Acessibilidade / Reportar erro

Mite fauna on apples in southern Brazil - Review and perspectives

Abstract

Brazil is among the largest apple producers in the world (Malus domestica Bork, Rosaceae), with production concentrated mainly in the southern of the country. Panonychus ulmi (Koch) (Tetranychidae) have economic importance in apple and, recently, Aculus schlechtendali (Nalepa) (Eriophyidae), was reported in Brazil. This review aims to delineate the distribution of the acarofauna associated to apple, with emphasis on the main groups of economic importance and their potential natural enemies and highlight the problems related to phytophagous species and management possibilities. Searches were carried out in databases, and the principal keywords were Aculus schlechtendali, Malus domestica and Panonychus ulmi. After the exclusion criteria resulted 166 publications. The social and economic importance of the apple has been increasing on the world, however, due to environmental imbalance, phytophagous mites are increasing their populations and acquiring resistance against acaricides. Panonychus ulmi has been reported in America for decades, being of economic importance for Brazil and the record of A. schlechtendali alerts to the possibility of damage in orchards in the country. Therefore, it is important that the literature be evaluated, that the mite species are identified and that forms of conscious management are developed. Prioritizing the human and animal health and environmental balance.

Key words
Malus domestica; mites; phytophagous; Phytoseiidae

INTRODUCTION

The apple tree (Malus domestica Borkh, Rosaceae) is a temperate climate plant, with specific climate requirements for production. The first Brazilian report of the presence of apple trees is from the beginning of the 20th century in the state of Santa Catarina (Santos 1994SANTOS LW. 1994. Primórdios da pesquisa com Maçã em Santa Catarina. Agropecuária Catarinense, Florianópolis 7(3): 20-22.) and commercial-scale cultivation began in the 1970s, although the introduction of cultivars and the beginning of planting occurred before this period (Petri et al. 2011PETRI JL, LEITE GB, COUTO M & FRANCESCATTO P. 2011. Avanços na cultura da macieira no Brasil. Rev Bras Frutic 33: 48-56. https://doi.org/10.1590/S0100-29452011000500007.
https://doi.org/10.1590/S0100-2945201100...
). Nowadays, Brazil is among the ten largest apple producers in the world and has been growing as an exporter, being responsible for selling the product to 66 countries (Kist et al. 2019KIST BB, CARVALHO C & BELING RR. 2019. Anuário Brasileiro de Horti & Fruti. Editora Gazeta, Santa Cruz do Sul, RS, 96 p. Available at: https://www.editoragazeta.com.br /produto/anuario-brasileiro-de-horti-fruti-2019/. Access on August 01, 2022.
https://www.editoragazeta.com.br /produt...
).

There is a significant number of apple cultivars (Way et al. 1990WAY RD, ALDWINCKLE HS, LAMB RC, REJMAN A, SNASAVINI S, SHEN T, WATKINS R, WESTWOOD MN & YOSHIDA Y. 1990. Apples (Malus). In: Moore JN & Ballington JR (Eds). Genetic resources of temperate fruit and nut crops. Wageningen, p. 3-60., Kvitschal et al. 2022KVITSCHAL MV, COUTO M & LEITE GB. 2022. Necessidade da diversificação de cultivares na cadeia produtiva da maçã no Brasil. Agropecuária catarinense, Florianópolis 35(3): 7-10.), but Fuji and Gala cultivars and their clones are the most important and are responsible for approximately 95% of the brazilian production (Fioravanço et al. 2010FIORAVANÇO JC, GIRARDI CL, CZERMAINSKI ABC, SILVA GA, NACHTIGALL GR & OLIVEIRA PRD. 2010. Cultura da macieira no Rio Grande do Sul: análise situacional e descrição varietal. Embrapa Uva e Vinho-Documentos (INFOTECA-E). Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/864891/cultura-da-macieira-no-rio-grande-do-sul-analise-situacional-e-descricao-varietal-folder. Access on July 25, 2022.
https://www.embrapa.br/busca-de-publicac...
, Kvitschal et al. 2022KVITSCHAL MV, COUTO M & LEITE GB. 2022. Necessidade da diversificação de cultivares na cadeia produtiva da maçã no Brasil. Agropecuária catarinense, Florianópolis 35(3): 7-10.). These cultivars have qualities that please the consumer’s palate, constituting the best option for producers (Iglesias et al. 2008IGLESIAS I, ECHEVERRIA G & SORIA Y. 2008. Differences in fruit colour development, anthocyanin content, fruit quality and consumer acceptability of eight ‘Gala’ apple strains. Sci Hortic 119(1): 32-40. https://doi.org/10.1016/j.scienta.2008.07.004.
https://doi.org/10.1016/j.scienta.2008.0...
, Fioravanço et al. 2010FIORAVANÇO JC, GIRARDI CL, CZERMAINSKI ABC, SILVA GA, NACHTIGALL GR & OLIVEIRA PRD. 2010. Cultura da macieira no Rio Grande do Sul: análise situacional e descrição varietal. Embrapa Uva e Vinho-Documentos (INFOTECA-E). Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/864891/cultura-da-macieira-no-rio-grande-do-sul-analise-situacional-e-descricao-varietal-folder. Access on July 25, 2022.
https://www.embrapa.br/busca-de-publicac...
). Other cultivars have a relevance of about 5% of national production and have been conquering their space in the market (Fioravanço et al. 2010FIORAVANÇO JC, GIRARDI CL, CZERMAINSKI ABC, SILVA GA, NACHTIGALL GR & OLIVEIRA PRD. 2010. Cultura da macieira no Rio Grande do Sul: análise situacional e descrição varietal. Embrapa Uva e Vinho-Documentos (INFOTECA-E). Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/864891/cultura-da-macieira-no-rio-grande-do-sul-analise-situacional-e-descricao-varietal-folder. Access on July 25, 2022.
https://www.embrapa.br/busca-de-publicac...
, Kvitschal et al. 2022KVITSCHAL MV, COUTO M & LEITE GB. 2022. Necessidade da diversificação de cultivares na cadeia produtiva da maçã no Brasil. Agropecuária catarinense, Florianópolis 35(3): 7-10.).

The production of apple trees is an activity of great social and economic importance, being an alternative income in rural properties. However, changes in agroecosystems favor the emergence of phytosanitary problems, such as the emergence of populations that reach the economic threshold of phytophagous agents (Santo et al. 2022SANTO JMBDE, SANTOS JR, SILVA LEB, LIMA LLC & LOPES EAP. 2022. Populações de insetos-praga: diversidade e similaridade em cultura agrícola. Diversitas Journal 7(1): 203-217. https://doi.org/10.48017/dj.v7i1.2068.
https://doi.org/10.48017/dj.v7i1.2068...
). The use of pesticides to control the pests in orchards can cause adverse effects on the natural enemies, and consequently, an increase in the population of phytophagous mites causing economic damage (Meyer et al. 2009MEYER GA, KOVALESKI A & SANHUEZA RMV. 2009. Seletividade de agrotóxicos usados na cultura da macieira a Neoseiulus Californicus (McGregor) (Acari: Phytoseiidae). Rev Bras Frutic 31: 381-387. https://doi.org/10.1590/S0100-29452009000200011.
https://doi.org/10.1590/S0100-2945200900...
, Van Leeuwen & Dermauw 2016VAN LEEUWEN T & DERMAUW W. 2016. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annu Rev Entomol 61: 475-498. https://doi.org/10.1146/annurev-ento-010715-023907.
https://doi.org/10.1146/annurev-ento-010...
, Walker et al. 2017WALKER JTS, SUCKLING DM & WEARING HC. 2017. Past, present, and future of integrated control of apple pests: the New Zealand experience. Annu Rev Entomol 62: 231-248. https://doi.org/10.1146/annurev-ento-031616-035626.
https://doi.org/10.1146/annurev-ento-031...
, Schmidt-Jeffris & Beers 2018SCHMIDT-JEFFRIS RA & BEERS EH. 2018. Potential impacts of orchard pesticides on Tetranychus urticae: a predator-prey perspective. J Crop Prot 103: 56-64. https://doi.org/10.1016/j.cropro.2017.09.009.
https://doi.org/10.1016/j.cropro.2017.09...
). With the expansion of cultivation areas, the geographic distribution of agricultural pests has increased through the natural process characteristic of each species or through the improper transport of plant material infested with phytophagous mites taken from one region to another (Morgante 1991MORGANTE JS. 1991. Analítico: Mosca das frutas (Tephritidae) - Características biológicas: detecção e controle., Navia 2022NAVIA D. 2022. Phytophagous mite invasions in Latin America and Europe—lessons learnt from the last three decades. Zoosymposia 22: 65-65.). Due to the absence of the natural enemies, these species can increase their populations and reach pest status in several cultures (Brown & Hovmøller 2002BROWN JK & HOVMØLLER MS. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297(5581): 537-541. https://doi.org/10.1126/science.1072678.
https://doi.org/10.1126/science.1072678...
, Anderson et al. 2004ANDERSON PK, CUNNINGHAM AA, PATEL NG, MORALES FJ, EPSTEIN PR & DASZAK P. 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10): 535-544. https://doi.org/10.1016/j.tree.2004.07.021.
https://doi.org/10.1016/j.tree.2004.07.0...
). In addition, the presence of exotic phytophagous mites can cause environmental, social and economic impacts (Navia et al. 2007NAVIA D, MORAES GJ & FLECHTMANN CHW. 2007. Phytophagous mites as invasive alien species: quarantine procedures. In: Malacara JBM, Pelletier VB, Ueckermann E, Perez TM, Estrada E, Gispert C & Badii M (Eds), Acarology: Proceedings of the XI international congress. Merida, México, p. 307-316., 2010). In this case, greater attention should be given to eriophyid mites, as they are a group with greater potential as invasive species due to their physical and biological characteristics. The record of the presence of A. schlechtendali in the southern region of Brazil serves as a warning for the apple production chain, as it is a species of quarantine importance present in Brazil (Ferla et al. 2018FERLA NJ, SILVA DE, NAVIA D, NASCIMENTO JM, JOHANN L & LILLO E. 2018. Occurrence of the quarantine mite pest Aculus schlechtendali (Acari: Eriophyidae) in apple orchards of Serra Gaúcha, Rio Grande do Sul state, Brazil. Syst Appl Acarol 23(6): 1190-1198. https://doi.org/10.11158/saa.23.6.14.
https://doi.org/10.11158/saa.23.6.14...
, Nascimento et al. 2020NASCIMENTO JM, SILVA DE, PAVAN AM, CORRÊA LLC, SCHUSSLER M, JOHANN L & FERLA NJ. 2020. Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60(4): 659-667. https://doi.org/10.24349/acarologia/20204394.
https://doi.org/10.24349/acarologia/2020...
, Silva et al. 2022SILVA DE, DO NASCIMENTO JM, PAVAN AM, CORREA LLC, BIZZARO GL, FERLA JJ, TOLDI T, JOHANN L & FERLA NJ. 2022. Mite fauna abundance and composition on apples in southern Brazil. Syst Appl Acarol 27(11): 2139-2155. https://doi.org/10.34117/bjdv5n10-091.
https://doi.org/10.34117/bjdv5n10-091...
).

Therefore, the objective of this work was to carry out a review of the literature regarding the mite fauna associated with the apple tree culture with emphasis on those from southern Brazil, of economic importance and their potential natural enemies. In addition, describe possible strategies reported to control these species.

MATERIALS AND METHODS

In this literature review with an exploratory and bibliographic character, the searches were carried out in different databases - Scientific Electronic Library Online (SCIELO) and Google Scholar. There was no time limit for the selection of articles and books. The articles and books were searched in a virtual way using as keywords: Acari, Aculus schlechtendali, Agistemus, agricultural management, apple orchards, crop, Malus domestica, mite species, Neoseiulus californicus, Panonychus ulmi, pest control, Tetranychus urticae and Zetzellia mali. These words were searched in the title, keywords or in texts of English or Portuguese language. Publications that did not answer the guiding question, or that were written in other languages, dissertations, theses and studies available only in abstracts were discarded.

RESULTS

From the initial consultation with 233 articles, 67 were discarded because they were considered inappropriate. We selected scientific articles and book chapters in databases. The remaining 166 were then read and analyzed. All selected works were published between 1890 and 2023. Articles not found or not freely accessible were requested from the respective authors via ResearchGate or email.

This research was carried out from August 2021 to August 2022. The review considered ethical aspects, maintaining the authenticity of the researched authors’ ideas and references. Literature was reviewed reporting the origin and advances of the apple tree culture in Brazil and in the world, the occurrence of Acarian species and the perspectives in relation to sustainable management in the culture.

Apple tree in Brazil

The apple tree originated from Asia Minor and Central (Hancock 2014HANCOCK JF. 2014. Plant evolution and the origin of crop species. Cabi, Wallingford, UK, 245 p.), in this region, 25 species of plants belonging to the genus Malus occur naturally (Brown 2012BROWN S. 2012. Apple. In: Badenes ML, Byrne DH (Ed). Fruit breeding. Boston: Springer Science&Business Media 8: 329-367. https://doi.org/10.1007/978-1-4419-0763-9_10.
https://doi.org/10.1007/978-1-4419-0763-...
). The beginning of domestication is dated to 20.000 years ago in northern China and has been cultivated for over 5.000 years (Harlan 1992HARLAN JR. 1992. Crops and man. 2nd. American Society of Agronomy, Madison, Wisconsin, 284 p., Petri & Leite 2008PETRI JL & LEITE GB. 2008. Macieira. Rev Bras Frutic 30(4): 854-1166. https://doi.org/10.1590/S0100-29452008000400001.
https://doi.org/10.1590/S0100-2945200800...
). Malus sieversii (Lebed.) M. Roem. (Rosaceae) is the progenitor species of M. domestica (Hancock 2014HANCOCK JF. 2014. Plant evolution and the origin of crop species. Cabi, Wallingford, UK, 245 p.).

Cultivation began in the 1970s on a commercial scale. However, the introduction of cultivars and planting had already been carried out previously (Petri et al. 2011PETRI JL, LEITE GB, COUTO M & FRANCESCATTO P. 2011. Avanços na cultura da macieira no Brasil. Rev Bras Frutic 33: 48-56. https://doi.org/10.1590/S0100-29452011000500007.
https://doi.org/10.1590/S0100-2945201100...
). The first Brazilian record of apple trees in the country was from the beginning of the 20th century in Santa Catarina (Santos 1994SANTOS LW. 1994. Primórdios da pesquisa com Maçã em Santa Catarina. Agropecuária Catarinense, Florianópolis 7(3): 20-22.). It is believed that the first commercial cultivation took place in 1926, in the municipality of Valinhos, São Paulo (Petri et al. 2011PETRI JL, LEITE GB, COUTO M & FRANCESCATTO P. 2011. Avanços na cultura da macieira no Brasil. Rev Bras Frutic 33: 48-56. https://doi.org/10.1590/S0100-29452011000500007.
https://doi.org/10.1590/S0100-2945201100...
). In the state of Rio Grande do Sul, in 1948, there were already orchards with some cultivars, in the municipalities of Caxias do Sul and Veranópolis. At the end of the 1960s, fruit growers moved from Algeria to Fraiburgo, Santa Catarina, founding the Sociedade Agrícola Fraiburgo Ltda - Safra. The initial objective was the development of viticulture, however, other collections of temperate fruit trees, such as the apple tree, were installed (Petri et al. 2011PETRI JL, LEITE GB, COUTO M & FRANCESCATTO P. 2011. Avanços na cultura da macieira no Brasil. Rev Bras Frutic 33: 48-56. https://doi.org/10.1590/S0100-29452011000500007.
https://doi.org/10.1590/S0100-2945201100...
). In 1969, the company Reflorestamento Fraiburgo, implemented the first commercial apple orchard, based on reduction in Income Tax of 50% for application in reforestation, which could be done with fruit trees (Law #5.106). This law boosted the development of culture in Brazil. Then, the apple tree started to be planted mainly in the states of Santa Catarina and Rio Grande do Sul, forming three important productive poles that last until the present day: Fraiburgo, São Joaquim and Vacaria (Petri et al. 2011PETRI JL, LEITE GB, COUTO M & FRANCESCATTO P. 2011. Avanços na cultura da macieira no Brasil. Rev Bras Frutic 33: 48-56. https://doi.org/10.1590/S0100-29452011000500007.
https://doi.org/10.1590/S0100-2945201100...
).

