxilla in adult fish as opposed to a double series (Fink, Weitzman, 1974Fink WL, Weitzman SH. The so-called cheirodontin fishes of Central America with descriptions of two new species (Pisces: Characidae). Smithson Contrib to Zool. 1974(172):1–46. https://doi.org/10.5479/si.00810282.172
https://doi.org/10.5479/si.00810282.172...
). However, this trait appears to be a homoplasy.

The genus Rhoadsia contains two recognized species, R. minor, and R. altipinna. This genus is endemic to drainages from the Pacific slope of the Andean mountains from northern Ecuador to northern Peru, an area known for being highly threatened (Aguirre et al., 2021Aguirre WE, Alvarez-Mieles G, Anaguano-Yancha F, Morán RB, Cucalón RV, Escobar-Camacho D et al. Conservation threats and future prospects for the freshwater fishes of Ecuador: A hotspot of Neotropical fish diversity. J Fish Biol. 2021; 99(4):1158–89. https://doi.org/10.1111/jfb.14844
https://doi.org/10.1111/jfb.14844...
). The most distinctive characteristic of Rhoadsia is a dark spot located on the side of the body below the insertion of the dorsal fin (Jimenez-Prado et al., 2015Jimenez-Prado P, Aguirre W, Laaz-Moncayo E, Navarrete-Amaya R, Nugra-Salazar F, Rebolledo-Monsalve E et al. Guia de peces para aguas continentales en la vertiente occidental del Ecuador. Esmeraldas, Ecuador: 2015.). Although their taxonomic status as two species have being questioned by some authors (Géry, 1977Géry J. Characoids of the world. Neptune City, New Jersey. T.F.H: Publications; 1977.), recent studies based on molecular markers showed the two species appear to differ genetically and are allopatrically distributed (Aguirre et al., 2016Aguirre WE, Navarrete R, Malato G, Calle P, Loh MK, Vital WF et al. Body shape variation and population genetic structure of Rhoadsia altipinna (Characidae: Rhoadsiinae) in southwestern Ecuador. Copeia. 2016; 104(2):554–69. https://doi.org/10.1643/CG-15-289
https://doi.org/10.1643/CG-15-289...
; Cucalón et al., 2022Cucalón RV, Valdiviezo-Rivera J, Jiménez-Prado P, Navarrete-Amaya R, Shervette VR, Torres-Noboa A et al. Phylogeography of the Chocó endemic rainbow characin (Teleostei: Rhoadsia). Ichthyol Herpetol. 2022; 110(1):138–55. https://doi.org/10.1643/i2020092
https://doi.org/10.1643/i2020092...
), although their body form varies similarly along the altitudinal gradient (Malato et al., 2017Malato G, Shervette VR, Navarrete Amaya R, Valdiviezo Rivera J, Nugra Salazar F, Calle Delgado P et al. Parallel body shape divergence in the Neotropical fish genus Rhoadsia (Teleostei: Characidae) along elevational gradients of the western slopes of the Ecuadorian Andes. PLoS ONE. 2017; 12(6):e0179432. https://doi.org/10.1371/journal.pone.0179432
https://doi.org/10.1371/journal.pone.017...
; Aguirre et al., 2019Aguirre WE, Young A, Navarrete-Amaya R, Valdiviezo-Rivera J, Jiménez-Prado P, Cucalón RV et al. Vertebral number covaries with body form and elevation along the western slopes of the Ecuadorian Andes in the Neotropical fish genus Rhoadsia (Teleostei: Characidae). Biol J Linn Soc. 2019; 126(4):706–20. https://doi.org/10.1093/biolinnean/blz002
https://doi.org/10.1093/biolinnean/blz00...
). Nevertheless, the taxonomic distinction within the genus Rhoadsia might still require further study using a more integrative approach.

The genera Rhoadsia, Carlana, and Parastremma analyzed here formed a monophyletic Rhoadsia clade nested within a broader clade including Pseudochalceus kyburzi, Nematobrycon palmeri, and Inpaichthys kerri with high support (BS: 83) (Fig. 1). This clade is also recovered in Mirande, (2019)Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
as one of the subclades within the tribe Rhoadsiini sensuMirande, (2019)Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
. A similar clade is observed in Terán et al., (2020)Terán GE, Benitez MF, Mirande JM. Opening the Trojan horse: Phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool J Linn Soc. 2020; 190(4):1217–34. https://doi.org/10.1093/zoolinnean/zlaa019
https://doi.org/10.1093/zoolinnean/zlaa0...
, but including Grundulus bogotensis (Humboldt, 1821). However, the relationships of the Rhoadsia clade to other genera, such as Pseudochalceus Kner, 1863, Nematobrycon Eigenmann, 1911, and Inpaichthys Géry & Junk, 1977, are incongruent and weakly supported in our study (Fig. 1), Mirande, (2019)Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
, and Terán et al., (2020)Terán GE, Benitez MF, Mirande JM. Opening the Trojan horse: Phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool J Linn Soc. 2020; 190(4):1217–34. https://doi.org/10.1093/zoolinnean/zlaa019
https://doi.org/10.1093/zoolinnean/zlaa0...
. Both Mirande, (2019)Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
and Terán et al., (2020)Terán GE, Benitez MF, Mirande JM. Opening the Trojan horse: Phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool J Linn Soc. 2020; 190(4):1217–34. https://doi.org/10.1093/zoolinnean/zlaa019
https://doi.org/10.1093/zoolinnean/zlaa0...
recover the aforementioned clade sister to a clade including Hollandichthys Eigenmann, 1909, Rachoviscus Myers, 1926, Thayeria Eigenmann, 1908, and Bario Myers, 1940 (among other species). We found the latter genus sister to a clade including mostly Astyanax Baird & Girard, 1854 (BS: 48), and this sister to the clade formed by the Rhoadsia clade, Pseudochalceus, Nematobrycon, and Inpaichthys (BS: 57). Also, Betancur-R et al., (2019)Betancur-R. R, Arcila D, Vari RP, Hughes LC, Oliveira C, Sabaj MH et al. Phylogenomic incongruence, hypothesis testing, and taxonomic sampling: The monophyly of characiform fishes*. Evolution (NY). 2019; 73(2):329–45. https://doi.org/10.1111/evo.13649
https://doi.org/10.1111/evo.13649...
inferred a phylogeny for Characoidei based on genomic data, where Rhoadsia cf. altipinna and Inpaichthys kerri (the only members of this clade they included) did not form a clade; rather they recovered Rhoadsia cf. altipinna sister to Grundulus bogotensis while Inpaichthys kerri in a clade closer to Hollandichthys multifasciatus (Eigenmann & Norris, 1900), Rachoviscus crassiceps Myers, 1926, Hemigrammus ocellifer (Steindachner, 1882), Bario steindachn eri (Eigenmann, 1893), and Thayeria obliqua Eigenmann, 1908. Hence, the relative placements of Grundulus bogotensis and Inpaichthys kerri were inconsistent with Mirande, (2019)Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
, Terán et al., (2020)Terán GE, Benitez MF, Mirande JM. Opening the Trojan horse: Phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool J Linn Soc. 2020; 190(4):1217–34. https://doi.org/10.1093/zoolinnean/zlaa019
https://doi.org/10.1093/zoolinnean/zlaa0...
, and our phylogeny.