Currently, Brazilian production is mainly located in the higher regions of the three southern states, in cities where the environment is more favorable, with the states of Santa Catarina and Rio Grande do Sul being the largest producers, followed by Paraná (Kist et al. 2022KIST BB, CARVALHO C & BELING RR. 2022. Anuário Brasileiro de Horti & Fruti. Editora Gazeta, Santa Cruz do Sul, RS, 96 p. Available at: https://www.editoragazeta.com .br/produto/anuario-brasileiro-de-horti-fruti-2022/. Access on August 01, 2022.
https://www.editoragazeta.com .br/produt...
). Brazil is among the ten largest apple producers in the world, and the quality of its product has gradually increased over the years (Kist et al. 2019KIST BB, CARVALHO C & BELING RR. 2019. Anuário Brasileiro de Horti & Fruti. Editora Gazeta, Santa Cruz do Sul, RS, 96 p. Available at: https://www.editoragazeta.com.br /produto/anuario-brasileiro-de-horti-fruti-2019/. Access on August 01, 2022.
https://www.editoragazeta.com.br /produt...
, 2022). In the year 2020 the fruit was considered one of the ten most relevant in the country in terms of production value (Kist et al. 2022KIST BB, CARVALHO C & BELING RR. 2022. Anuário Brasileiro de Horti & Fruti. Editora Gazeta, Santa Cruz do Sul, RS, 96 p. Available at: https://www.editoragazeta.com .br/produto/anuario-brasileiro-de-horti-fruti-2022/. Access on August 01, 2022.
https://www.editoragazeta.com .br/produt...
). The main form of consumption is in nature, however, other products are produced from the fruit, such drinks, vinegar, jams, jellies and sweets (Landau & Silva 2020LANDAU EC & SILVA GA. 2020. Evolução da produção de maçã (Malus x domestica, Rosaceae). Embrapa Milho e Sorgo. EMBRAPA. Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1122681/evolucao-da-producao-de-maca-malus-x-domestica-rosaceae. Access on August 01, 2022.
https://www.embrapa.br/busca-de-publicac...
).

Economic importance of the chain

The production of apples presents continuous growth all over the world being the largest producers are China, India and Brazil, with around 45.9% of world production (Deral 2020DERAL - DEPARTAMENTO DE ECONOMIA RURAL. 2020. Fruticultura - Análise da Conjuntura. Available at: https://www.agricultura.pr.gov.br/sites/default/arquivos_restritos/files/ documento/2020-01/fruticultura_2020.pdf. Access on July 25, 2022.
https://www.agricultura.pr.gov.br/sites/...
). Among the temperate fruit species produced in Brazil, the apple tree showed the highest growth, with total production increasing from 28.864 to 1.378.617 tons in the last 50 years (Pio et al. 2018PIO R, SOUZA FBMD, KALCSITS L, BISI RB & FARIAS DDH. 2018. Advances in the production of temperate fruits in the tropics. Acta Sci Agron 41: e39549 https://doi.org/10.4025/actasciagron.v41i1.39549.
https://doi.org/10.4025/actasciagron.v41...
). Actually, the Brazilian production increased from 946.165.0 tons in the 2019/2020 crop to 1.284.284.0 tons in the 2020/2021 crop (Kist et al. 2022KIST BB, CARVALHO C & BELING RR. 2022. Anuário Brasileiro de Horti & Fruti. Editora Gazeta, Santa Cruz do Sul, RS, 96 p. Available at: https://www.editoragazeta.com .br/produto/anuario-brasileiro-de-horti-fruti-2022/. Access on August 01, 2022.
https://www.editoragazeta.com .br/produt...
). Brazil has a production of around 45 million tons per year, 65% of which is destined for the domestic market and the rest for export (Landau & Silva 2020LANDAU EC & SILVA GA. 2020. Evolução da produção de maçã (Malus x domestica, Rosaceae). Embrapa Milho e Sorgo. EMBRAPA. Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1122681/evolucao-da-producao-de-maca-malus-x-domestica-rosaceae. Access on August 01, 2022.
https://www.embrapa.br/busca-de-publicac...
). However, the country has been exporting the product to 66 countries (Kist et al. 2019KIST BB, CARVALHO C & BELING RR. 2019. Anuário Brasileiro de Horti & Fruti. Editora Gazeta, Santa Cruz do Sul, RS, 96 p. Available at: https://www.editoragazeta.com.br /produto/anuario-brasileiro-de-horti-fruti-2019/. Access on August 01, 2022.
https://www.editoragazeta.com.br /produt...
).

The Brazilian production is mainly located in the south (Kist et al. 2019KIST BB, CARVALHO C & BELING RR. 2019. Anuário Brasileiro de Horti & Fruti. Editora Gazeta, Santa Cruz do Sul, RS, 96 p. Available at: https://www.editoragazeta.com.br /produto/anuario-brasileiro-de-horti-fruti-2019/. Access on August 01, 2022.
https://www.editoragazeta.com.br /produt...
). The states of Rio Grande do Sul and Santa Catarina are the largest producers, followed by Paraná (IBGE 2021IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2021. Produção de Maçã. Available at: https://www.ibge.gov.br/explica/producao-agropecuaria/maca/br. Access on July 25, 2022.
https://www.ibge.gov.br/explica/producao...
). The municipalities of Vacaria, Rio Grande do Sul, São Joaquim and Fraiburgo, Santa Catarina, are important in the production of apple trees, with production of approximately 300 thousand, 340 thousand and 47 thousand tons, respectively (IBGE 2021IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2021. Produção de Maçã. Available at: https://www.ibge.gov.br/explica/producao-agropecuaria/maca/br. Access on July 25, 2022.
https://www.ibge.gov.br/explica/producao...
, Kvitschal et al. 2022KVITSCHAL MV, COUTO M & LEITE GB. 2022. Necessidade da diversificação de cultivares na cadeia produtiva da maçã no Brasil. Agropecuária catarinense, Florianópolis 35(3): 7-10.).

Even with technological advances, the apple tree culture provides one of the highest rates of demand for labor in Brazilian agribusiness, providing the employment of approximately 148 thousand people, between fixed and temporary jobs (Kist et al. 2019KIST BB, CARVALHO C & BELING RR. 2019. Anuário Brasileiro de Horti & Fruti. Editora Gazeta, Santa Cruz do Sul, RS, 96 p. Available at: https://www.editoragazeta.com.br /produto/anuario-brasileiro-de-horti-fruti-2019/. Access on August 01, 2022.
https://www.editoragazeta.com.br /produt...
). The apple production chain is of great importance in southern Brazil and many farmers are economically dependent on the crop (Kist et al. 2019KIST BB, CARVALHO C & BELING RR. 2019. Anuário Brasileiro de Horti & Fruti. Editora Gazeta, Santa Cruz do Sul, RS, 96 p. Available at: https://www.editoragazeta.com.br /produto/anuario-brasileiro-de-horti-fruti-2019/. Access on August 01, 2022.
https://www.editoragazeta.com.br /produt...
).

Cultivar used

During the natural evolutionary processes of speciation and by artificial selection, the diversity of genotypes was becoming greater and greater. Several characteristics related to resistance, sizes of fruits, shapes and colors, growth habits and plant vigor, were emerging (Kvitschal et al. 2022KVITSCHAL MV, COUTO M & LEITE GB. 2022. Necessidade da diversificação de cultivares na cadeia produtiva da maçã no Brasil. Agropecuária catarinense, Florianópolis 35(3): 7-10.). Through genetic improvement, it is possible to obtain new commercial apple cultivars (Faoro 2018FAORO ID. 2018. Seleção de mutantes espontâneos de macieira. Boletim Técnico, Florianópolis, 39. Available at: https://publicacoes.epagri.sc.gov.br/BT/article/view/427. Access on July 25, 2022.
https://publicacoes.epagri.sc.gov.br/BT/...
) from the existing cultivars. This allows the selection of genotypes of high commercial value with desirable agronomic characteristics and, in general, the replacement of the original cultivar by the natural mutant. The new cultivars have better characteristics than the original cultivars, arousing greater interest from producers (Iglesias et al. 2008IGLESIAS I, ECHEVERRIA G & SORIA Y. 2008. Differences in fruit colour development, anthocyanin content, fruit quality and consumer acceptability of eight ‘Gala’ apple strains. Sci Hortic 119(1): 32-40. https://doi.org/10.1016/j.scienta.2008.07.004.
https://doi.org/10.1016/j.scienta.2008.0...
, Fioravanço et al. 2010FIORAVANÇO JC, GIRARDI CL, CZERMAINSKI ABC, SILVA GA, NACHTIGALL GR & OLIVEIRA PRD. 2010. Cultura da macieira no Rio Grande do Sul: análise situacional e descrição varietal. Embrapa Uva e Vinho-Documentos (INFOTECA-E). Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/864891/cultura-da-macieira-no-rio-grande-do-sul-analise-situacional-e-descricao-varietal-folder. Access on July 25, 2022.
https://www.embrapa.br/busca-de-publicac...
). For example, Gala and Fuji can be cited, whose original cultivars are no longer planted, only their mutants, such as Maxi Gala, Baigent (=Brookfield), Royal Gala and Fuji Supreme (Faoro 2018FAORO ID. 2018. Seleção de mutantes espontâneos de macieira. Boletim Técnico, Florianópolis, 39. Available at: https://publicacoes.epagri.sc.gov.br/BT/article/view/427. Access on July 25, 2022.
https://publicacoes.epagri.sc.gov.br/BT/...
). Although the significant number of apple cultivars (Way et al. 1990WAY RD, ALDWINCKLE HS, LAMB RC, REJMAN A, SNASAVINI S, SHEN T, WATKINS R, WESTWOOD MN & YOSHIDA Y. 1990. Apples (Malus). In: Moore JN & Ballington JR (Eds). Genetic resources of temperate fruit and nut crops. Wageningen, p. 3-60., Kvitschal et al. 2022KVITSCHAL MV, COUTO M & LEITE GB. 2022. Necessidade da diversificação de cultivares na cadeia produtiva da maçã no Brasil. Agropecuária catarinense, Florianópolis 35(3): 7-10.), Fuji and Gala cultivars and their clones (Fuji Suprema, Fuji Mishima, Fuji Brak, Fuji Standard, Galaxy, Maxy-Gala, Brookfield, Royal gala, Imperial Gala) are the most important and are responsible for approximately 95% of the Brazilian production (Fioravanço et al. 2010FIORAVANÇO JC, GIRARDI CL, CZERMAINSKI ABC, SILVA GA, NACHTIGALL GR & OLIVEIRA PRD. 2010. Cultura da macieira no Rio Grande do Sul: análise situacional e descrição varietal. Embrapa Uva e Vinho-Documentos (INFOTECA-E). Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/864891/cultura-da-macieira-no-rio-grande-do-sul-analise-situacional-e-descricao-varietal-folder. Access on July 25, 2022.
https://www.embrapa.br/busca-de-publicac...
, Kvitschal et al. 2022KVITSCHAL MV, COUTO M & LEITE GB. 2022. Necessidade da diversificação de cultivares na cadeia produtiva da maçã no Brasil. Agropecuária catarinense, Florianópolis 35(3): 7-10.).

The cultivar Gala and its clones stand out in production due to the organoleptic properties that please the taste of the Brazilian consumer (Fioravanço et al. 2010FIORAVANÇO JC, GIRARDI CL, CZERMAINSKI ABC, SILVA GA, NACHTIGALL GR & OLIVEIRA PRD. 2010. Cultura da macieira no Rio Grande do Sul: análise situacional e descrição varietal. Embrapa Uva e Vinho-Documentos (INFOTECA-E). Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/864891/cultura-da-macieira-no-rio-grande-do-sul-analise-situacional-e-descricao-varietal-folder. Access on July 25, 2022.
https://www.embrapa.br/busca-de-publicac...
). From interbreeding realized in New Zealand, Gala cultivar has abundant flowering and fructification, little alternation of production, fruits varying from small to medium, with uniform sizes and slightly uneven ripening. The cultivar requires between 600 and 800 hours of chilling (Fioravanço et al. 2010FIORAVANÇO JC, GIRARDI CL, CZERMAINSKI ABC, SILVA GA, NACHTIGALL GR & OLIVEIRA PRD. 2010. Cultura da macieira no Rio Grande do Sul: análise situacional e descrição varietal. Embrapa Uva e Vinho-Documentos (INFOTECA-E). Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/864891/cultura-da-macieira-no-rio-grande-do-sul-analise-situacional-e-descricao-varietal-folder. Access on July 25, 2022.
https://www.embrapa.br/busca-de-publicac...
).

The Fuji cultivar originated from crosses carried out in Japan and was introduced in Brazil in the 1960s and is currently the second most cultivated (Camilo & Denardi 2002CAMILO AP & DENARDI F. 2002. Epagri. Cultivares: descrição e comportamento no sul do Brasil. A cultura da macieira. Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI), p. 113-168., Hampson & Kemp 2003HAMPSON CR & KEMP H. 2003. Characteristics of important commercial apple cultivars. In: Ferre DC & Warrington IJ (Eds). Apples: botany, production and uses. Wallingford: CAB International, p. 61-89. https://doi.org/10.1079/9780851995922.0061.
https://doi.org/10.1079/9780851995922.00...
, Iglesias et al. 2008IGLESIAS I, ECHEVERRIA G & SORIA Y. 2008. Differences in fruit colour development, anthocyanin content, fruit quality and consumer acceptability of eight ‘Gala’ apple strains. Sci Hortic 119(1): 32-40. https://doi.org/10.1016/j.scienta.2008.07.004.
https://doi.org/10.1016/j.scienta.2008.0...
). This cultivar presents intense flowering and high production, with medium to large fruits, uneven maturation and requires a long chilling time, from 600 to 800 hours. It has clones with characteristics that vary according to climate adaptation, harvest season, quality and color of the fruit. The more cultivated are those with a more reddish skin color, less vigorous and more uniform fruits (Komatsu 1998KOMATSU H. 1998. Red Fuji in Japan – choosing the best strain for your business strategy. Compact Fruit Tree, Middleburg. Bulletin of the Nagano Fruit Tree Experiment Station 31: 44-45., Hampsom & Kemp 2003).

The production of Fuji and Gala is concentrated in a short period of time, with high demand for labor at harvest, making it difficult to manage the orchards. In addition, there is a bigger risk of loss due to climatic events that make plants more vulnerable to pests and diseases (Fioravanço et al. 2010FIORAVANÇO JC, GIRARDI CL, CZERMAINSKI ABC, SILVA GA, NACHTIGALL GR & OLIVEIRA PRD. 2010. Cultura da macieira no Rio Grande do Sul: análise situacional e descrição varietal. Embrapa Uva e Vinho-Documentos (INFOTECA-E). Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/864891/cultura-da-macieira-no-rio-grande-do-sul-analise-situacional-e-descricao-varietal-folder. Access on July 25, 2022.
https://www.embrapa.br/busca-de-publicac...
). Greater diversity of cultivars allows the expansion of the harvest calendar and the region of production, being a good planting option for the farmers. In this way, other cultivars such as Daiane, Eva, Princesa, Condessa, Granny Smith, have a relevance of about 5% of national production and have been conquering their space in the market (Fioravanço et al. 2010FIORAVANÇO JC, GIRARDI CL, CZERMAINSKI ABC, SILVA GA, NACHTIGALL GR & OLIVEIRA PRD. 2010. Cultura da macieira no Rio Grande do Sul: análise situacional e descrição varietal. Embrapa Uva e Vinho-Documentos (INFOTECA-E). Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/864891/cultura-da-macieira-no-rio-grande-do-sul-analise-situacional-e-descricao-varietal-folder. Access on July 25, 2022.
https://www.embrapa.br/busca-de-publicac...
, Kvitschal et al. 2022KVITSCHAL MV, COUTO M & LEITE GB. 2022. Necessidade da diversificação de cultivares na cadeia produtiva da maçã no Brasil. Agropecuária catarinense, Florianópolis 35(3): 7-10.).