It is worth noting that Grundulus bogotensis, which appears sister to Inpaichthys kerri in Terán et al., (2020)Terán GE, Benitez MF, Mirande JM. Opening the Trojan horse: Phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool J Linn Soc. 2020; 190(4):1217–34. https://doi.org/10.1093/zoolinnean/zlaa019
https://doi.org/10.1093/zoolinnean/zlaa0...
and sister to Rhoadsia cf. altipinna in Betancur-R et al., (2019)Betancur-R. R, Arcila D, Vari RP, Hughes LC, Oliveira C, Sabaj MH et al. Phylogenomic incongruence, hypothesis testing, and taxonomic sampling: The monophyly of characiform fishes*. Evolution (NY). 2019; 73(2):329–45. https://doi.org/10.1111/evo.13649
https://doi.org/10.1111/evo.13649...
, in this study, is placed in a different clade in congruence with Mirande, (2019)Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
, sister to other members of the tribe Grundulini sensuMirande, (2019)Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
, although with relatively low ultrafast bootstrap support (BS = 87) (Fig. 1; Fig. S4). Other studies based on morphology have placed Grundulus Valenciennes, 1846 closest to Spintherobolus (Román-Valencia et al., 2010Román-Valencia C, Vanegas-Ríos JA, Ruiz-C RI. Phylogenetic and biogeographic study of the Andean genus Grundulus ( Teleostei : Characiformes : Characidae ). Vertebr Zool. 2010; 60(2):107–22.), although this hypothesis seems less likely. Recent studies, including molecular data, place Spintherobolus Eigenmann, 1911 close to the base of Characidae in a separate subfamily Spintherobolinae (Oliveira et al., 2011Oliveira C, Avelino GS, Abe KT, Mariguela TC, Benine RC, Ortí G et al. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol Biol. 2011; 11(275):1471–2148. https://doi.org/10.1186/1471-2148-11-275
https://doi.org/10.1186/1471-2148-11-275...
; Betancur-R et al., 2019Betancur-R. R, Arcila D, Vari RP, Hughes LC, Oliveira C, Sabaj MH et al. Phylogenomic incongruence, hypothesis testing, and taxonomic sampling: The monophyly of characiform fishes*. Evolution (NY). 2019; 73(2):329–45. https://doi.org/10.1111/evo.13649
https://doi.org/10.1111/evo.13649...
; Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
; Terán et al., 2020Terán GE, Benitez MF, Mirande JM. Opening the Trojan horse: Phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool J Linn Soc. 2020; 190(4):1217–34. https://doi.org/10.1093/zoolinnean/zlaa019
https://doi.org/10.1093/zoolinnean/zlaa0...
; this study - Fig. S4 and hardly ever sister to Grundulus. The subfamilial placement of some clades of the Characidae still seems to represent a challenge based on the discrepancies observed across studies which are often accompanied with low support.

The genus Nematocharax, a Brazilian freshwater fish that was previously thought to be closely related to the Rhoadsia clade (Weitzman et al., 1986Weitzman SH, Menezes NA, Britski HA. Nematocharax venustus, a new genus and species of fish from the Rio Jequitinhonha, Minas Gerais, Brazil (Teleostei: Characidae). Proc Biol Soc Washingt. 1986; 99(2):335–46.; Mirande, 2009Mirande JM. Weighted parsimony phylogeny of the family Characidae (Teleostei: Characiformes). Cladistics. 2009; 25(6):574–613. https://doi.org/10.1111/j.1096-0031.2009.00262.x
https://doi.org/10.1111/j.1096-0031.2009...
, 2010Mirande JM. Phylogeny of the family characidae (teleostei: Characiformes): From characters to taxonomy. Neotrop Ichthyol. 2010; 8(3):385–568. https://doi.org/10.1111/j.1096-0031.2009.00262.x
https://doi.org/10.1111/j.1096-0031.2009...
), has shown to be problematic in regards to its systematics due to morphological similarities with various characid genera (Weitzman et al., 1986Weitzman SH, Menezes NA, Britski HA. Nematocharax venustus, a new genus and species of fish from the Rio Jequitinhonha, Minas Gerais, Brazil (Teleostei: Characidae). Proc Biol Soc Washingt. 1986; 99(2):335–46.). Weitzman et al., (1986)Weitzman SH, Menezes NA, Britski HA. Nematocharax venustus, a new genus and species of fish from the Rio Jequitinhonha, Minas Gerais, Brazil (Teleostei: Characidae). Proc Biol Soc Washingt. 1986; 99(2):335–46. suggested the potential relationship of Nematocharax with the Rhoadsia clade due to the compressed, relatively deep body, long dorsal fin, and fully toothed maxilla, which are characteristics found in the Rhoadsia clade. The phylogenetic relationship was then supported in Mirande, (2010)Mirande JM. Phylogeny of the family characidae (teleostei: Characiformes): From characters to taxonomy. Neotrop Ichthyol. 2010; 8(3):385–568. https://doi.org/10.1111/j.1096-0031.2009.00262.x
https://doi.org/10.1111/j.1096-0031.2009...
, uniting Nematocharax with members of the Rhoadsia clade by the form of the teeth of the inner premaxillary tooth row with cusps aligned in straight series and without anterior concavity and five or more cusps in the anterior maxillary teeth. However, the designation of Nematocharax as a member of the Rhoadsia clade was challenged after the inclusion of the nuclear and mitochondrial markers into the phylogeny, placing Nematocharax sister to species of the polyphyletic genus Moenkhausia (Mariguela et al., 2013Mariguela TC, Benine RC, Abe KT, Avelino GS, Oliveira C. Molecular phylogeny of Moenkhausia (Characidae) inferred from mitochondrial and nuclear DNA evidence. J Zool Syst Evol Res. 2013; 51(4):327–32. https://doi.org/10.1111/JZS.12025
https://doi.org/10.1111/JZS.12025...
; Mirande, 2019Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
https://doi.org/10.1111/cla.12345...
; this study).