Mites and apple culture

Dissemination of phytophagous mites

The mites take shelter in protected places offered by the hosts, especially in midribs, petioles and bark grooves. In apple fruits, they can be found close to the peduncle that forms a chamber-like structure (Flechtmann 1967FLECHTMANN CHW. 1967. Ácaros encontrados sobre maçãs de procedência Argentina. Sci Agric 24: 83-85. https://doi.org/10.1590/S0071-12761967000100007.
https://doi.org/10.1590/S0071-1276196700...
). The dispersion of mites occurs mainly passively, through air currents or by transport on animals (Evans 1992EVANS GO. 1992. Principles of Acarology. Wallingford: CAB International, p. 563.). Due to their size, they are easily transported to different environments on merchandise or other substrates (Sabelis 1985SABELIS MW. 1985. Reproductive strategies. In: Sabelis MW & Helle W (Eds). Spider mites: Their biology natural enemies and control. Amsterdam: Elsevier, 1: 141-160.). Active dispersal, on the other hand, can occur as a means of dissemination over short distances (Evans 1992EVANS GO. 1992. Principles of Acarology. Wallingford: CAB International, p. 563.). In a study on the emergence of new diseases in plants, it was shown that 56% were the result of introductions associated with the trade of plants and plant products and human circulation (Anderson et al. 2004ANDERSON PK, CUNNINGHAM AA, PATEL NG, MORALES FJ, EPSTEIN PR & DASZAK P. 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10): 535-544. https://doi.org/10.1016/j.tree.2004.07.021.
https://doi.org/10.1016/j.tree.2004.07.0...
). The growing increase in human and merchandise transit between countries has favored the international propagation of organisms outside their places of origin. Exotic species in newly colonized areas can cause damage, with serious consequences for biodiversity, agriculture and human health (Boubou et al. 2011BOUBOU A, MIGEON A, RODERICK GK & NAVAJAS M. 2011. Recent emergence and worldwide spread of the red tomato spider mite, Tetranychus evansi: genetic variation and multiple cryptic invasions. Biol Invasions 13: 81-92. https://doi.org/10.1007/s10530-010-9791-y.
https://doi.org/10.1007/s10530-010-9791-...
). In addition, a single female present can colonize an entire environment due to her ability to reproduce by parthenogenesis and due to her high reproductive rate (Sabelis 1985SABELIS MW. 1985. Reproductive strategies. In: Sabelis MW & Helle W (Eds). Spider mites: Their biology natural enemies and control. Amsterdam: Elsevier, 1: 141-160.).

Phytophagous mite species are strong candidates to become pests introduced in new areas due to their difficulty in detection, ability to survive in unfavorable conditions, reproduction by parthenogenesis and inbreeding, facilitated dispersion through wind, adaptive potential to new host plants, development of resistance, potential to cause harm, and transmission of certain plant viruses (Navia et al. 2007NAVIA D, MORAES GJ & FLECHTMANN CHW. 2007. Phytophagous mites as invasive alien species: quarantine procedures. In: Malacara JBM, Pelletier VB, Ueckermann E, Perez TM, Estrada E, Gispert C & Badii M (Eds), Acarology: Proceedings of the XI international congress. Merida, México, p. 307-316., 2010, Mota-Sanchez & Wise 2023MOTA-SANCHEZ D & WISE JC. 2023. The Arthropod Pesticide Resistance Database. Michigan State University. Available at: http://www.pesticideresistance.org. Access on March 15, 2023.
http://www.pesticideresistance.org...
). Greater attention should be paid to eriophyid mites, which have a greater potential to become invasive species due to their physical and biological characteristics (Nascimento et al. 2020NASCIMENTO JM, SILVA DE, PAVAN AM, CORRÊA LLC, SCHUSSLER M, JOHANN L & FERLA NJ. 2020. Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60(4): 659-667. https://doi.org/10.24349/acarologia/20204394.
https://doi.org/10.24349/acarologia/2020...
). Some recently introduced phytophagous species in Brazil are Raoiella indica Hirst (Tenuipalpidae) and Schizotetranychus hindustanicus (Hirst) (Tetranychidae) in Roraima state (Navia & Marsaro 2010NAVIA D & MARSARO ALJ. 2010. First report of the citrus hindu mite, Schizotetranychus hindustanicus (Hirst) (Prostigmata: Tetranychidae), in Brazil. Neotrop Entomol 39: 140-143. https://doi.org/10.1590/S1519-566X2010000100021.
https://doi.org/10.1590/S1519-566X201000...
, Navia et al. 2011NAVIA D, MARSARO ALJ, SILVA FR, GONDIM MGCJ & MORAES GJ. 2011. First report of the red palm mite, Raoiella indica Hirst (Acari: Tenuipalpidae), in Brazil. Neotrop Entomol 40: 409-411.); Aceria tosichella Keifer (Eriophyidae) and A. schlechtendali in Rio Grande do Sul state (Pereira et al. 2009PEREIRA PDS, NAVIA D, SALVADORI J & LAU D. 2009. Ocorrência do ácaro-do-enrolamento-do-trigo Aceria tosichella Keifer (Prostigmata: Eriophyidae) no Rio Grande do Sul. Embrapa Trigo-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E). Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPT-2010/40739/1/p-bp68.pdf. Access on July 25, 2022.
https://ainfo.cnptia.embrapa.br/digital/...
, Ferla et al. 2018FERLA NJ, SILVA DE, NAVIA D, NASCIMENTO JM, JOHANN L & LILLO E. 2018. Occurrence of the quarantine mite pest Aculus schlechtendali (Acari: Eriophyidae) in apple orchards of Serra Gaúcha, Rio Grande do Sul state, Brazil. Syst Appl Acarol 23(6): 1190-1198. https://doi.org/10.11158/saa.23.6.14.
https://doi.org/10.11158/saa.23.6.14...
). Recently there was the introduction of Tetranychus evansi Baker & Pritchard (Tetranychidae) in Europe and Africa, a species native to South America (Migeon et al. 2009MIGEON A, FERRAGUT F, COLOMAR LAE, FIABOE K, KNAPP M, MORAES GJ, UECKERMANN E & NAVAJAS M. 2009. Modelling the potential distribution of the invasive tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Exp Appl Acarol 48: 199-212. https://doi.org/10.1007/s10493-008-9229-8.
https://doi.org/10.1007/s10493-008-9229-...
), thus demonstrating the invasive nature for world agriculture (Boubou et al. 2011BOUBOU A, MIGEON A, RODERICK GK & NAVAJAS M. 2011. Recent emergence and worldwide spread of the red tomato spider mite, Tetranychus evansi: genetic variation and multiple cryptic invasions. Biol Invasions 13: 81-92. https://doi.org/10.1007/s10530-010-9791-y.
https://doi.org/10.1007/s10530-010-9791-...
). The arrival of other mites into the country, through the entry of potentially infested products and the movement of plant material, can introduce harmful biotypes to Brazilian plants (Mendonça et al. 2011MENDONÇA RS, NAVIA D, DINIZ IR & FLECHTMANN CH. 2011. South American spider mites: New hosts and localities. J Insect Sci 11(1): 121. https://doi.org/10.1673/031.011.12101.
https://doi.org/10.1673/031.011.12101...
).

The increase in the circulation of plant materials, the development of new technologies in transport and free trade, and the increase in tourism and human circulation, facilitate the spread of mites and the entry and establishment of species in different locals (Yan et al. 2001YAN X, LI ZY, GREGG WP & LI D. 2001. Invasive species in China - An overview. Biodivers Conserv 10: 1317-1341. https://doi.org/10.1023/A:1016695609745.
https://doi.org/10.1023/A:1016695609745...
, Anderson et al. 2004ANDERSON PK, CUNNINGHAM AA, PATEL NG, MORALES FJ, EPSTEIN PR & DASZAK P. 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10): 535-544. https://doi.org/10.1016/j.tree.2004.07.021.
https://doi.org/10.1016/j.tree.2004.07.0...
, Wheeler & Hoebeke 2009WHEELER AG & HOEBEKE ER. 2009. Adventive (Non-Native) Insects: Importance to Science and Society. In: Foottit RG & Adler PH (Eds). Insect biodivers Blackwell Publishing, UK, p. 475-521. https://doi.org/10.4039/Ent1091275-9.
https://doi.org/10.4039/Ent1091275-9...
, Fisher et al. 2012FISHER MC, HENK DA, BRIGGS CJ, BROWNSTEIN JS, MADOFF LC, MCCRAW SL & GURR SJ. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393): 186-194. https://doi.org/10.1038/nature10947.
https://doi.org/10.1038/nature10947...
). The intercontinental dispersion of organisms intentionally or not, can cause damage and diseases to plants of different crops on a global scale (Di Castri 1990DI CASTRI F. 1990. On invading species and invaded ecosystems: the interplay of historical chance and biological necessity. In: Biological invasions in Europe and the Mediterranean Basin. Dordrecht, Springer, p. 3-16., Brown & Hovmøller 2002BROWN JK & HOVMØLLER MS. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297(5581): 537-541. https://doi.org/10.1126/science.1072678.
https://doi.org/10.1126/science.1072678...
, Anderson et al. 2004ANDERSON PK, CUNNINGHAM AA, PATEL NG, MORALES FJ, EPSTEIN PR & DASZAK P. 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10): 535-544. https://doi.org/10.1016/j.tree.2004.07.021.
https://doi.org/10.1016/j.tree.2004.07.0...
, Wheeler & Hoebeke 2009WHEELER AG & HOEBEKE ER. 2009. Adventive (Non-Native) Insects: Importance to Science and Society. In: Foottit RG & Adler PH (Eds). Insect biodivers Blackwell Publishing, UK, p. 475-521. https://doi.org/10.4039/Ent1091275-9.
https://doi.org/10.4039/Ent1091275-9...
). Organisms and pathogens of quarantine importance threaten food security, causing decrease in quality and reduction in production yields (Strange & Scott 2005STRANGE RN & SCOTT PR. 2005. Plant disease: a threat to global food security. Annu Rev Phytopathol 43: 83-116. https://doi.org/10.1146/annurev.phyto.43.113004.133839.
https://doi.org/10.1146/annurev.phyto.43...
, Flood 2010FLOOD J. 2010. The importance of plant health to food security. Food Secur 2(3): 215-231. https://doi.org/10.1007/s12571-010-0072-5.
https://doi.org/10.1007/s12571-010-0072-...
, Fisher et al. 2012FISHER MC, HENK DA, BRIGGS CJ, BROWNSTEIN JS, MADOFF LC, MCCRAW SL & GURR SJ. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393): 186-194. https://doi.org/10.1038/nature10947.
https://doi.org/10.1038/nature10947...
). When they reach the status of pest, it becomes necessary to use strategies to control infestations, causing an increase in the cost of production (Navia et al. 2006NAVIA D, MENDONÇA RS & FLECHTMANN CHW. 2006. Ácaros de expressão quarentenária para o Brasil. In: Diversidade, taxonomia e manejo de ácaros neotropicais; livros de resumos. Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo.).

Phytophagous mites

This group feeds on plant cellular fluid by exudation, through the use of mouthparts called stylets (Walter & Proctor 1999WALTER DE & PROCTOR HC. 1999. Mites: ecology, evolution and behaviour. Sydney & Wallingford UK: Univ. of NSW Press & CABI Publishing, 322 p. https://doi.org/10.1007/978-94-007-7164-2.
https://doi.org/10.1007/978-94-007-7164-...
) inserted into the leaf tissue, removing the cellular content, causing the destruction of chloroplasts, loss of chlorophyll and reduction of photosynthetic capacity. Lesions can alter physiological processes in the plant, impairing growth, flowering and yield (Tomczyk & Kropczynska 1985TOMCZYK A & KROPCZYNSKA D. 1985. Effects on the host plant. In: Helle W & Sabelis MW (Eds). Spider Mites: Their Biology, Natural Enemies and Control, Amsterdam: Elsevier, p. 317-329.). The intensity of the damage caused can be influenced by different factors, such as the cultivar, plant vigor, phytophagous population density, feeding and harvesting time, and environmental conditions (Marini et al. 1994MARINI RP, PFEIFFER DG & SOWERS DS. 1994. Influence of European red mite (Acari: Tetranychidae) and crop density on fruit size and quality and on crop value of ‘Delicious’ apples. J Econ Entomol 87(5): 1302-1311. https://doi.org/10.1093/jee/87.5.1302.
https://doi.org/10.1093/jee/87.5.1302...
). In environmentally balanced orchards, phytophagous mites do not harm apple plants, serving only as food for predators present in the environment (Lorenzato 1987LORENZATO D. 1987. Controle biológico de ácaros fitófagos na cultura da macieira no município de Farroupilha - RS. Agronomia Sulriograndense 23(2): 167-183.).

The increase in phytophagous mite populations in apple orchards is mainly due to the absence or low density of natural enemies present in the environment. This decrease can be caused both by natural factors and by inadequate management of the orchards, such as the bad use of pesticides, resistance of pest species to pesticides and possible nutritional imbalances of the host plants (Lorenzato et al. 1986LORENZATO D, GRELLMANN EO, CHOUENE EC & CACHAPUZ LMM. 1986. Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2): 215-242., Lorenzato 1987LORENZATO D. 1987. Controle biológico de ácaros fitófagos na cultura da macieira no município de Farroupilha - RS. Agronomia Sulriograndense 23(2): 167-183., 1988, Van Leeuwen et al. 2015VAN LEEUWEN T, TIRRY L, YAMAMOTO A, NAUEN R & DERMAUW W. 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic Biochem Phys 121: 12-21. https://doi.org/10.1016/j.pestbp.2014.12.009.
https://doi.org/10.1016/j.pestbp.2014.12...
). Phytophagous mites are a problem for apple trees when they reach pest status, decreasing the quality of leaves and fruits and leading to production losses (Flechtmann 1975FLECHTMANN CHW. 1975. Fundamentals of acarology. São Paulo: Livraria Nobel S.A., 344 p., Ochoa 1991OCHOA R. 1991. Ácaros fitófagos de América Central: guía ilustrada. Catie.). The most important phytophagous mites for apple trees belong to the Tetranychidae and Eriophyidae families (Ferla & Moraes 1998FERLA NJ & MORAES GJ. 1998. Ácaros predadores em pomares de maçã no Rio Grande do Sul. Neotrop Entomol 27: 649-654. https://doi.org/10.1590/S0301-80591998000400019.
https://doi.org/10.1590/S0301-8059199800...
, Moraes & Flechtmann 2008MORAES GJ & FLECHTMANN CHW. 2008. Manual de acarologia. Acarologia básica e ácaros de plantas cultivadas no Brasil. São Paulo: Holos Editora, 308 p., Nascimento et al. 2020NASCIMENTO JM, SILVA DE, PAVAN AM, CORRÊA LLC, SCHUSSLER M, JOHANN L & FERLA NJ. 2020. Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60(4): 659-667. https://doi.org/10.24349/acarologia/20204394.
https://doi.org/10.24349/acarologia/2020...
, Silva et al. 2022SILVA DE, DO NASCIMENTO JM, PAVAN AM, CORREA LLC, BIZZARO GL, FERLA JJ, TOLDI T, JOHANN L & FERLA NJ. 2022. Mite fauna abundance and composition on apples in southern Brazil. Syst Appl Acarol 27(11): 2139-2155. https://doi.org/10.34117/bjdv5n10-091.
https://doi.org/10.34117/bjdv5n10-091...
). In addition to these groups, Brevipalpus phoenicis (Geijskes) (Tenuipalpidae) is a harmful species for citrus, it can occur in apple trees, but sporadically (Lorenzato 1987LORENZATO D. 1987. Controle biológico de ácaros fitófagos na cultura da macieira no município de Farroupilha - RS. Agronomia Sulriograndense 23(2): 167-183., Lorenzato & Secchi 1993LORENZATO D & SECCHI VA. 1993. Controle biológico de ácaros da macieira no Rio Grande do Sul: 1- Ocorrência e efeitos dos ácaros fitófagos e seus inimigos naturais em pomares submetidos ao controle biológico e com acaricidas. Rev Bras Frutic 15(1): 211-220.).