Major historical processes associated with the divergence of the Rhoadsia clade. The high levels of endemism found in Western Ecuador have been attributed to species isolation due to the uplift of the Andes estimated at 20 Mya (Schaefer, 2011Schaefer SA. “The Andes: riding the tectonic uplift.” In: Albert JS, Reis RE, editors. Historical biogeography of Neotropical freshwater fishes. University of California Press; 2011. p.259–78.). In addition, the effect of the uplift of the Andes has been investigated on the diversification of birds (Benham, Witt, 2016Benham PM, Witt CC. The dual role of Andean topography in primary divergence: Functional and neutral variation among populations of the hummingbird, Metallura tyrianthina. BMC Evol Biol. 2016; 16(22):1–16. https://doi.org/10.1186/s12862-016-0595-2
https://doi.org/10.1186/s12862-016-0595-...
; Hazzi et al., 2018Hazzi NA, Moreno JS, Ortiz-Movliav C, Palacio RD. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proc Natl Acad Sci USA. 2018; 115(31):7985–90. https://doi.org/10.1073/pnas.1803908115
https://doi.org/10.1073/pnas.1803908115...
) and plants (Luebert, Weigend, 2014Luebert F, Weigend M. Phylogenetic insights into Andean plant diversification. Front Ecol Evol. 2014; 2(27):1–17. https://doi.org/10.3389/fevo.2014.00027
https://doi.org/10.3389/fevo.2014.00027...
). More recently, it has been associated with the high diversity of the freshwater fish family Characidae in South America (Melo et al., 2022Melo BF, Sidlauskas BL, Near TJ, Roxo FF, Ghezelayagh A, Ochoa LE et al. Accelerated diversification explains the exceptional species richness of tropical characoid fishes. Syst Biol. 2022; 71(1):78–92. https://doi.org/https://doi.org/10.1093/sysbio/syab040
https://doi.org/https://doi.org/10.1093/...
) and South American freshwater fishes in general (Cassemiro et al., 2021Cassemiro F, Albert JS, Antonelli A, Menegotto A, Wüest RO, Coelho MTP et al. Landscape dynamics promoted the evolution of mega-diversity in South American freshwater fishes. BioRxiv. 2021; 1–19. https://doi.org/10.1101/2021.12.13.472133
https://doi.org/10.1101/2021.12.13.47213...
). Freshwater fishes are especially prone to diversify after such geological events due to their limitation to move outside their river systems. The subfamily Stethaprioninae has being previously estimated to have diversified close to 30 Mya (Melo et al., 2022Melo BF, Sidlauskas BL, Near TJ, Roxo FF, Ghezelayagh A, Ochoa LE et al. Accelerated diversification explains the exceptional species richness of tropical characoid fishes. Syst Biol. 2022; 71(1):78–92. https://doi.org/https://doi.org/10.1093/sysbio/syab040
https://doi.org/https://doi.org/10.1093/...
). Other species-rich families like Trichomycteridae and Loricariidae (Siluriformes) are associated with major geological events in South America including multiple marine transgressions and regressions as well as mountain formations between 55–10 Mya (Cassemiro et al., 2021Cassemiro F, Albert JS, Antonelli A, Menegotto A, Wüest RO, Coelho MTP et al. Landscape dynamics promoted the evolution of mega-diversity in South American freshwater fishes. BioRxiv. 2021; 1–19. https://doi.org/10.1101/2021.12.13.472133
https://doi.org/10.1101/2021.12.13.47213...
). The origin of the genus Rhoadsia seems consistent with these estimations, showing a time of divergence from its closest relative (14–25 Mya) (Fig. 1), within the range of the formation of the Andes (Schaefer, 2011Schaefer SA. “The Andes: riding the tectonic uplift.” In: Albert JS, Reis RE, editors. Historical biogeography of Neotropical freshwater fishes. University of California Press; 2011. p.259–78.).