Tetranychidae are phytophagous and pierce leaf cells with their retractable stylets, causing cell contents to be extravasated and exuded due to turgor pressure (Moraes & Flechtmann 2008MORAES GJ & FLECHTMANN CHW. 2008. Manual de acarologia. Acarologia básica e ácaros de plantas cultivadas no Brasil. São Paulo: Holos Editora, 308 p.). In places where the mites feed, regular spots are formed, and when they agglutinate, characteristic chlorotic areas appear called leaf tanning (Cuthbertson & Murchie 2010CUTHBERTSON AG & MURCHIE AK. 2010. A brief life history of Panonychus ulmi (red spider mite) in apple orchards. Applied Plant Science Division, UK.). In high populations, it can cause tanning and premature leaf fall, compromising production, with small fruits and altered color (Huffaker et al. 1969HUFFAKER CB, VAN DE VRIE M & MCMURTRY JA. 1969. The ecology of tetranychid mites and their natural control. Annu. Rev. Entomol 14(1): 125-174., Botha & Learmonth 2005BOTHA J & LEARMONTH S. 2005. Management of European red mite in western Australia. Department of Agriculture, Government of Western Australia. Farmnote.). The most economically important tetranychid species found in apple trees are Panonychus ulmi (Koch) (Tetranychidae) and Tetranychus urticae Koch (Tetranychidae) (Ferla & Moraes 1998FERLA NJ & MORAES GJ. 1998. Ácaros predadores em pomares de maçã no Rio Grande do Sul. Neotrop Entomol 27: 649-654. https://doi.org/10.1590/S0301-80591998000400019.
https://doi.org/10.1590/S0301-8059199800...
, Monteiro 2002MONTEIRO LB. 2002. Apple integrated pest management in Rio Grande do Sul: II. the use of The Neoseiulus californicus for control of the Panonychus ulmi. Rev Bras Frutic 24: 395-405. https://doi.org/10.1590/S0100-29452002000200024.
https://doi.org/10.1590/S0100-2945200200...
, Monteiro et al. 2002MONTEIRO LB, BELLI L, SOUZA AD & WERNER AL. 2002. Effect of weed management on Neoseiulus californicus (Acari: Phytoseiidae) in apple orchard. Rev Bras Frutic 24: 680-682. https://doi.org/10.1590/S0100-29452002000300027.
https://doi.org/10.1590/S0100-2945200200...
, Botha & Learmonth 2005BOTHA J & LEARMONTH S. 2005. Management of European red mite in western Australia. Department of Agriculture, Government of Western Australia. Farmnote.). These species are widely distributed and have been reported to cause damage to apple plants in several parts of the world (Moraes & Flechtmann 2008MORAES GJ & FLECHTMANN CHW. 2008. Manual de acarologia. Acarologia básica e ácaros de plantas cultivadas no Brasil. São Paulo: Holos Editora, 308 p., Joshi et al. 2023JOSHI NK, PHAN NT & BIDDINGER DJ. 2023. Management of Panonychus ulmi with Various Miticides and Insecticides and Their Toxicity to Predatory Mites Conserved for Biological Mite Control in Eastern U.S. Apple Orchards. Insects 14(3): 228. https://doi.org/10.3390/insects14030228.
https://doi.org/10.3390/insects14030228...
, Migeon & Dorkeld 2023MIGEON A & DORKELD F. 2023. Spider mites Web: a comprehensive database for the Tetranychidae. Trends in Acarology 557-560. Available at: https://www1.montpellier.inra.fr/CBGP/spmweb/ Access on August 01, 2022.
https://www1.montpellier.inra.fr/CBGP/sp...
), even in those producing regions of southern Brazil (Ferla & Moraes 1998FERLA NJ & MORAES GJ. 1998. Ácaros predadores em pomares de maçã no Rio Grande do Sul. Neotrop Entomol 27: 649-654. https://doi.org/10.1590/S0301-80591998000400019.
https://doi.org/10.1590/S0301-8059199800...
, Monteiro 2002MONTEIRO LB. 2002. Apple integrated pest management in Rio Grande do Sul: II. the use of The Neoseiulus californicus for control of the Panonychus ulmi. Rev Bras Frutic 24: 395-405. https://doi.org/10.1590/S0100-29452002000200024.
https://doi.org/10.1590/S0100-2945200200...
, Monteiro et al. 2002MONTEIRO LB, BELLI L, SOUZA AD & WERNER AL. 2002. Effect of weed management on Neoseiulus californicus (Acari: Phytoseiidae) in apple orchard. Rev Bras Frutic 24: 680-682. https://doi.org/10.1590/S0100-29452002000300027.
https://doi.org/10.1590/S0100-2945200200...
, Migeon & Dorkeld 2023MIGEON A & DORKELD F. 2023. Spider mites Web: a comprehensive database for the Tetranychidae. Trends in Acarology 557-560. Available at: https://www1.montpellier.inra.fr/CBGP/spmweb/ Access on August 01, 2022.
https://www1.montpellier.inra.fr/CBGP/sp...
).

Panonychus ulmi, known as the European red mite, has been reported with populations above the economic damage level on apple plants in orchards worldwide (Yin et al. 2013YIN L, WANG P, LI M, KE X, LI C, LIANG D, WU S, MA X, LI C, ZOU Y & MA F. 2013. Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 54: 426-434. https://doi.org/10.1111/jpi.12038.
https://doi.org/10.1111/jpi.12038...
). The first Brazilian report in apple orchards was made by Flechtmann (1967)FLECHTMANN CHW. 1967. Ácaros encontrados sobre maçãs de procedência Argentina. Sci Agric 24: 83-85. https://doi.org/10.1590/S0071-12761967000100007.
https://doi.org/10.1590/S0071-1276196700...
who found the mite in apples imported from Argentina. However, the first record of high infestation of this species in Brazil was in 1972, in apple orchards in Fraiburgo, state of Santa Catarina (Bleicher 1974BLEICHER E. 1974. Ocorrência do ácaro Panonychus ulmi (Koch, 1836) Tutle & Baker (1966) no Estado de Santa Catarina. Revista O Solo 66(1): 64.). According to Ferla and Botton (2008), the mite may have migrated from the vine to the apple trees due to the proximity of apple orchards and vineyards. Another possibility would be that the disseminations may have occurred from the circulation of contaminated plant material within the country. For decades P. ulmi has been cited as the most relevant phytophagous species in the crop (Lorenzato et al. 1986LORENZATO D, GRELLMANN EO, CHOUENE EC & CACHAPUZ LMM. 1986. Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2): 215-242., Lorenzato 1987LORENZATO D. 1987. Controle biológico de ácaros fitófagos na cultura da macieira no município de Farroupilha - RS. Agronomia Sulriograndense 23(2): 167-183., Ferla & Botton 2008FERLA NJ & BOTTON M. 2008. Ocorrência do ácaro vermelho europeu Panonychus ulmi (Koch) (Tetranychidae) associado à cultura da videira no Rio Grande do Sul, Brasil. Cienc Rural 38: 1758-1761. https://doi.org/10.1590/S0103-84782008000600042.
https://doi.org/10.1590/S0103-8478200800...
). This species causes loss of chlorophyll in the attacked sites, darkening and reddish spots on the adaxial surface of the leaves and, in severe attacks, it causes premature leaf fall (Botha & Learmonth 2005BOTHA J & LEARMONTH S. 2005. Management of European red mite in western Australia. Department of Agriculture, Government of Western Australia. Farmnote., Moraes & Flechtmann 2008MORAES GJ & FLECHTMANN CHW. 2008. Manual de acarologia. Acarologia básica e ácaros de plantas cultivadas no Brasil. São Paulo: Holos Editora, 308 p., Duso et al. 2012DUSO C, POZZEBON A, KREITER S, TIXIER MS & CANDOLFI M. 2012. Management of phytophagous mites in European vineyards. In: Bostanian, NJ, Vincent C & Rufus I (Eds). Arthropod Management in Vineyards. Dordrecht: Springer, p. 191-217.). Panonychus ulmi reaches its peak population in the apple tree during the hottest months of the year (Lorenzato et al. 1986LORENZATO D, GRELLMANN EO, CHOUENE EC & CACHAPUZ LMM. 1986. Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2): 215-242., Botha & Learmonth 2005BOTHA J & LEARMONTH S. 2005. Management of European red mite in western Australia. Department of Agriculture, Government of Western Australia. Farmnote.). Dispersion and aptitude for new areas are favored by their small size, occurrence of diapause, transport of plants infested with winter eggs, high reproductive rate and by the arenotoco reproduction mode, which allows a small number or even a single female to start a colony with rapid growth (Helle & Sabelis 1985HELLE W & SABELIS MW. 1985. Spider mites: Their biology, natural enemies and control. 1nd. Amsterdam: Elsevier, p. 141-160., Botha & Learmonth 2005BOTHA J & LEARMONTH S. 2005. Management of European red mite in western Australia. Department of Agriculture, Government of Western Australia. Farmnote.). The increase in the use of acaricides in apple plants has caused P. ulmi to become resistant to some of these products, making their control difficult (Bajda et al. 2015BAJDA S, DERMAUW W, GREENHALGH R, NAUEN R, TIRRY L, CLARK RM & VAN LEEUWEN T. 2015. Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. BMC genomics 16: 1-26. https://doi.org/10.1186/s12864-015-2157-1.
https://doi.org/10.1186/s12864-015-2157-...
, Rameshgar et al. 2019RAMESHGAR J, KHAJEHALI R, NAUEN S, BAJDA W, JONCKHEERE W, DERMAUW T & LEEUWEN C. 2019. Point mutations in the voltage-gated sodium channel gene associated with pyrethroid resistance in Iranian populations of the European red mite Panonychus ulmi. Pestic Biochem Physiol 157: 80-87. https://doi.org/10.1016/j.pestbp.2019.03.008.
https://doi.org/10.1016/j.pestbp.2019.03...
, Mota-Sanchez & Wise 2023MOTA-SANCHEZ D & WISE JC. 2023. The Arthropod Pesticide Resistance Database. Michigan State University. Available at: http://www.pesticideresistance.org. Access on March 15, 2023.
http://www.pesticideresistance.org...
).

Tetranychus urticae, the two-spotted spider mite (TSSM), is a serious problem in apple orchards and other agricultural crops around the world (Helle & Sabelis 1985HELLE W & SABELIS MW. 1985. Spider mites: Their biology, natural enemies and control. 1nd. Amsterdam: Elsevier, p. 141-160., Lorenzato 1987LORENZATO D. 1987. Controle biológico de ácaros fitófagos na cultura da macieira no município de Farroupilha - RS. Agronomia Sulriograndense 23(2): 167-183., Funayama et al. 2015FUNAYAMA K, KOMATUS M, SONODA S, TAKAHASHI I & HARA K. 2015. Management of apple orchards to conserve generalist phytoseiid mites suppresses two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 65: 43-54. https://doi.org/10.1007/s10493-014-9850-7.
https://doi.org/10.1007/s10493-014-9850-...
). In crops where it occurs, including apple trees, it produces webs and in large infestations it can cause leaf fall (Lorenzato 1988LORENZATO D. 1988. Ocorrência e controle biológico de ácaros fitófagos em fruteiras rosáceas. IPAGRO informa 31: 93-96.). The economic importance of the damage caused by this species varies according to the region where the orchards occur. Commonly found on the underside of apple tree leaves, producing webs that can be used for displacement as well as dispersing through the wind (Helle & Sabelis 1985HELLE W & SABELIS MW. 1985. Spider mites: Their biology, natural enemies and control. 1nd. Amsterdam: Elsevier, p. 141-160., Lorenzato 1987LORENZATO D. 1987. Controle biológico de ácaros fitófagos na cultura da macieira no município de Farroupilha - RS. Agronomia Sulriograndense 23(2): 167-183.). The species has been studied due to the resistance it has acquired in apple trees, quickly adapting to the pressure of selection of pesticides (Suh et al. 2006SUH E, KOH SH, LEE JH, SHIN KI & CHO K. 2006. Evaluation of resistance pattern to fenpyroximate and pyridaben in Tetranychus urticae collected from greenhouses and apple orchards using lethal concentration-slope relationship. Exp Appl Acarol 38: 151-165. https://doi.org/10.1007/s10493-006-0009-z.
https://doi.org/10.1007/s10493-006-0009-...
, Hoy 2016HOY MA. 2016. Agricultural acarology: introduction to integrated mite management. CRC Press, Boca Raton., Van Leeuwen & Dermauw 2016VAN LEEUWEN T & DERMAUW W. 2016. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annu Rev Entomol 61: 475-498. https://doi.org/10.1146/annurev-ento-010715-023907.
https://doi.org/10.1146/annurev-ento-010...
).

The Eriophyidae are of economic importance, being surpassed only by the tetranychids (Lindquist et al. 1996LINDQUIST EE, BRUIN J & SABELIS MW. 1996. Eriophyoid mites: their biology, natural enemies and control. Elsevier. https://doi.org/10.1146/annurev-ento-010715-023907.
https://doi.org/10.1146/annurev-ento-010...
, Moraes & Flechtmann 2008MORAES GJ & FLECHTMANN CHW. 2008. Manual de acarologia. Acarologia básica e ácaros de plantas cultivadas no Brasil. São Paulo: Holos Editora, 308 p.). With strictly phytophagous habits and considered pests throughout the world, the mites of this group have high potential as adventitious species due to their small size, which makes detection difficult and facilitates the spread in world trade (Navia et al. 2010NAVIA D, OCHOA R, WELBOURN C & FERRAGUT F. 2010. Adventive eriophyoid mites: a global review of their impact, pathways, prevention and challenges. Exp Appl Acarol 51: 225-255. https://doi.org/10.1007/s10493-009-9327-2.
https://doi.org/10.1007/s10493-009-9327-...
). The economic importance of eriophyid mites is increasing worldwide and several species are reaching pest status in different cultures, while others pose a quarantine threat to several countries. Aculus schlechtendali, described from specimens found on apple leaves in Germany (Nalepa 1890NALEPA A. 1890. Systematics of gall mites. Sitzunsberichte Akademiia Wissenschaftlichen Wien 99: 40-69., Amrine & Stasny 1996AMRINE JR JW & STASNY TA. 1996. Corrections to the catalog of the Eriophyoidea (Acarina: Prostigmata) of the world. Int J Acarol 22(4): 295-304. https://doi.org/10.1080/01647959608684108.
https://doi.org/10.1080/0164795960868410...
), it is known as apple rust mite (ARM) in the USA, or apple stone and yolk mite, in Europe. The species was considered a pest from the 1960s onwards due to the use of fungicides with acaricidal properties, use of non-selective insecticides for predatory mites and resistance to organophosphates and pyrethroids (Easterbrook & Palmer 1996EASTERBROOK MA & PALMER JW. 1996. The relationship between early-season leaf feeding by apple rust mite, Aculus schlechtendali (Nal.), and fruit set and photosynthesis of apple. J Hortic Sci 71(6): 939-944. https://doi.org/10.1080/14620316.1996.11515478.
https://doi.org/10.1080/14620316.1996.11...
). In Latin America, this species has been reported in Argentina (Gonzalez 1981GONZALEZ RH. 1981. The red spider mites of apple and pear. Revista Fruticola 2(1): 3-9.), Chile (Gonzalez 1985GONZALEZ RH. 1985. Ácaros eriofidos del manzano y pera en Chile (Acarina: Eriophyidae). Rev Chil Entomol 12: 77-84.) and Brazil (Ferla et al. 2018FERLA NJ, SILVA DE, NAVIA D, NASCIMENTO JM, JOHANN L & LILLO E. 2018. Occurrence of the quarantine mite pest Aculus schlechtendali (Acari: Eriophyidae) in apple orchards of Serra Gaúcha, Rio Grande do Sul state, Brazil. Syst Appl Acarol 23(6): 1190-1198. https://doi.org/10.11158/saa.23.6.14.
https://doi.org/10.11158/saa.23.6.14...
). In Brazil, it was considered to be absent quarantine importance, but it was first reported in apple trees in the municipality of Vacaria, Rio Grande do Sul (Ferla et al. 2018FERLA NJ, SILVA DE, NAVIA D, NASCIMENTO JM, JOHANN L & LILLO E. 2018. Occurrence of the quarantine mite pest Aculus schlechtendali (Acari: Eriophyidae) in apple orchards of Serra Gaúcha, Rio Grande do Sul state, Brazil. Syst Appl Acarol 23(6): 1190-1198. https://doi.org/10.11158/saa.23.6.14.
https://doi.org/10.11158/saa.23.6.14...
) and later in all states in the southern region of the country (Nascimento et al. 2020NASCIMENTO JM, SILVA DE, PAVAN AM, CORRÊA LLC, SCHUSSLER M, JOHANN L & FERLA NJ. 2020. Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60(4): 659-667. https://doi.org/10.24349/acarologia/20204394.
https://doi.org/10.24349/acarologia/2020...
, Silva et al. 2022SILVA DE, DO NASCIMENTO JM, PAVAN AM, CORREA LLC, BIZZARO GL, FERLA JJ, TOLDI T, JOHANN L & FERLA NJ. 2022. Mite fauna abundance and composition on apples in southern Brazil. Syst Appl Acarol 27(11): 2139-2155. https://doi.org/10.34117/bjdv5n10-091.
https://doi.org/10.34117/bjdv5n10-091...
), with no record of apparent damage to the plants. Considered an important pest in several countries (Duso et al. 2010DUSO C, CASTAGNOLI M, SIMONI S & ANGELI G. 2010. The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Exp Appl Acarol 51: 151-168. https://doi.org/10.1007/s10493-009-9300-0.
https://doi.org/10.1007/s10493-009-9300-...
, Simoni et al. 2017SIMONI S, ANGELI G, BALDESSARI M & DUSO C. 2017. Effects of Aculus schlechtendali (Acari: Eriophyidae) population densities on Golden Delicious apple production. Acarologia 58: 134-144. https://doi.org/10.24349/acarologia/20184276.
https://doi.org/10.24349/acarologia/2018...
), especially in nurseries and orchards, where it can be found feeding on flowers, fruits and leaves, affecting the physiological activity of plants, the quality and aesthetics of plants (Easterbrook & Palmer 1996EASTERBROOK MA & PALMER JW. 1996. The relationship between early-season leaf feeding by apple rust mite, Aculus schlechtendali (Nal.), and fruit set and photosynthesis of apple. J Hortic Sci 71(6): 939-944. https://doi.org/10.1080/14620316.1996.11515478.
https://doi.org/10.1080/14620316.1996.11...
, Walde et al. 1997WALDE SJ, HARDMAN JM & MAGAGULA CN. 1997. Direct and indirect species interactions influencing within-season dynamics of apple rust mite, Aculus schlechtendali (Acari: Eriophyidae). Exp Appl Acarol 21: 587-614. https://doi.org/10.1023/A:1018400500688.
https://doi.org/10.1023/A:1018400500688...
, Spieser et al. 1998SPIESER F, GRAF B, WALTHER P & NOESBERGER J. 1998. Impact of apple rust mite (Acari: Eriophyidae) feeding on apple leaf gas exchange and leaf color associated with changes in leaf tissue. Environ Entomol 27(5): 1149-1156. https://doi.org/10.1093/ee/27.5.1149.
https://doi.org/10.1093/ee/27.5.1149...
, Duso et al. 2010DUSO C, CASTAGNOLI M, SIMONI S & ANGELI G. 2010. The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Exp Appl Acarol 51: 151-168. https://doi.org/10.1007/s10493-009-9300-0.
https://doi.org/10.1007/s10493-009-9300-...
). The damage caused by A. schlechtendali is due to the perforation of the epidermal cells of the plant through its stylets, which results in damage characterized by the tanning of the surface of leaves, flowers and fruits (Duso et al. 2010DUSO C, CASTAGNOLI M, SIMONI S & ANGELI G. 2010. The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Exp Appl Acarol 51: 151-168. https://doi.org/10.1007/s10493-009-9300-0.
https://doi.org/10.1007/s10493-009-9300-...
). When feeding it damages the epidermal cells of the plant and the damage can be better observed around the calyx. Furthermore, the apple leaf blade can be rolled longitudinally and, together with the fruit, in cases of large infestations, premature leaf drop may occur (Jeppson et al. 1975JEPPSON LR, KEIFER HH & BAKER EW. 1975. Mites injurious to economic plants. Berkeley, CA: University of California Press, 614 p., Easterbrook & Palmer 1996EASTERBROOK MA & PALMER JW. 1996. The relationship between early-season leaf feeding by apple rust mite, Aculus schlechtendali (Nal.), and fruit set and photosynthesis of apple. J Hortic Sci 71(6): 939-944. https://doi.org/10.1080/14620316.1996.11515478.
https://doi.org/10.1080/14620316.1996.11...
). Studies carried out in Switzerland have shown changes in leaf color due to population growth that affected net CO2 exchange and transpiration rates (Spieser et al. 1998SPIESER F, GRAF B, WALTHER P & NOESBERGER J. 1998. Impact of apple rust mite (Acari: Eriophyidae) feeding on apple leaf gas exchange and leaf color associated with changes in leaf tissue. Environ Entomol 27(5): 1149-1156. https://doi.org/10.1093/ee/27.5.1149.
https://doi.org/10.1093/ee/27.5.1149...
). At the time, the analysis showed that the mite causes multiple perforations in the epidermal cells and desiccation of the same as well as the cells of the spongy parenchyma. In high infestations, the stomata were partially open and the guard cells lose turgor. Similar effects were observed in studies that showed that this species does not feed on the photosynthetically active mesophyll, however, it can affect photosynthesis by damaging the epidermis and inducing negative effects on the leaf mesophyll (Kozlowski & Zielinska 1997KOZLOWSKI J & ZIELINSKA LIDIA. 1997. Cytological changes in apple leaves infested with the apple rust mite - Aculus schlechtendali [Nal.][Acarina: Eriophyidae]. J Plant Prot Res 37(1-2).). The population peak of A. schlechtendali occurs in the summer, and more than two thousand specimens/leaves can be found. After this period, the quantity of mites decreases, as well as the quality of the leaves. In young plants, the highest proportion of individuals occurs in the lateral shoots, between the vegetative shoots and the main shoot. In older plants they overwinter under bark cracks and in dormant shoots. (Kozlowski & Boczek 1987KOZLOWSKI J & BOCZEK J. 1987. Overwintering of the apple rust mite Aculus schlechtendali (Nal.) (Acarina: Eriophyoidea). Prace Naukowe Instytutu Ochrony Roślin 29(1): 51-62., Funayama & Takahashi 1992FUNAYAMA K & TAKAHASHI Y. 1992. Studies on ecology of Apple rust mite Aculus schlechtendali (Nalepa) (Acarina: Eriophyidae). Bulletin of Akita Fruit-Tree Experimental Station 22: 9-22., Easterbrook & Palmer 1996EASTERBROOK MA & PALMER JW. 1996. The relationship between early-season leaf feeding by apple rust mite, Aculus schlechtendali (Nal.), and fruit set and photosynthesis of apple. J Hortic Sci 71(6): 939-944. https://doi.org/10.1080/14620316.1996.11515478.
https://doi.org/10.1080/14620316.1996.11...
). The ideal temperature for this mite ranges from 23-28°C (Kozlowski & Boczek 1989KOZLOWSKI J & BOCZEK J. 1989. Life-cycle of apple rust mite, Aculus schlechtendali (Nal.). Prace Naukowe Instytutu Ochrony Roślin 31(2): 49-65.). In late summer, deutogynes return to hibernation sites. The presence in orchards of southern Brazil was unknown until recently (Nascimento et al. 2020NASCIMENTO JM, SILVA DE, PAVAN AM, CORRÊA LLC, SCHUSSLER M, JOHANN L & FERLA NJ. 2020. Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60(4): 659-667. https://doi.org/10.24349/acarologia/20204394.
https://doi.org/10.24349/acarologia/2020...
), when the presence of A. schlechtendali was confirmed at 17 points in the three states. The arrival in the country may have taken place across the borders, passing through the customs barriers of the public quarantine service or due to the intense crossing of fruits from Argentina and Chile to Brazil. So far, there are no reports that this species has reached pest status in the regions where it was found, nor how harmful this mite can be to the crop (Nascimento et al. 2020NASCIMENTO JM, SILVA DE, PAVAN AM, CORRÊA LLC, SCHUSSLER M, JOHANN L & FERLA NJ. 2020. Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60(4): 659-667. https://doi.org/10.24349/acarologia/20204394.
https://doi.org/10.24349/acarologia/2020...
, Corrêa et al. 2021CORRÊA LLC, SILVA DE, NASCIMENTO JMD, OLIVEIRA SV & FERLA NJ. 2021. Predictive distribution of Aculus schlechtendali (Acari: Eriophyidae) in southern Brazil. Int. J. Acarology 47(1): 70-73. https://doi.org/10.1080/01647954.2020.1870548.
https://doi.org/10.1080/01647954.2020.18...
, Silva et al. 2022SILVA DE, DO NASCIMENTO JM, PAVAN AM, CORREA LLC, BIZZARO GL, FERLA JJ, TOLDI T, JOHANN L & FERLA NJ. 2022. Mite fauna abundance and composition on apples in southern Brazil. Syst Appl Acarol 27(11): 2139-2155. https://doi.org/10.34117/bjdv5n10-091.
https://doi.org/10.34117/bjdv5n10-091...
). Factors such as difficulty in handling and establishment of breeding make research related to the behavior of this group limited (Michalska et al. 2010MICHALSKA K, SKORACKA A, NAVIA D & AMRINE JW. 2010. Behavioural studies on eriophyoid mites: an overview. Exp Appl Acarol 51: 31-59. https://doi.org/10.1007/s10493-009-9319-2.
https://doi.org/10.1007/s10493-009-9319-...
).

Predatory mites

This group are present in several apple producing Brazilian regions, with the most abundant Phytoseiidae, followed by Stigmaeidae (Lorenzato et al. 1986LORENZATO D, GRELLMANN EO, CHOUENE EC & CACHAPUZ LMM. 1986. Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2): 215-242., Ferla & Moraes 1998FERLA NJ & MORAES GJ. 1998. Ácaros predadores em pomares de maçã no Rio Grande do Sul. Neotrop Entomol 27: 649-654. https://doi.org/10.1590/S0301-80591998000400019.
https://doi.org/10.1590/S0301-8059199800...
, Klock et al. 2011KLOCK CL, BOTTON M & FERLA NJ. 2011. Mitefauna (Arachnida: Acari) associated to grapevine, Vitis vinifera L. (Vitaceae), in the municipalities of Bento Gonçalves and Candiota, Rio Grande do Sul, Brazil. Check List 7: 522-536. https://doi.org/10.15560/7.4.522.
https://doi.org/10.15560/7.4.522...
, Johann & Ferla 2012JOHANN L & FERLA NJ. 2012. Mite (Acari) population dynamics in grapevines (Vitis vinifera) in two regions of Rio Grande do Sul, Brazil. Int J Acarol 38(5): 386-393. https://doi.org/10.1080/01647954.2012.657240.
https://doi.org/10.1080/01647954.2012.65...
, Silva et al. 2022SILVA DE, DO NASCIMENTO JM, PAVAN AM, CORREA LLC, BIZZARO GL, FERLA JJ, TOLDI T, JOHANN L & FERLA NJ. 2022. Mite fauna abundance and composition on apples in southern Brazil. Syst Appl Acarol 27(11): 2139-2155. https://doi.org/10.34117/bjdv5n10-091.
https://doi.org/10.34117/bjdv5n10-091...
). Phytoseiidae can feed on phytophagous mites and have other alternative food sources, such as pollen, fungi, plant exudate and insects (McMurtry et al. 1970MCMURTRY JA, HUFFAKER CB & VRIE MV. 1970. Tetranychids enemies: their biological characteres and the impact of spray practices. Hilgardia 40: 331-390., 2013MCMURTRY JA, SOURASSOU NF & DEMITE PR. 2015. The Phytoseiidae (Acari: Mesostigmata) as biological control agents. In: Prospects for biological control of plant feeding mites and other harmful organisms, Springer, Cham 133-149. https://doi.org/10.1007/978-3-319-15042-0_5.
https://doi.org/10.1007/978-3-319-15042-...
, McMurtry & Rodriguez 1987MCMURTRY JA & RODRIGUEZ JG. 1987. Nutritional Ecology of Phytoseiid Mites, Nutritional Ecology of Insects, Mites. Spiders, and Related Invertebrates 609-644., Tixier 2018TIXIER MS. 2018. Predatory mites (Acari: Phytoseiidae) in agro-ecosystems and conservation biological control: a review and explorative approach for forecasting plant-predatory mite interactions and mite dispersal. Front Ecol Evol 6: 192. https://doi.org/10.3389/fevo.2018.00192.
https://doi.org/10.3389/fevo.2018.00192...
). This family began to be studied intensively from the 1950s onwards and several species have been considered important agents of applied biological control of tetranychids in agroecosystems (Moraes et al. 1991MORAES GJ, MESA NC & BRAUN A. 1991. Some phytoseiid mites of Latin America (Acari: phytoseiidae). Int J Acarol 17(2): 117-139. https://doi.org/10.1080/01647959108683892.
https://doi.org/10.1080/0164795910868389...
, 2004). In a survey carried out by Lorenzato et al. (1986)LORENZATO D, GRELLMANN EO, CHOUENE EC & CACHAPUZ LMM. 1986. Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2): 215-242., Phytoseiidae occurred during the entire vegetative period of apple trees, with greater intensity in the months of February and March, coinciding with the decline of P. ulmi and other phytophagous in the orchards. Likewise, it was observed by Lorenzato (1987)LORENZATO D. 1987. Controle biológico de ácaros fitófagos na cultura da macieira no município de Farroupilha - RS. Agronomia Sulriograndense 23(2): 167-183. that populations of Phytoseiidae mites managed to naturally control the mobile forms and eggs of P. ulmi in the field in a few days. The main phytoseiid associated with apple cultivation in North America is Neoseiulus fallacis (Garman) and in South America, Neoseiulus californicus (McGregor) (Croft & McGroarty 1977CROFT BA & MCGROARTY DL. 1977. The role of Amblyseius fallacis (Acarina: Phytoseiidae) in Michigan apple orchards. Research Report 333: 2-22., Monetti & Fernandez 1995MONETTI LN & FERNANDEZ NA. 1995. Seasonal population dynamics of the European red mite (Panonychus ulmi) and its predator Neoseiulus californicus in a sprayed apple orchard in Argentina (Acari: Tetranychidae, Phytoseiidae). Acarologia 36(4): 325-331., Khajuria 2009KHAJURIA DR. 2009. Predatory complex of phytophagous mites and their role in integrated pest management in apple orchard. J Biopest 2(2): 141-144., Toyoshima et al. 2011TOYOSHIMA S, YAGINUMA K, IHARA F, ARAI T & TAKANASHI M. 2011. The succession of phytophagous and phytoseiid species in a newly planted apple orchard without insecticide application. Nihon Dani Gakkai Shi 20(2): 77-86. https://doi.org/10.2300/acari.20.77.
https://doi.org/10.2300/acari.20.77...
). Studies show the potential of these species to control P. ulmi and T. urticae, in addition to feeding on apple pollen and weeds, as an alternative source of food to maintain these predators in orchards (Coli et al. 1994COLI WM, CIURLINO RA & HOSMER T. 1994. Effect of understory and border vegetation composition on phytophagous and predatory mites in Massachusetts commercial apple orchards. Agric Ecosyst Environ 50(1): 49-60. https://doi.org/10.1016/0167-8809(94)90124-4.
https://doi.org/10.1016/0167-8809(94)901...
, Khajuria 2009KHAJURIA DR. 2009. Predatory complex of phytophagous mites and their role in integrated pest management in apple orchard. J Biopest 2(2): 141-144., Markó et al. 2012MARKÓ V, JENSER G, MIHÁLYI K, HEGYI T & BALÁZS K. 2012. Flowers for better pest control? Effects of apple orchard groundcover management on mites (Acari), leafminers (Lepidoptera, Scitellidae), and fruit pests. Biocontrol Sci Technol 22(1): 39-60. https://doi.org/10.1080/09583157.2011.642337.
https://doi.org/10.1080/09583157.2011.64...
). In North America, N. fallacis is commonly found in high populations in apple orchards in wetter areas (Croft & McGroarty 1977CROFT BA & MCGROARTY DL. 1977. The role of Amblyseius fallacis (Acarina: Phytoseiidae) in Michigan apple orchards. Research Report 333: 2-22., Welty 1995WELTY C. 1995. Survey of predators associated with European red mite (Panonychus ulmi: Acari: Tetranychidae) in Ohio apple orchards. Gt Lakes Entomol 28(2): 171-184.), preying on P. ulmi, T. urticae, and other phytophagous mites, such as eriophyid mites (Croft & McGroarty 1977CROFT BA & MCGROARTY DL. 1977. The role of Amblyseius fallacis (Acarina: Phytoseiidae) in Michigan apple orchards. Research Report 333: 2-22.). This species has potential to control pests in orchards, however, it does not have significant resistance to pesticides (Jamil et al. 2019JAMIL RZR, VANDERVOORT C & WISE JC. 2019. Residual Toxicity of Insecticides to Neoseiulus fallacis (Acari: Phytoseiidae) in Apples. J Econ Entom 112(5): 2262-2267. https://doi.org/10.1093/jee/toz131.
https://doi.org/10.1093/jee/toz131...
). In Canada, phytoseiids frequently found are N. fallacis and Typhlodromus caudiglans Schuster. In South America, Phytoseiulus macropilis (Banks) and N. californicus are the predominant predatory species, standing out for their potential to control T. urticae and P. ulmi (Monteiro et al. 2008MONTEIRO LB, DOLL A & BOEING LF. 2008. Densidade de Neoseiulus californicus (McGregor, 1954) (Acari: Phytoseiidae) no controle do ácaro-vermelho da macieira, Fraiburgo-SC. Rev Bras Frutic 30: 902-906. https://doi.org/10.1590/S0100-29452008000400011.
https://doi.org/10.1590/S0100-2945200800...
). Neoseiulus californicus is the most common species (Moraes et al. 2004MORAES GJ, MCMURTRY JA, DENMARK HA & CAMPOS CB. 2004. A revised catalog of the mite family Phytoseiidae. Zootaxa 434(1): 1-494. https://doi.org/10.11646/zootaxa.434.1.1.
https://doi.org/10.11646/zootaxa.434.1.1...
) and has a high survival rate when exposed to agrochemicals used in pest management.