The genera of the Rhoadsia clade each inhabit adjacent, non-overlapping regions (Western Ecuador, Colombia, and Central America). The genus Carlana is found only in Central America from Panama to Nicaragua (Cardoso, 2003Cardoso AR. Subfamily Rhoadsiinae. In: Reis RE, Kullander SO, Ferraris Jr. CJ, editors. Check list freshwater fishes South and Central America. Porto Alegre: EDIPUCRS; 2003.). The genus Parastremma inhabits Colombia’s freshwater rivers on both the Caribbean slope and Pacific slope, and is the closest geographically to Rhoadsia from Western Ecuador (Eigenmann, 1912Eigenmann CH. Some results from an ichthyological reconnaisance of Colombia, South America, Part I. Contrib from Zool Lab Indiana Univ. 1912; 16:20.; Cardoso, 2003Cardoso AR. Subfamily Rhoadsiinae. In: Reis RE, Kullander SO, Ferraris Jr. CJ, editors. Check list freshwater fishes South and Central America. Porto Alegre: EDIPUCRS; 2003.; DoNascimiento et al., 2017DoNascimiento C, Herrera-Collazos EE, Herrera-R. GA, Ortega-Lara A, Villa-Navarro FA, Usma Oviedo JS et al. Checklist of the freshwater fishes of Colombia: a Darwin Core alternative to the updating problem. Zookeys. 2017; 708:25–138. https://doi.org/10.3897/zookeys.708.13897
https://doi.org/10.3897/zookeys.708.1389...
). Both Parastremma and Rhoadsia are part of the Tumbes-Chocó-Magdalena ecoregion spanning from Southeastern Panama to Northwestern Peru, but their species ranges do not overlap. Fish faunas from Western Ecuador and Western Colombia are known to differ, potentially indicating independent evolutionary histories (Eigenmann, 1921Eigenmann CH. The nature and origin of the fishes of the Pacific Slope of Ecuador, Peru and Chili. Proc Am Philos Soc. 1921; 60(4):503–23.; Aguirre et al., 2017Aguirre WE, Calle P, Jimenez-Prado P, Laaz-Moncayo E, Navarrete-Amaya R, Nugra-Salazar F et al. The freshwater fishes of western Ecuador. World Wide Web Publ. 2017. Available from: http://CondorDepaulEdu/Waguirre/Fishwestec/Saccodon_wagneriHtml
http://CondorDepaulEdu/Waguirre/Fishwest...
). Eigenmann, (1921)Eigenmann CH. The nature and origin of the fishes of the Pacific Slope of Ecuador, Peru and Chili. Proc Am Philos Soc. 1921; 60(4):503–23. suggested that Rhoadsia and Parastremma independently dispersed from the east of the Andes, although other hypotheses appear equally likely (i.e., north-south or south-north origin). It is noteworthy that species like Hoplias microlepis (Günther, 1864), which inhabit Western Ecuador like Rhoadsia, are also found in the Chagres River, Panama, while absent in Colombia, presenting a disjoint distribution (Eigenmann, 1921Eigenmann CH. The nature and origin of the fishes of the Pacific Slope of Ecuador, Peru and Chili. Proc Am Philos Soc. 1921; 60(4):503–23.; Mattox et al., 2014Mattox GMT, Bifi AG, Oyakawa OT. Taxonomic study of Hoplias microlepis (Günther, 1864), a trans-Andean species of trahiras (Ostariophysi: Characiformes: Erythrinidae). Neotrop Ichthyol. 2014; 12(2):343–52. https://doi.org/10.1590/1982-0224-20130174
https://doi.org/10.1590/1982-0224-201301...
). This may indicate that the subdivision in fish composition observed between Western Ecuador, Western Colombia, and Central America does not seem universal for all fishes of this region. However, genetic analysis is still needed to determine the level of divergence between the two disjunct populations of Hoplias Gill, 1903.