Stigmaeidae are widely distributed in a variety of habitats (Fan & Zhang 2005FAN QH & ZHANG ZQ. 2005. Raphignathoidea (Acari: Prostigmata). Fauna N Z https://doi.org/10.7931/J2/FNZ.52.
https://doi.org/10.7931/J2/FNZ.52...
). The species belonging to the genera Eustigmaeus and Ledermulleriopsis inhabit soil with leaf litter where they feed on moss and lichen (Gerson 1972GERSON U. 1972. Mites of the genus Ledermuelleria (Prostigmata: Stigmaeidae) associated with mosses in Canada. Acarologia 13(2): 319-343., Lorenzato et al. 1986LORENZATO D, GRELLMANN EO, CHOUENE EC & CACHAPUZ LMM. 1986. Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2): 215-242.). While, the free-living predators are found on leaves and branches of plants feeding eggs, mites and small insects or pollen, and belong mainly to the genera Agistemus and Zetzellia (Gerson 1972GERSON U. 1972. Mites of the genus Ledermuelleria (Prostigmata: Stigmaeidae) associated with mosses in Canada. Acarologia 13(2): 319-343., Lorenzato et al. 1986LORENZATO D, GRELLMANN EO, CHOUENE EC & CACHAPUZ LMM. 1986. Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2): 215-242.). These predators are generalists and feed mainly on species of Eriophyoidea, Tetranychidae, Tenuipalpidae, Tarsonemidae and other mite groups in the field (Gerson et al. 2008GERSON U, SMILEY RL & OCHOA R. 2008. Mites (Acari) for pest control. J Wiley & Sons.) and in greenhouses (Zhang 2003ZHANG ZQ. 2003. Mites of greenhouses: identification, biology and control. Cabi, Wallingford, UK, 244 p.). Some species of economic importance, such as A. schlechtendali, Aculops lycopersici (Massee) (Eriophyidae), Panonychus citri (McGregor) (Tetranychidae), P. ulmi, T. urticae, Eutetranychus orientalis (Klein) (Tetranychidae), B. phoenicis among others, are considered prey of species of the genera Agistemus and Zetzellia (Fan & Flechtmann 2015FAN QH & FLECHTMANN CH. 2015. Stigmaeidae. In: Carrillo D, Moraes GJ & Peña JE (Ed). Prospects for biological control of plant feeding mites and other harmful organisms. Springer, p. 185-206. https://doi.org/10.1007/978-3-319-15042-0_7.). Species of the genus Agistemus are known for being associated with pests of economic importance in several crops around the world (Santos & Laing 1985SANTOS MA & LAING JE. 1985. Stigmaeid predators. In: Helle W & Sabelis MW (Eds). Spider mites: Their biology, natural enemies and control. Amsterdam: Elsevier, 458 p., Ferla & Moraes 1998FERLA NJ & MORAES GJ. 1998. Ácaros predadores em pomares de maçã no Rio Grande do Sul. Neotrop Entomol 27: 649-654. https://doi.org/10.1590/S0301-80591998000400019.
https://doi.org/10.1590/S0301-8059199800...
), including apple trees (Lorenzato & Melzer 1984LORENZATO D & MELZER R. 1984. Efeitos dos acaricidas e inseticidas no controle do ácaro vermelho europeu Panonychus ulmi (Koch), na cultura da macieira (Malus domestica Bork). Agronomia Sulriograndense 20(2): 135-151.). Agistemus fleschneri (Summers) (Stigmaeidae) has been reported in apple trees (Strickler et al. 1987STRICKLER K, CUSHING N, WHALON M & CROFT BA. 1987. Mite (Acari) species composition in Michigan apple orchards. Environ Entomol 16(1): 30-36. https://doi.org/10.1093/ee/16.1.30.
https://doi.org/10.1093/ee/16.1.30...
) preying on A. schlechtendali and P. ulmi in North America. Zetzellia mali (Ewing) (Stigmaeidae) is known to be associated with apple orchards with the presence of P. ulmi and A. schlechtendali. This predator has also been associated with species of Tarsonemidae, Tydeidae, eggs of small arthropods and also been shown to feed on T. urticae eggs and nymphs kept on apple leaves (Jamali et al. 2001JAMALI MA, KAMALI K, SABOORI A & NOWZARI J. 2001. Biology of Zetzellia mali (Ewing) (Acari: Stigmaeidae) in Karaj, Iran. Syst Appl Acarol 6(1): 55-60. https://doi.org/10.11158/saa.6.1.9.
https://doi.org/10.11158/saa.6.1.9...
). The average time required to complete egg-adult development was 20.8 days and the immature stages consumed 5-8 prey eggs/period. Feeding on A. schlechtendali, it presented a mean duration of a generation of about 21 days and a net reproduction rate (R0) of 0.109 (White & Laing 1977WHITE ND & LAING JE. 1977. Some aspects of the biology and a laboratory life table of the acarine predator Zetzellia mali. Can Entomol 109(9): 1275-1281. https://doi.org/10.4039/Ent1091275-9.
https://doi.org/10.4039/Ent1091275-9...
). Santos (1982)SANTOS MA. 1982. Effect of low prey densities on the predation and oviposition of Zetzelli mali (Acari: Stigmaeidae). Environ Entomol 11(4): 972-974. https://doi.org/https://doi.org/10.1093/ee/11.4.972.
https://doi.org/https://doi.org/10.1093/...
observed that Z. mali survived 23.6 days without any food on the leaves. The average egg-adult development time was 16 days when fed on P. ulmi eggs and 13 days on A. schlechtendali eggs (Ellingsen 1971ELLINGSEN IJ. 1971. Biology of Zetzellia mali (Ewing) and Agistemus fleschneri (Acarina: Stigmaeidae) related to their abilities to control the European red mite Panonychus ulmi (Koch) (Acarina: Tetranychidae). Master of Science, Ohio State University., White & Laing 1977WHITE ND & LAING JE. 1977. Some aspects of the biology and a laboratory life table of the acarine predator Zetzellia mali. Can Entomol 109(9): 1275-1281. https://doi.org/10.4039/Ent1091275-9.
https://doi.org/10.4039/Ent1091275-9...
). Zetzellia mali prefers less mobile prey, which is perhaps why breeding with eriophyid mites is more successful than with tetranychid mites. This predator consumed 40-50 eriophyid mites during one generation in the laboratory (White & Laing 1977WHITE ND & LAING JE. 1977. Some aspects of the biology and a laboratory life table of the acarine predator Zetzellia mali. Can Entomol 109(9): 1275-1281. https://doi.org/10.4039/Ent1091275-9.
https://doi.org/10.4039/Ent1091275-9...
). Although Z. mali is less active and voracious than many phytoseiids, they produce more eggs for a given number of prey consumed (Clements & Harmsen 1990CLEMENTS DR & HARMSEN R. 1990. Predatory behavior and prey-stage preferences of stigmaeid and phytoseiid mites and their potential compatibility in biological control. Can Entomol 122(2): 321-328. https://doi.org/10.4039/Ent122321-3.
https://doi.org/10.4039/Ent122321-3...
). In addition, the species can maintain itself at low prey densities and under adverse environmental conditions, reaching high population densities in orchards (Delattre 1974DELATTRE P. 1974. Study of the effectiveness of Zetzellia mali (Acari: Stigmaeidae) as a predator of red spider mite Panonychus ulmi (Acari: Tetranychidae) on apple. Entomophaga 19: 13-31. https://doi.org/10.1007/BF02371505.
https://doi.org/10.1007/BF02371505...
, Strapazzon & Monta 1988STRAPAZZON A & MONTA LD. 1988. Role and distribution of Amblyseius andersoni (Chant) and Zetzellia mali (Ewing) in apple orchards by Aculus schlechtendali (Nalepa). Redia 71: 39-54. Available at: https://www.cabdirect.org/cabdirect/abstract/19901134685. Access on July 25, 2022.). This mite can therefore be considered a successful predator of phytophagous mites during the early and late seasons of apple orchards. This species manages to maintain itself in adverse environmental conditions, reaching high population densities in the orchards (Clements & Harmsen 1990CLEMENTS DR & HARMSEN R. 1990. Predatory behavior and prey-stage preferences of stigmaeid and phytoseiid mites and their potential compatibility in biological control. Can Entomol 122(2): 321-328. https://doi.org/10.4039/Ent122321-3.
https://doi.org/10.4039/Ent122321-3...
).

In a survey carried out by Lorenzato et al. (1986)LORENZATO D, GRELLMANN EO, CHOUENE EC & CACHAPUZ LMM. 1986. Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2): 215-242., the main genus found was Agistemus, occurring between March and April, coinciding with the decline of P. ulmi and other phytophagous populations in the orchards. Typhlodromalus aripo DeLeon was the most abundant species in orchards without pesticide application in southern Brazil (Ferla & Moraes 1998FERLA NJ & MORAES GJ. 1998. Ácaros predadores em pomares de maçã no Rio Grande do Sul. Neotrop Entomol 27: 649-654. https://doi.org/10.1590/S0301-80591998000400019.
https://doi.org/10.1590/S0301-8059199800...
). In addition to these, other species were reported occurring in orchards in Rio Grande do Sul: Amblyseius chiapensis DeLeon, Euseius mesembrinus (Dean), Galendromus annectens (De Leon), Metaseiulus mexicanus (Muma), N. fallacis, Typhlodromalus marmoreus El-Banhawy, Typhlodromalus peregrinus (Muma), Metaseiulus camelliae (Chant & Yoshida-Shaul), Neoseiulus neotunus (De Leon), Neoseiulus tunus (De Leon) and P. macropilis (Lorenzato et al. 1986LORENZATO D, GRELLMANN EO, CHOUENE EC & CACHAPUZ LMM. 1986. Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2): 215-242., Lorenzato & Secchi 1993LORENZATO D & SECCHI VA. 1993. Controle biológico de ácaros da macieira no Rio Grande do Sul: 1- Ocorrência e efeitos dos ácaros fitófagos e seus inimigos naturais em pomares submetidos ao controle biológico e com acaricidas. Rev Bras Frutic 15(1): 211-220., Ferla & Moraes 1998FERLA NJ & MORAES GJ. 1998. Ácaros predadores em pomares de maçã no Rio Grande do Sul. Neotrop Entomol 27: 649-654. https://doi.org/10.1590/S0301-80591998000400019.
https://doi.org/10.1590/S0301-8059199800...
). In Santa Catarina and Paraná was reported occurring Agistemus riograndensis Johann and Ferla (Silva et al. 2022SILVA DE, DO NASCIMENTO JM, PAVAN AM, CORREA LLC, BIZZARO GL, FERLA JJ, TOLDI T, JOHANN L & FERLA NJ. 2022. Mite fauna abundance and composition on apples in southern Brazil. Syst Appl Acarol 27(11): 2139-2155. https://doi.org/10.34117/bjdv5n10-091.
https://doi.org/10.34117/bjdv5n10-091...
).

Control of mites associated with apple trees

In the 1980s to the early 1990s, chemical control was the only resource available for apple orchards. At this time, three to four sprays were used per vegetative cycle (Monteiro 1994MONTEIRO LB. 1994. Manejo integrado de Panonychus ulmi em macieira. Primeiras experiências com a introdução de Neoseiulus californicus. Rev Bras Frutic 16: 46-53., 2001MONTEIRO LB. 2001. Seletividade de inseticidas a Neoseiulus californicus McGregor (Acari: Phytoseiidae) em macieira, no Rio Grande do Sul. Rev Bras Frutic 23: 589-592. https://doi.org/10.1590/S0100-29452001000300029.
https://doi.org/10.1590/S0100-2945200100...
). In Brazil, apple cultivation still depends mostly on high amounts of pesticides to combat pest organisms that attack orchards (Lorenzato & Melzer, 1984, Lorenzato & Secchi 1993LORENZATO D & SECCHI VA. 1993. Controle biológico de ácaros da macieira no Rio Grande do Sul: 1- Ocorrência e efeitos dos ácaros fitófagos e seus inimigos naturais em pomares submetidos ao controle biológico e com acaricidas. Rev Bras Frutic 15(1): 211-220., Fernandez et al. 2006FERNANDEZ DE, BEERS EH, BRUNNER JF, DOERR MD & DUNLEY JE. 2006. Horticultural mineral oil applications for apple powdery mildew and codling moth, Cydia pomonella (L.). Crop Prot 25(6): 585-591. https://doi.org/10.1016/j.cropro.2005.08.014.
https://doi.org/10.1016/j.cropro.2005.08...
, Raudonis et al. 2007RAUDONIS L, VALIUSKAITE A & SURVILIENE E. 2007. Toxicity of Abamectin to rust mite, Aculus schlechtendali (Acari: Eriophyidae) in apple tree orchard. Sodinink Darzinink 26(2): 10-17.). This strategy results in the reduction of natural enemies and favors the population increase of secondary pests, such as P. ulmi (Lorenzato & Secchi 1993LORENZATO D & SECCHI VA. 1993. Controle biológico de ácaros da macieira no Rio Grande do Sul: 1- Ocorrência e efeitos dos ácaros fitófagos e seus inimigos naturais em pomares submetidos ao controle biológico e com acaricidas. Rev Bras Frutic 15(1): 211-220., Meyer et al. 2009MEYER GA, KOVALESKI A & SANHUEZA RMV. 2009. Seletividade de agrotóxicos usados na cultura da macieira a Neoseiulus Californicus (McGregor) (Acari: Phytoseiidae). Rev Bras Frutic 31: 381-387. https://doi.org/10.1590/S0100-29452009000200011.
https://doi.org/10.1590/S0100-2945200900...
). Miticides of different chemical structures and modes of action have been used to control spider mites, including neurotoxic insecticides and specific miticides (Marcic 2012MARCIC D. 2012. Acaricides in modern management of plant-feeding mites. J Pest Sci 85(4): 395-408. https://doi.org/10.1007/s10340-012-0442-1.
https://doi.org/10.1007/s10340-012-0442-...
, Van Leeuwen et al. 2015VAN LEEUWEN T, TIRRY L, YAMAMOTO A, NAUEN R & DERMAUW W. 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic Biochem Phys 121: 12-21. https://doi.org/10.1016/j.pestbp.2014.12.009.
https://doi.org/10.1016/j.pestbp.2014.12...
, Brown et al. 2017BROWN S, KERNS DL, GORE J, LORENZ G & STEWART S. 2017. Susceptibility of twospotted spider mites (Tetranychus urticae) to abamectin in Midsouth cotton. Crop Prot 98: 179-183. https://doi.org/10.1016/j.cropro.2017.04.002.
https://doi.org/10.1016/j.cropro.2017.04...
). Chemical control is generally conducted in two phases. At first, there is the control of winter eggs, associated with breaking dormancy with the use of mineral oil and then in the vegetative phase. In this phase, miticides are used, usually abamectin, together with a mixture of mineral oil, right after the petals fall, without population level analysis and use of fenpyroximate and spirodiclofen, when the population exceeds the level of economic damage (Kovaleski & Ribeiro 2002KOVALESKI A & RIBEIRO LG. 2002. Manejo de pragas na produção integrada de maçã. Embrapa Uva e Vinho-Circular Técnica (INFOTECA-E). Available at: https://www.infoteca.cnptia.embrapa.br/handle/doc/536603?locale=es. Access on August 01, 2022.
https://www.infoteca.cnptia.embrapa.br/h...
). Tetranychidae species have the ability to rapidly acquire resistance to insecticides and miticides (Knowles 1997KNOWLES CO. 1997. Mechanisms of resistance to acaricides. In: (Ed), Molecular Mechanisms of Resistance to Agrochemicals. Chemistry of Plant Protection, Springer, Berlin, Heidelberg, p. 57-77. https://doi.org/10.1007/978-3-662-03458-3_3.
https://doi.org/10.1007/978-3-662-03458-...
, Van Leeuwen et al. 2010VAN LEEUWEN T, VONTA J, TSAGKARAKOU A, DERMAUW W & TIRRY L. 2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40(8): 563-572. https://doi.org/10.1016/j.ibmb.2010.05.008.
https://doi.org/10.1016/j.ibmb.2010.05.0...
, 2015) due to their short life cycle, high reproduction rate, haplodiploidy and high fertility rates (Van Leeuwen et al. 2009VAN LEEUWEN C, TRÉGOAT O, CHONÉ X, BOIS B, PERNET D & GAUDILLÈRE JP. 2009. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes. Oeno One 43(3): 121-134. https://doi.org/10.20870/oeno-one.2009.43.3.798.
https://doi.org/10.20870/oeno-one.2009.4...
, 2010). There are several reports of populations that have created resistance to pesticides, especially T. urticae (Cho et al. 1995CHO JR, HONG KJ, CHOI BR, LEE SG, LEE GS, YOO JK & LEE JO. 1995. The inhibition effect of the two-spotted spider mite population density by using the introduced predacious mite (Phytoseiulus persimilis Athias-Henriot) and effect of several pesticides to the predacious mite. RDA J Agric Sci 37: 340-347., Beers et al. 1998BEERS EH, RIEDL H & DUNLEY JE. 1998. Resistance to abamectin and reversion to susceptibility to fenbutatin oxide in spider mite (Acari: Tetranychidae) populations in the Pacific Northwest. J Econ Entomol 91(2): 352-360. https://doi.org/10.1093/jee/91.2.352.
https://doi.org/10.1093/jee/91.2.352...
, Stumpf & Nauen 2001STUMPF N & NAUEN R. 2001. Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 94(6): 1577-1583. https://doi.org/10.1603/0022-0493-94.6.1577.
https://doi.org/10.1603/0022-0493-94.6.1...
, Sato et al. 2004SATO ME, MIYATA T, SILVA M, RAGA A & SOUZA MF. 2004. Selections for fenpyroximate resistance and susceptibility, and inheritance, cross-resistance and stability of fenpyroximate resistance in Tetranychus urticae Koch (Acari: Tetranychidae). Appl Entomol Zool 39(2): 293-302. https://doi.org/10.1590/S0006-87052007000100011.
https://doi.org/10.1590/S0006-8705200700...
, Suh et al. 2006SUH E, KOH SH, LEE JH, SHIN KI & CHO K. 2006. Evaluation of resistance pattern to fenpyroximate and pyridaben in Tetranychus urticae collected from greenhouses and apple orchards using lethal concentration-slope relationship. Exp Appl Acarol 38: 151-165. https://doi.org/10.1007/s10493-006-0009-z.
https://doi.org/10.1007/s10493-006-0009-...
, Mota-Sanchez & Wise 2023MOTA-SANCHEZ D & WISE JC. 2023. The Arthropod Pesticide Resistance Database. Michigan State University. Available at: http://www.pesticideresistance.org. Access on March 15, 2023.
http://www.pesticideresistance.org...
). The use of organophosphate insecticides began in the late 1950s and rapidly increased (Walker et al. 2017WALKER JTS, SUCKLING DM & WEARING HC. 2017. Past, present, and future of integrated control of apple pests: the New Zealand experience. Annu Rev Entomol 62: 231-248. https://doi.org/10.1146/annurev-ento-031616-035626.
https://doi.org/10.1146/annurev-ento-031...
). The use resulted in the resistance of P. ulmi and the predators Typhlodromus pyri Scheuten (Phytoseiidae), Galendromus occidentalis (Nesbitt) (Phytoseiidae) and N. californicus (Hoyt 1969HOYT SC. 1969. Integrated chemical control of insects and biological control of mites on apple in Washington. J Econ Entom 62(1): 74-86. https://doi.org/10.1093/jee/62.1.74.
https://doi.org/10.1093/jee/62.1.74...
, Collyer & Van Geldermalsen 1975COLLYER E & VAN GELDERMALSEN M. 1975. Integrated control of apple pests in New Zealand 1. Outline of experiment and general results. N Z J Zool 2(1): 101-134. https://doi.org/10.1080/03014223.1975.9517865.
https://doi.org/10.1080/03014223.1975.95...
, Penman et al. 1976PENMAN DR, FERRO DN & WEARING CH. 1976. Azinphosmethyl resistance in strains of Typhlodromus pyri from Nelson. N Z J Exp Agriculture 4(4): 377-380. https://doi.org/10.1080/03015521.1976.10425903.
https://doi.org/10.1080/03015521.1976.10...
, Meyer et al. 2009MEYER GA, KOVALESKI A & SANHUEZA RMV. 2009. Seletividade de agrotóxicos usados na cultura da macieira a Neoseiulus Californicus (McGregor) (Acari: Phytoseiidae). Rev Bras Frutic 31: 381-387. https://doi.org/10.1590/S0100-29452009000200011.
https://doi.org/10.1590/S0100-2945200900...
).

The intensification of chemical fertilization, intensive soil cultivation and the large-scale use of pesticides in agriculture have led to the selection of resistant populations of pests, death of non-target organisms, contamination of food and also of soil and water, being harmful still for human health (Gallo et al. 1988GALLO D, NAKANO O, NETO SS, CARVALHO RPL, BATISTA GD. 1988 (Ed). Manual de entomologia agrícola. São Paulo: Agronômica Ceres, 649 p., Gliessman 2005GLIESSMAN SR. 2005. Agroecologia: processos ecológicos em agricultura sustentável, 3rd. Porto Alegre: Editora da UFRGS, 653 p.). Given this scenario, the scientific society has sought new technologies that aim at sustainability in the agricultural environment, for the production of healthier foods and improvement in the quality of life of producers and the final consumer (Gliessman 2005GLIESSMAN SR. 2005. Agroecologia: processos ecológicos em agricultura sustentável, 3rd. Porto Alegre: Editora da UFRGS, 653 p., Monteiro et al. 2006MONTEIRO LB, SOUZA A & PASTORI PL. 2006. Economic comparison of biological and chemical control in the management of red spider mites in apple orchard. Rev Bras Frutic 28: 514-517. https://doi.org/10.1590/S0100-29452006000300038.
https://doi.org/10.1590/S0100-2945200600...
, Marcic 2012MARCIC D. 2012. Acaricides in modern management of plant-feeding mites. J Pest Sci 85(4): 395-408. https://doi.org/10.1007/s10340-012-0442-1.
https://doi.org/10.1007/s10340-012-0442-...
, Joshi et al. 2023JOSHI NK, PHAN NT & BIDDINGER DJ. 2023. Management of Panonychus ulmi with Various Miticides and Insecticides and Their Toxicity to Predatory Mites Conserved for Biological Mite Control in Eastern U.S. Apple Orchards. Insects 14(3): 228. https://doi.org/10.3390/insects14030228.
https://doi.org/10.3390/insects14030228...
). For Gonzalez (1981)GONZALEZ RH. 1981. The red spider mites of apple and pear. Revista Fruticola 2(1): 3-9., the occurrence of P. ulmi in apple trees is more influenced by the type of management used than by climatic conditions. The resistance of pests such as P. ulmi to non-selective pesticides (Lorenzato 1987LORENZATO D. 1987. Controle biológico de ácaros fitófagos na cultura da macieira no município de Farroupilha - RS. Agronomia Sulriograndense 23(2): 167-183.) and the growing consumer demand for reducing the amount of pesticide residues present in fruits led to the implementation of new techniques to control these organisms (Walker et al. 2017WALKER JTS, SUCKLING DM & WEARING HC. 2017. Past, present, and future of integrated control of apple pests: the New Zealand experience. Annu Rev Entomol 62: 231-248. https://doi.org/10.1146/annurev-ento-031616-035626.
https://doi.org/10.1146/annurev-ento-031...
). From this, studies of integrated control strategies of phytophagous mites associated with apple trees were being developed, so that pesticide sprays were minimized and that phytoseiids had sufficient resistance to control mainly P. ulmi and T. urticae in apple trees (Hoyt 1969HOYT SC. 1969. Integrated chemical control of insects and biological control of mites on apple in Washington. J Econ Entom 62(1): 74-86. https://doi.org/10.1093/jee/62.1.74.
https://doi.org/10.1093/jee/62.1.74...
, Collyer & Van Geldermalsen 1975COLLYER E & VAN GELDERMALSEN M. 1975. Integrated control of apple pests in New Zealand 1. Outline of experiment and general results. N Z J Zool 2(1): 101-134. https://doi.org/10.1080/03014223.1975.9517865.
https://doi.org/10.1080/03014223.1975.95...
, Baillod et al. 1982BAILLOD M, GUIGNARD E, PH A, PH Z, KLAY A & GENINI M. 1982. [The problematic nature of control of mites in apple orchards (P. ulmi/red spider mite) (T. urticae/ two-spotted spider mite)]. [French]. Revue suisse de viticulture arboriculture horticulture., Joshi et al. 2023JOSHI NK, PHAN NT & BIDDINGER DJ. 2023. Management of Panonychus ulmi with Various Miticides and Insecticides and Their Toxicity to Predatory Mites Conserved for Biological Mite Control in Eastern U.S. Apple Orchards. Insects 14(3): 228. https://doi.org/10.3390/insects14030228.
https://doi.org/10.3390/insects14030228...
). As a result, the use of organophosphate insecticides has been reduced, with pest monitoring, control with the use of selective insecticides and biological control systems being implemented.

Some fungicides reduce the population density of A. schlechtendali without causing damage to predatory mites, and their use may be encouraged in Integrated Pest Management programs (IPM) (Maeyer et al. 1992MAEYER L, VINCINAUX C, PEUMANS H, VERREYDT J, BERGE C, MERKENS W & STERK G. 1992. Usefulness of tolylfluanid in integrated pest control on apples as a regulator of the mite complex equilibrium and with contribution to intrinsic fruit quality of apple cv. Acta Hortic 253-264. https://doi.org/10.17660/ActaHortic.1993.347.28.
https://doi.org/10.17660/ActaHortic.1993...
). Before any type of alternative control is approved, an analysis of the possible side effects of products frequently used to control pests must be carried out, due to the danger of affecting populations of predatory fauna. Pesticides harmful to predatory mites can cause outbreaks of phytophagous mites in agriculture (Hardman et al. 2003HARDMAN JM, FRANKLIN JL, MOREAU DL & BOSTANIAN NJ. 2003. An index for selective toxicity of miticides to phytophagous mites and their predators based on orchard trials. Pest Manag Sci: formerly Pesticide Science 59(12): 1321-1332. https://doi.org/10.1002/ps.769.
https://doi.org/10.1002/ps.769...
). The adoption of selective pest management can reduce the status of several organisms previously of economic importance, including some insects and mites, improving phytosanitary performance and contributing to a reduction in the use of pesticides (Walker et al. 2017WALKER JTS, SUCKLING DM & WEARING HC. 2017. Past, present, and future of integrated control of apple pests: the New Zealand experience. Annu Rev Entomol 62: 231-248. https://doi.org/10.1146/annurev-ento-031616-035626.
https://doi.org/10.1146/annurev-ento-031...
). Some studies related to the selectivity of pesticides for use in IPM programs in apple trees have been developed mainly to control P. ulmi (Monteiro 1994MONTEIRO LB. 1994. Manejo integrado de Panonychus ulmi em macieira. Primeiras experiências com a introdução de Neoseiulus californicus. Rev Bras Frutic 16: 46-53., 2001, 2002, Monteiro et al. 2002MONTEIRO LB, BELLI L, SOUZA AD & WERNER AL. 2002. Effect of weed management on Neoseiulus californicus (Acari: Phytoseiidae) in apple orchard. Rev Bras Frutic 24: 680-682. https://doi.org/10.1590/S0100-29452002000300027.
https://doi.org/10.1590/S0100-2945200200...
). Monteiro et al. (2006)MONTEIRO LB, SOUZA A & PASTORI PL. 2006. Economic comparison of biological and chemical control in the management of red spider mites in apple orchard. Rev Bras Frutic 28: 514-517. https://doi.org/10.1590/S0100-29452006000300038.
https://doi.org/10.1590/S0100-2945200600...
, when carrying out an economic analysis between conventional management and biological control in the apple tree, found that the costs of machinery and labor did not present a significant difference in the evaluated orchards. However, the amounts spent on acaricides were significantly lower in the orchard where the biological control was carried out, indicating that, even with the investments in structure and maintenance, necessary for the creation of predatory mites, the biological management was presented as the most viable economically. Biological control is the most practical, economical and ecologically correct way to control mites that cause damage in apple trees (Lorenzato et al. 1986LORENZATO D, GRELLMANN EO, CHOUENE EC & CACHAPUZ LMM. 1986. Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2): 215-242., Monteiro et al. 2006MONTEIRO LB, SOUZA A & PASTORI PL. 2006. Economic comparison of biological and chemical control in the management of red spider mites in apple orchard. Rev Bras Frutic 28: 514-517. https://doi.org/10.1590/S0100-29452006000300038.
https://doi.org/10.1590/S0100-2945200600...
).