The genus Parastremma and the Central American genus Carlana diverged ~13 Mya (95% HPD 8.36–18.11). This is consistent with recent estimates of an ancient closure of the Isthmus of Panama (~15 Mya) and migration patterns of other land and freshwater organisms into Central America (Hurt et al., 2009Hurt C, Anker A, Knowlton N. A multilocus test of simultaneous divergence across the isthmus of panama using snapping shrimp in the genus Alpheus. Evolution (NY). 2009; 63(2):514–30. https://doi.org/10.1111/j.1558-5646.2008.00566.x
https://doi.org/10.1111/j.1558-5646.2008...
; Bacon et al., 2015aBacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci USA. 2015a; 112(19):6110–15. https://doi.org/10.1073/pnas.1423853112
https://doi.org/10.1073/pnas.1423853112...
; Thacker, 2017Thacker CE. Patterns of divergence in fish species separated by the Isthmus of Panama. BMC Evol Biol. 2017; 17(111). https://doi.org/10.1186/s12862-017-0957-4
https://doi.org/10.1186/s12862-017-0957-...
), rather than the traditionally accepted closure at 3.5 Mya (reviewed in Coates and Stallard, 2013). Furthermore, dispersal events prior to the full closure of the Isthmus of Panama appear to be commonly inferred across taxa (Bermingham, Martin, 1998Bermingham E, Martin AP. Comparative mtDNA phylogeography of neotropical freshwater fishes: Testing shared history to infer the evolutionary landscape of lower Central America. Mol Ecol. 1998; 7(4):499–517. https://doi.org/10.1046/j.1365-294x.1998.00358.x
https://doi.org/10.1046/j.1365-294x.1998...
; Thacker, 2017Thacker CE. Patterns of divergence in fish species separated by the Isthmus of Panama. BMC Evol Biol. 2017; 17(111). https://doi.org/10.1186/s12862-017-0957-4
https://doi.org/10.1186/s12862-017-0957-...
), and the divergence between Carlana and Parastremma seems to be more consistent with an early closure of the Isthmus as well (Coates, Stallard, 2013Coates AG, Stallard RF. How old is the Isthmus of Panama? Bull Mar Sci. 2013; 89(4):801–13. https://doi.org/10.5343/bms.2012.1076
https://doi.org/10.5343/bms.2012.1076...
; Bacon et al., 2015aBacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci USA. 2015a; 112(19):6110–15. https://doi.org/10.1073/pnas.1423853112
https://doi.org/10.1073/pnas.1423853112...
; Montes et al., 2015Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V et al. Middle Miocene closure of the Central American Seaway. Science. 2015; 348(6231):226–29. https://doi.org/10.1126/science.aaa2815
https://doi.org/10.1126/science.aaa2815...
). We also observed a similar divergence time between the species Astyanax microlepis Eigenmann, 1913 found exclusively in Colombia and its sister clade that includes A. mexicanus (De Filippi, 1853), A. petenensis (Günther, 1864), A. nasutus Meek, 1907, and A. nicaraguensis Eigenmann & Ogle, 1907 from North and Central America (~20 Mya, 95% HPD 11.79–23.17) (Fig. 1). The timing of the closure of the Isthmus of Panama is still an ongoing debate (Bacon et al., 2015aBacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci USA. 2015a; 112(19):6110–15. https://doi.org/10.1073/pnas.1423853112
https://doi.org/10.1073/pnas.1423853112...
,bBacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. Reply to Lessios and Marko et al.: Early and progressive migration across the Isthmus of Panama is robust to missing data and biases. Proc Natl Acad Sci USA. 2015b; 112(43):E5767–68. https://doi.org/10.1073/pnas.1515451112
https://doi.org/10.1073/pnas.1515451112...
; Hoorn, Flantua, 2015Hoorn C, Flantua S. An early start for the Panama land bridge. Science. 2015; 348(6231):186–87. https://doi.org/10.1126/science.aab0099
https://doi.org/10.1126/science.aab0099...
; Montes et al., 2015Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V et al. Middle Miocene closure of the Central American Seaway. Science. 2015; 348(6231):226–29. https://doi.org/10.1126/science.aaa2815
https://doi.org/10.1126/science.aaa2815...
; O’Dea et al., 2016O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL et al. Formation of the Isthmus of Panama. Sci Adv. 2016; 2(8). https://doi.org/10.1126/sciadv.1600883
https://doi.org/10.1126/sciadv.1600883...
; Jaramillo et al., 2017Jaramillo C, Montes C, Cardona A, Silvestro D, Antonelli A, Bacon CD. Comment (1) on “Formation of the Isthmus of Panama” by O’Dea et al., Sci Adv. 2017; 3(6). https://doi.org/10.1126/SCIADV.1602321
https://doi.org/10.1126/SCIADV.1602321...
; Molnar, 2017Molnar P. Comment (2) on “formation of the Isthmus of Panama” by O’Dea et al., Sci Adv. 2017; 3(6). https://doi.org/10.1126/SCIADV.1602320
https://doi.org/10.1126/SCIADV.1602320...
) and we cannot discard the possibility of the divergence between Carlana and Parastremma happening in South America first followed by the dispersal of an ancestral population of Carlana into Central America, followed by extinction. Given the Gondwanan origin of characiforms (Arroyave et al., 2013Arroyave J, Denton JSS, Stiassny MLJ. Are characiform fishes Gondwanan in origin? Insights from a time-scaled molecular phylogeny of the Citharinoidei (Ostariophysi: Characiformes). PLoS ONE. 2013; 8(10):77269. https://doi.org/10.1371/journal.pone.0077269
https://doi.org/10.1371/journal.pone.007...
), it is safe to assume that the genus Carlana should have expanded up into Central America not earlier than 18 Mya at the beginning of the Miocene. It has been hypothesized that later geological events like the Pliocene high sea stand and the rise of the Central Cordillera might have contributed to the extirpation of some species in Central America, allowing others to occupy some new niches favoring allopatric speciation and the high endemism found in the lower Mesoamerican region (Smith, Bermingham, 2005Smith SA, Bermingham E. The biogeography of lower Mesoamerican freshwater fishes. J Biogeogr. 2005; 32(10):1835–54. https://doi.org/10.1111/j.1365-2699.2005.01317.x
https://doi.org/10.1111/j.1365-2699.2005...
).

In this study, we include a member of the genus Parastremma in a densely-sampled molecular phylogeny of the Characidae for the first time, supporting a relationship sister to Carlana and both closely related to Rhoadsia as a clade, supporting the monophyly of the Rhoadsia clade. We also estimated the divergence times of the group, with the Ecuadorian genus Rhoadsia diverging from its closest relative between 14–25 Mya, consistent with the uplift of the Andean Mountains. The Central American Carlana and Colombian Parastremma diverged between 8–18 Mya, consistent with the early closure hypothesis of the Isthmus of Panama. This study adds knowledge regarding the evolutionary history and biogeography of the Rhoadsia clade.

ACKNOWLEDGEMENTS

We thank Dr. Mark Davis for granting access to the molecular laboratory and supplies for PCR work, Dr. Windsor Aguirre for providing the DNA samples used to complement the loci of members within the Rhoadsia clade, Rachel Skinner for providing a python script to retrieve multiple accessions from GenBank, and Jeffrey Haas for allowing us to use the Department of Agricultural and Biological Engineering server at UIUC, which was essential for running the analyses. We thank Dr. Marcos Mirande and an anonymous reviewer for their valuable comments and suggestions that help improve the quality of this manuscript.

REFERENCES

  • Aguirre WE, Alvarez-Mieles G, Anaguano-Yancha F, Morán RB, Cucalón RV, Escobar-Camacho D et al. Conservation threats and future prospects for the freshwater fishes of Ecuador: A hotspot of Neotropical fish diversity. J Fish Biol. 2021; 99(4):1158–89. https://doi.org/10.1111/jfb.14844
    » https://doi.org/10.1111/jfb.14844
  • Aguirre WE, Calle P, Jimenez-Prado P, Laaz-Moncayo E, Navarrete-Amaya R, Nugra-Salazar F et al. The freshwater fishes of western Ecuador. World Wide Web Publ. 2017. Available from: http://CondorDepaulEdu/Waguirre/Fishwestec/Saccodon_wagneriHtml
    » http://CondorDepaulEdu/Waguirre/Fishwestec/Saccodon_wagneriHtml
  • Aguirre WE, Navarrete R, Malato G, Calle P, Loh MK, Vital WF et al. Body shape variation and population genetic structure of Rhoadsia altipinna (Characidae: Rhoadsiinae) in southwestern Ecuador. Copeia. 2016; 104(2):554–69. https://doi.org/10.1643/CG-15-289
    » https://doi.org/10.1643/CG-15-289
  • Aguirre WE, Young A, Navarrete-Amaya R, Valdiviezo-Rivera J, Jiménez-Prado P, Cucalón RV et al. Vertebral number covaries with body form and elevation along the western slopes of the Ecuadorian Andes in the Neotropical fish genus Rhoadsia (Teleostei: Characidae). Biol J Linn Soc. 2019; 126(4):706–20. https://doi.org/10.1093/biolinnean/blz002
    » https://doi.org/10.1093/biolinnean/blz002
  • Albert JS, Reis RE. Historical biogeography of Neotropical freshwater fishes. Los Angeles: University of California Press; 2011.
  • Arroyave J, Denton JSS, Stiassny MLJ. Are characiform fishes Gondwanan in origin? Insights from a time-scaled molecular phylogeny of the Citharinoidei (Ostariophysi: Characiformes). PLoS ONE. 2013; 8(10):77269. https://doi.org/10.1371/journal.pone.0077269
    » https://doi.org/10.1371/journal.pone.0077269
  • Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci USA. 2015a; 112(19):6110–15. https://doi.org/10.1073/pnas.1423853112
    » https://doi.org/10.1073/pnas.1423853112
  • Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. Reply to Lessios and Marko et al: Early and progressive migration across the Isthmus of Panama is robust to missing data and biases. Proc Natl Acad Sci USA. 2015b; 112(43):E5767–68. https://doi.org/10.1073/pnas.1515451112
    » https://doi.org/10.1073/pnas.1515451112
  • Benham PM, Witt CC. The dual role of Andean topography in primary divergence: Functional and neutral variation among populations of the hummingbird, Metallura tyrianthina BMC Evol Biol. 2016; 16(22):1–16. https://doi.org/10.1186/s12862-016-0595-2
    » https://doi.org/10.1186/s12862-016-0595-2
  • Bermingham E, Martin AP. Comparative mtDNA phylogeography of neotropical freshwater fishes: Testing shared history to infer the evolutionary landscape of lower Central America. Mol Ecol. 1998; 7(4):499–517. https://doi.org/10.1046/j.1365-294x.1998.00358.x
    » https://doi.org/10.1046/j.1365-294x.1998.00358.x
  • Betancur-R. R, Arcila D, Vari RP, Hughes LC, Oliveira C, Sabaj MH et al. Phylogenomic incongruence, hypothesis testing, and taxonomic sampling: The monophyly of characiform fishes*. Evolution (NY). 2019; 73(2):329–45. https://doi.org/10.1111/evo.13649
    » https://doi.org/10.1111/evo.13649
  • Borowiec ML. AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ. 2016; 2016(1). https://doi.org/10.7717/peerj.1660
    » https://doi.org/10.7717/peerj.1660
  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019; 15(4):e1006650. https://doi.org/10.1371/journal.pcbi.1006650
    » https://doi.org/10.1371/journal.pcbi.1006650
  • Cardoso AR Subfamily Rhoadsiinae. In: Reis RE, Kullander SO, Ferraris Jr. CJ, editors. Check list freshwater fishes South and Central America. Porto Alegre: EDIPUCRS; 2003.
  • Cassemiro F, Albert JS, Antonelli A, Menegotto A, Wüest RO, Coelho MTP et al. Landscape dynamics promoted the evolution of mega-diversity in South American freshwater fishes. BioRxiv. 2021; 1–19. https://doi.org/10.1101/2021.12.13.472133
    » https://doi.org/10.1101/2021.12.13.472133
  • Chernomor O, Von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016; 65(6):997–1008. https://doi.org/10.1093/sysbio/syw037
    » https://doi.org/10.1093/sysbio/syw037
  • Coates AG, Stallard RF. How old is the Isthmus of Panama? Bull Mar Sci. 2013; 89(4):801–13. https://doi.org/10.5343/bms.2012.1076
    » https://doi.org/10.5343/bms.2012.1076
  • Cole SR, Chu H, Greenland S. Maximum likelihood, profile likelihood, and penalized likelihood: A primer. Am J Epidemiol. 2014; 179(2):252–60. https://doi.org/10.1093/aje/kwt245
    » https://doi.org/10.1093/aje/kwt245
  • Cucalón RV, Valdiviezo-Rivera J, Jiménez-Prado P, Navarrete-Amaya R, Shervette VR, Torres-Noboa A et al. Phylogeography of the Chocó endemic rainbow characin (Teleostei: Rhoadsia). Ichthyol Herpetol. 2022; 110(1):138–55. https://doi.org/10.1643/i2020092
    » https://doi.org/10.1643/i2020092
  • DoNascimiento C, Herrera-Collazos EE, Herrera-R. GA, Ortega-Lara A, Villa-Navarro FA, Usma Oviedo JS et al. Checklist of the freshwater fishes of Colombia: a Darwin Core alternative to the updating problem. Zookeys. 2017; 708:25–138. https://doi.org/10.3897/zookeys.708.13897
    » https://doi.org/10.3897/zookeys.708.13897
  • Eigenmann CH. The nature and origin of the fishes of the Pacific Slope of Ecuador, Peru and Chili. Proc Am Philos Soc. 1921; 60(4):503–23.
  • Eigenmann CH. Some results from an ichthyological reconnaisance of Colombia, South America, Part I. Contrib from Zool Lab Indiana Univ. 1912; 16:20.
  • Eigenmann CH, Henn AW. On new species of fishes from Colombia, Ecuador, and Brazil. Contrib from Zool Lab Indiana Univ. 1914; 140:231–34.
  • Eigenmann CH, Myers GS. The American Characidae. Mem Mus Comp Zool. 43: 457–63; 1921.
  • Fink WL, Weitzman SH. The so-called cheirodontin fishes of Central America with descriptions of two new species (Pisces: Characidae). Smithson Contrib to Zool. 1974(172):1–46. https://doi.org/10.5479/si.00810282.172
    » https://doi.org/10.5479/si.00810282.172
  • Fowler HW New fresh-water from western Ecuador. Proc Acad Nat Sci Philadelphia. 1911; 63:493–520.
  • Fricke R, Eschmeyer WN, Fong JD. Eschmeyer’s catalog of fishes: genera/species by family/subfamily [Internet]. San Francisco: California Academy of Science; 2022. Available from: https://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp#Table2
    » https://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp#Table2
  • Gernhard T. The conditioned reconstructed process. J Theor Biol. 2008; 253(4):769–78. https://doi.org/10.1016/j.jtbi.2008.04.005
    » https://doi.org/10.1016/j.jtbi.2008.04.005
  • Géry J. Characoids of the world. Neptune City, New Jersey. T.F.H: Publications; 1977.
  • Hazzi NA, Moreno JS, Ortiz-Movliav C, Palacio RD. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proc Natl Acad Sci USA. 2018; 115(31):7985–90. https://doi.org/10.1073/pnas.1803908115
    » https://doi.org/10.1073/pnas.1803908115
  • Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. BioRxiv. 2017; 35(2):518–22. https://doi.org/10.1101/153916
    » https://doi.org/10.1101/153916
  • Hoorn C, Flantua S. An early start for the Panama land bridge. Science. 2015; 348(6231):186–87. https://doi.org/10.1126/science.aab0099
    » https://doi.org/10.1126/science.aab0099
  • Hurt C, Anker A, Knowlton N. A multilocus test of simultaneous divergence across the isthmus of panama using snapping shrimp in the genus Alpheus Evolution (NY). 2009; 63(2):514–30. https://doi.org/10.1111/j.1558-5646.2008.00566.x
    » https://doi.org/10.1111/j.1558-5646.2008.00566.x
  • Jaramillo C, Montes C, Cardona A, Silvestro D, Antonelli A, Bacon CD. Comment (1) on “Formation of the Isthmus of Panama” by O’Dea et al, Sci Adv. 2017; 3(6). https://doi.org/10.1126/SCIADV.1602321
    » https://doi.org/10.1126/SCIADV.1602321
  • Jimenez-Prado P, Aguirre W, Laaz-Moncayo E, Navarrete-Amaya R, Nugra-Salazar F, Rebolledo-Monsalve E et al. Guia de peces para aguas continentales en la vertiente occidental del Ecuador. Esmeraldas, Ecuador: 2015.
  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods. 2017; 14:587–89. https://doi.org/10.1038/nmeth.4285
    » https://doi.org/10.1038/nmeth.4285
  • Katoh K, Standley DM. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013; 30(4):772–80. https://doi.org/10.1093/molbev/mst010
    » https://doi.org/10.1093/molbev/mst010
  • Kolmann MA, Hughes LC, Hernandez LP, Arcila D, Betancur-R R, Sabaj MH et al. Phylogenomics of piranhas and pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. Syst Biol. 2021; 70(3):576–92. https://doi.org/10.1093/sysbio/syaa065
    » https://doi.org/10.1093/sysbio/syaa065
  • Li C, Ortí G. Molecular phylogeny of Clupeiformes (Actinopterygii) inferred from nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol. 2007; 44(1):386–98. https://doi.org/10.1016/j.ympev.2006.10.030
    » https://doi.org/10.1016/j.ympev.2006.10.030
  • López JA, Chen WJ, Ortí G. Esociform phylogeny. Copeia. 2004; 2004(3):449–65. https://doi.org/10.1643/cg-03-087r1
    » https://doi.org/10.1643/cg-03-087r1
  • Luebert F, Weigend M. Phylogenetic insights into Andean plant diversification. Front Ecol Evol. 2014; 2(27):1–17. https://doi.org/10.3389/fevo.2014.00027
    » https://doi.org/10.3389/fevo.2014.00027
  • Malato G, Shervette VR, Navarrete Amaya R, Valdiviezo Rivera J, Nugra Salazar F, Calle Delgado P et al. Parallel body shape divergence in the Neotropical fish genus Rhoadsia (Teleostei: Characidae) along elevational gradients of the western slopes of the Ecuadorian Andes. PLoS ONE. 2017; 12(6):e0179432. https://doi.org/10.1371/journal.pone.0179432
    » https://doi.org/10.1371/journal.pone.0179432
  • Mariguela TC, Benine RC, Abe KT, Avelino GS, Oliveira C. Molecular phylogeny of Moenkhausia (Characidae) inferred from mitochondrial and nuclear DNA evidence. J Zool Syst Evol Res. 2013; 51(4):327–32. https://doi.org/10.1111/JZS.12025
    » https://doi.org/10.1111/JZS.12025
  • Mattox GMT, Bifi AG, Oyakawa OT. Taxonomic study of Hoplias microlepis (Günther, 1864), a trans-Andean species of trahiras (Ostariophysi: Characiformes: Erythrinidae). Neotrop Ichthyol. 2014; 12(2):343–52. https://doi.org/10.1590/1982-0224-20130174
    » https://doi.org/10.1590/1982-0224-20130174
  • Maurin KJL. An empirical guide for producing a dated phylogeny with treePL in a maximum likelihood framework. ArXiv. 2020.
  • Melo BF, Sidlauskas BL, Near TJ, Roxo FF, Ghezelayagh A, Ochoa LE et al. Accelerated diversification explains the exceptional species richness of tropical characoid fishes. Syst Biol. 2022; 71(1):78–92. https://doi.org/https://doi.org/10.1093/sysbio/syab040
    » https://doi.org/https://doi.org/10.1093/sysbio/syab040
  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the Genomic Era. Mol Biol Evol. 2020; 37(5):1530–34. https://doi.org/10.1093/molbev/msaa015
    » https://doi.org/10.1093/molbev/msaa015
  • Mirande JM. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. 2019; 35(3):282–300. https://doi.org/10.1111/cla.12345
    » https://doi.org/10.1111/cla.12345
  • Mirande JM. Phylogeny of the family characidae (teleostei: Characiformes): From characters to taxonomy. Neotrop Ichthyol. 2010; 8(3):385–568. https://doi.org/10.1111/j.1096-0031.2009.00262.x
    » https://doi.org/10.1111/j.1096-0031.2009.00262.x
  • Mirande JM. Weighted parsimony phylogeny of the family Characidae (Teleostei: Characiformes). Cladistics. 2009; 25(6):574–613. https://doi.org/10.1111/j.1096-0031.2009.00262.x
    » https://doi.org/10.1111/j.1096-0031.2009.00262.x
  • Molnar P. Comment (2) on “formation of the Isthmus of Panama” by O’Dea et al, Sci Adv. 2017; 3(6). https://doi.org/10.1126/SCIADV.1602320
    » https://doi.org/10.1126/SCIADV.1602320
  • Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V et al. Middle Miocene closure of the Central American Seaway. Science. 2015; 348(6231):226–29. https://doi.org/10.1126/science.aaa2815
    » https://doi.org/10.1126/science.aaa2815
  • O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL et al. Formation of the Isthmus of Panama. Sci Adv. 2016; 2(8). https://doi.org/10.1126/sciadv.1600883
    » https://doi.org/10.1126/sciadv.1600883
  • Oliveira C, Avelino GS, Abe KT, Mariguela TC, Benine RC, Ortí G et al. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol Biol. 2011; 11(275):1471–2148. https://doi.org/10.1186/1471-2148-11-275
    » https://doi.org/10.1186/1471-2148-11-275
  • Palumbi SR. Moleculas Systematics. Second Edi. Sunderland: Sinauer Associates; 1996.
  • Puttick MN. MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics. 2019; 35(24):5321–22. https://doi.org/10.1093/BIOINFORMATICS/BTZ554
    » https://doi.org/10.1093/BIOINFORMATICS/BTZ554
  • Rambaut A. FigTree v1.4.3. Mol Evol Phylogenet Epidemiol. 2016. Available from: http://tree.bio.ed.ac.uk/software/figtree/
    » http://tree.bio.ed.ac.uk/software/figtree/
  • Rambaut A, Suchard M, Xie D, AJ D. Tracer v1.6. Mol Evol Phylogenet Epidemiol. 2014. Available from: http://beast.bio.ed.ac.uk/Tracer
    » http://beast.bio.ed.ac.uk/Tracer
  • Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012; 3(2):217–23. https://doi.org/10.1111/j.2041-210X.2011.00169.x
    » https://doi.org/10.1111/j.2041-210X.2011.00169.x
  • Román-Valencia C, Vanegas-Ríos JA, Ruiz-C RI Phylogenetic and biogeographic study of the Andean genus Grundulus ( Teleostei : Characiformes : Characidae ). Vertebr Zool. 2010; 60(2):107–22.
  • Schaefer SA. “The Andes: riding the tectonic uplift.” In: Albert JS, Reis RE, editors. Historical biogeography of Neotropical freshwater fishes. University of California Press; 2011. p.259–78.
  • Smith SA, Bermingham E. The biogeography of lower Mesoamerican freshwater fishes. J Biogeogr. 2005; 32(10):1835–54. https://doi.org/10.1111/j.1365-2699.2005.01317.x
    » https://doi.org/10.1111/j.1365-2699.2005.01317.x
  • Smith SA, O’meara BC. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics. 2012; 28(20). https://doi.org/10.1093/bioinformatics/bts492
    » https://doi.org/10.1093/bioinformatics/bts492
  • Strand E. Miscellanea nomenclatorica zoologica et palaeontologica. Arch Für Naturgeschichte. 1928; 92(8):30–75.
  • Terán GE, Benitez MF, Mirande JM. Opening the Trojan horse: Phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool J Linn Soc. 2020; 190(4):1217–34. https://doi.org/10.1093/zoolinnean/zlaa019
    » https://doi.org/10.1093/zoolinnean/zlaa019
  • Thacker CE. Patterns of divergence in fish species separated by the Isthmus of Panama. BMC Evol Biol. 2017; 17(111). https://doi.org/10.1186/s12862-017-0957-4
    » https://doi.org/10.1186/s12862-017-0957-4
  • Weitzman SH, Menezes NA, Britski HA Nematocharax venustus, a new genus and species of fish from the Rio Jequitinhonha, Minas Gerais, Brazil (Teleostei: Characidae). Proc Biol Soc Washingt. 1986; 99(2):335–46.
  • Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017; 8(1):28–36. https://doi.org/10.1111/2041-210X.12628
    » https://doi.org/10.1111/2041-210X.12628

ADDITIONAL NOTES

  • HOW TO CITE THIS ARTICLE

    Cucalón RV, Tan M. Divergence times of the Rhoadsia clade (Characiformes: Characidae). Neotrop Ichthyol. 2022; 20(4):e220054. https://doi.org/10.1590/1982-0224-2022-0054

Edited-by

George Mattox

Publication Dates

  • Publication in this collection
    19 Dec 2022
  • Date of issue
    2022

History

  • Received
    10 June 2022
  • Accepted
    15 Nov 2022
Sociedade Brasileira de Ictiologia Neotropical Ichthyology, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Universidade Estadual de Maringá., Av. Colombo, 5790, 87020-900, Phone number: +55 44-3011-4632 - Maringá - PR - Brazil
E-mail: neoichth@nupelia.uem.br