Biological control

The richness of predators naturally established in the environment is related to the quantity and diversity of phytophagous mites, being directly correlated with the balance of the ecosystem (Kazmierczak & Lewandowski 2006KAZMIERCZAK B & LEWANDOWSKI M. 2006. Phytoseiid mites (Acari: Phytoseiidae) inhabiting coniferous trees in natural habitats in Poland. Biol Lett 43(2): 315-326., Mailloux et al. 2010MAILLOUX J, BELLEC FL, KREITER S, TIXIER MS & DUBOIS P. 2010. Influence of ground cover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in Guadeloupean citrus orchards. Exp Appl Acarol 52: 275-290. https://doi.org/10.1007/s10493-010-9367-7.
https://doi.org/10.1007/s10493-010-9367-...
). Biological control is presented as a technique that uses living organisms to reduce populations of organisms that reach the status of pest or economic damage in agroecosystems. This is a technique studied for a long time to control the most diverse groups of mites that cause damage to plants in the world (Sabelis 1985SABELIS MW. 1985. Reproductive strategies. In: Sabelis MW & Helle W (Eds). Spider mites: Their biology natural enemies and control. Amsterdam: Elsevier, 1: 141-160., Lorenzato 1987LORENZATO D. 1987. Controle biológico de ácaros fitófagos na cultura da macieira no município de Farroupilha - RS. Agronomia Sulriograndense 23(2): 167-183., Lorenzato & Secchi 1993LORENZATO D & SECCHI VA. 1993. Controle biológico de ácaros da macieira no Rio Grande do Sul: 1- Ocorrência e efeitos dos ácaros fitófagos e seus inimigos naturais em pomares submetidos ao controle biológico e com acaricidas. Rev Bras Frutic 15(1): 211-220., Lindquist et al. 1996LINDQUIST EE, BRUIN J & SABELIS MW. 1996. Eriophyoid mites: their biology, natural enemies and control. Elsevier. https://doi.org/10.1146/annurev-ento-010715-023907.
https://doi.org/10.1146/annurev-ento-010...
, Monteiro et al. 2006MONTEIRO LB, SOUZA A & PASTORI PL. 2006. Economic comparison of biological and chemical control in the management of red spider mites in apple orchard. Rev Bras Frutic 28: 514-517. https://doi.org/10.1590/S0100-29452006000300038.
https://doi.org/10.1590/S0100-2945200600...
). The applied biological control (CBA) is a strategy that has been standing out and its use is constantly growing (Penteado 2006PENTEADO SR. 2006. Defensivos Alternativos e Naturais. 3rd. Campinas, São Paulo: Livros Via Orgânica.). The CBA aims to regulate plant and animal populations through inundative releases of a biological control agent after mass rearing, in the laboratory (Parra et al. 2002PARRA JRP, BOTELHO PSM, FERREIRA BSC & BENTO JM. 2002. Controle biológico: uma visão inter e multidisciplinar. Controle biológico no Brasil: parasitóides e predadores. Manole, São Paulo, p. 125-142.). The success of applied biological control is based on the use of several management strategies (Monteiro 2002MONTEIRO LB. 2002. Apple integrated pest management in Rio Grande do Sul: II. the use of The Neoseiulus californicus for control of the Panonychus ulmi. Rev Bras Frutic 24: 395-405. https://doi.org/10.1590/S0100-29452002000200024.
https://doi.org/10.1590/S0100-2945200200...
, Monteiro et al. 2002MONTEIRO LB, BELLI L, SOUZA AD & WERNER AL. 2002. Effect of weed management on Neoseiulus californicus (Acari: Phytoseiidae) in apple orchard. Rev Bras Frutic 24: 680-682. https://doi.org/10.1590/S0100-29452002000300027.
https://doi.org/10.1590/S0100-2945200200...
).

For the biological control of phytophagous mites, the Phytoseiidae stand out with a large number of species being used today (McMurtry et al. 2013MCMURTRY JA, MORAES GJ & SOURASSOU NF. 2013. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18(4): 297-320. https://doi.org/10.11158/saa.18.4.1.
https://doi.org/10.11158/saa.18.4.1...
, 2015). Some species are known to be effective natural controllers of Tetranychidae and Eriophyidae mites, especially N. californicus, which is already commercialized for use in biological control programs. In Brazil, N. californicus is a predatory species that has been studied and has been shown to be efficient for the biological control of P. ulmi in apple trees (Monetti & Fernandez 1995MONETTI LN & FERNANDEZ NA. 1995. Seasonal population dynamics of the European red mite (Panonychus ulmi) and its predator Neoseiulus californicus in a sprayed apple orchard in Argentina (Acari: Tetranychidae, Phytoseiidae). Acarologia 36(4): 325-331., Monteiro 2002MONTEIRO LB. 2002. Apple integrated pest management in Rio Grande do Sul: II. the use of The Neoseiulus californicus for control of the Panonychus ulmi. Rev Bras Frutic 24: 395-405. https://doi.org/10.1590/S0100-29452002000200024.
https://doi.org/10.1590/S0100-2945200200...
, Monteiro et al. 2002MONTEIRO LB, BELLI L, SOUZA AD & WERNER AL. 2002. Effect of weed management on Neoseiulus californicus (Acari: Phytoseiidae) in apple orchard. Rev Bras Frutic 24: 680-682. https://doi.org/10.1590/S0100-29452002000300027.
https://doi.org/10.1590/S0100-2945200200...
). In 1995, the biological control of P. ulmi was implemented in commercial apple orchards in Fraiburgo, through the introduction of N. californicus in greenhouses and successive inoculation releases in the field (Monteiro 2002MONTEIRO LB. 2002. Apple integrated pest management in Rio Grande do Sul: II. the use of The Neoseiulus californicus for control of the Panonychus ulmi. Rev Bras Frutic 24: 395-405. https://doi.org/10.1590/S0100-29452002000200024.
https://doi.org/10.1590/S0100-2945200200...
, Monteiro et al. 2002MONTEIRO LB, BELLI L, SOUZA AD & WERNER AL. 2002. Effect of weed management on Neoseiulus californicus (Acari: Phytoseiidae) in apple orchard. Rev Bras Frutic 24: 680-682. https://doi.org/10.1590/S0100-29452002000300027.
https://doi.org/10.1590/S0100-2945200200...
). For Lorenzato et al. (1986)LORENZATO D, GRELLMANN EO, CHOUENE EC & CACHAPUZ LMM. 1986. Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2): 215-242. the biological control of mites that cause damage in apple trees proved to be the most practical and economical to be carried out and safer for the environment. Neoseiulus californicus is a highly adaptable generalist predator with a wide geographic distribution, used commercially for a wide variety of cultivars and environments (Moraes et al. 1986MORAES GJ, MCMURTRY JA & DENMARK HA. 1986. A catalog of the mite family Phytoseiidae: reference to taxonomy, synonymy, distribution and habitat. 1nd. Brasília: EMBRAPA-DDT, 361 p.). The species is easy to establish as it can survive and reproduce on alternative food sources, including various mites, insects and pollen (Croft et al. 1998CROFT BA, MONETTI LN & PRATT PD. 1998. Comparative life histories and predation types: are Neoseiulus californicus and N. fallacis (Acari: Phytoseiidae) similar type II selective predators of spider mites. Environ Entomol 27(3): 531-538. https://doi.org/10.1093/ee/27.3.531.
https://doi.org/10.1093/ee/27.3.531...
), although it prefers spider mites (McMurtry & Croft 1997MCMURTRY JA & CROFT BA. 1997. Life-styles of Phytoseiid mites and their roles in biological control. Annu Rev Entomol 42(1): 291–321. https://doi.org/10.1146/annurev.ento.42.1.291.
https://doi.org/10.1146/annurev.ento.42....
). Even though some predator species such as N. californicus are acquiring some resistance to agricultural pesticides, these chemicals should not be applied successively in commercial apple orchards, as their effects prevent the natural enemy from effectively controlling P. ulmi (Meyer et al. 2009MEYER GA, KOVALESKI A & SANHUEZA RMV. 2009. Seletividade de agrotóxicos usados na cultura da macieira a Neoseiulus Californicus (McGregor) (Acari: Phytoseiidae). Rev Bras Frutic 31: 381-387. https://doi.org/10.1590/S0100-29452009000200011.
https://doi.org/10.1590/S0100-2945200900...
). Neoseiulus californicus has already proven its ability to control P. ulmi in apple orchards (Monetti & Fernandez 1995MONETTI LN & FERNANDEZ NA. 1995. Seasonal population dynamics of the European red mite (Panonychus ulmi) and its predator Neoseiulus californicus in a sprayed apple orchard in Argentina (Acari: Tetranychidae, Phytoseiidae). Acarologia 36(4): 325-331., Monteiro 2002MONTEIRO LB. 2002. Apple integrated pest management in Rio Grande do Sul: II. the use of The Neoseiulus californicus for control of the Panonychus ulmi. Rev Bras Frutic 24: 395-405. https://doi.org/10.1590/S0100-29452002000200024.
https://doi.org/10.1590/S0100-2945200200...
, Monteiro et al. 2002MONTEIRO LB, BELLI L, SOUZA AD & WERNER AL. 2002. Effect of weed management on Neoseiulus californicus (Acari: Phytoseiidae) in apple orchard. Rev Bras Frutic 24: 680-682. https://doi.org/10.1590/S0100-29452002000300027.
https://doi.org/10.1590/S0100-2945200200...
). However, in places where T. urticae is more common, it may not be as efficient. In this case, other phytoseiids can be used more effectively, such as N. fallacis and G. occidentalis, known biological control agents in apple orchards (Wearing & Penman 1975WEARING CH & PENMAN DR. 1975. Survey for insecticide-resistant predatory mites in Nelson 1974-75. Orchardist of N Z 48: 122., Wearing & Gunson 1976WEARING CH & GUNSON FA. 1976. Insecticide resistant predatory mites in apple orchards. Orchardist of N Z 49: 157-158.). In the USA N. fallacis is also a known phytoseiid mite present in orchards where it is adapted to moderate cold climates, being an effective predator of P. ulmi and T. urticae (Croft & Brown 1975CROFT BA & BROWN AWA. 1975. Responses of arthropod natural enemies to insecticides. Annu Rev Entomol 20(1): 285-335.). It is important because it does not disperse from the environment if it is not handled correctly. In that region, N. fallacis spends the winter hiding in the ground cover, feeding on mites in the spring and migrating to the apple trees in the summer, a period when prey on the ground begins to become scarce, always looking for food (Croft & McGroarty 1977CROFT BA & MCGROARTY DL. 1977. The role of Amblyseius fallacis (Acarina: Phytoseiidae) in Michigan apple orchards. Research Report 333: 2-22.). Once on the apple tree, N. fallacis seeks to feed mainly on P. ulmi, looking for other options such as T. urticae and A. schlechtendali, when the main food is lacking (Croft & McGroarty 1977CROFT BA & MCGROARTY DL. 1977. The role of Amblyseius fallacis (Acarina: Phytoseiidae) in Michigan apple orchards. Research Report 333: 2-22.). Thus, using the association of these predators against the phytophagous mites at the beginning of the season can be even more efficient, avoiding a large proliferation and reducing the need for acaricide applications during production (Penman et al. 1976PENMAN DR, FERRO DN & WEARING CH. 1976. Azinphosmethyl resistance in strains of Typhlodromus pyri from Nelson. N Z J Exp Agriculture 4(4): 377-380. https://doi.org/10.1080/03015521.1976.10425903.
https://doi.org/10.1080/03015521.1976.10...
).

CONCLUSIONS

his review brings information about the acarofauna of the apple crop in the world, contributing to the recognition of the potential of apple cultivation in several countries. Briefly reports the social and economic importance, as well as the mite species that are present in the apple chain and the pest species control methods. The apple crop has been standing out and increasing its importance on the world stage, however, due to inadequate management, there is an imbalance in the environment and phytophagous mite species are increasing their populations and acquiring resistance against acaricides. The problem tends to increase if more sustainable alternatives for crop management are not defined. Before approving conventional control, it is necessary to carry out an analysis of the possible side effects of the products used on the populations of natural enemies. Pesticides harmful to predatory mites can cause outbreaks of phytophagous mites in agriculture. Due to the presence of A. schlechtendali, it is interesting to plan ways of adopting biological control strategies in Brazilian apple orchards, as this mite can reach the status of a pest in the crop. Thus, it is important that the available literature be evaluated, that the mite species present in the culture are identified and that, based on that, forms of conscious management are developed for the species of economic importance in the apple tree. Bearing in mind that human and animal health and environmental balance must be maintained and prioritized.

ACKNOWLEDGMENTS

The authors are grateful to Universidade do Vale do Taquari – Univates; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES); Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul – FAPERGS; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

REFERENCES

  • AMRINE JR JW & STASNY TA. 1996. Corrections to the catalog of the Eriophyoidea (Acarina: Prostigmata) of the world. Int J Acarol 22(4): 295-304. https://doi.org/10.1080/01647959608684108.
    » https://doi.org/10.1080/01647959608684108
  • ANDERSON PK, CUNNINGHAM AA, PATEL NG, MORALES FJ, EPSTEIN PR & DASZAK P. 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10): 535-544. https://doi.org/10.1016/j.tree.2004.07.021.
    » https://doi.org/10.1016/j.tree.2004.07.021
  • BAILLOD M, GUIGNARD E, PH A, PH Z, KLAY A & GENINI M. 1982. [The problematic nature of control of mites in apple orchards (P. ulmi/red spider mite) (T. urticae/ two-spotted spider mite)]. [French]. Revue suisse de viticulture arboriculture horticulture.
  • BAJDA S, DERMAUW W, GREENHALGH R, NAUEN R, TIRRY L, CLARK RM & VAN LEEUWEN T. 2015. Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. BMC genomics 16: 1-26. https://doi.org/10.1186/s12864-015-2157-1.
    » https://doi.org/10.1186/s12864-015-2157-1
  • BEERS EH, RIEDL H & DUNLEY JE. 1998. Resistance to abamectin and reversion to susceptibility to fenbutatin oxide in spider mite (Acari: Tetranychidae) populations in the Pacific Northwest. J Econ Entomol 91(2): 352-360. https://doi.org/10.1093/jee/91.2.352.
    » https://doi.org/10.1093/jee/91.2.352
  • BLEICHER E. 1974. Ocorrência do ácaro Panonychus ulmi (Koch, 1836) Tutle & Baker (1966) no Estado de Santa Catarina. Revista O Solo 66(1): 64.
  • BOTHA J & LEARMONTH S. 2005. Management of European red mite in western Australia. Department of Agriculture, Government of Western Australia. Farmnote.
  • BOUBOU A, MIGEON A, RODERICK GK & NAVAJAS M. 2011. Recent emergence and worldwide spread of the red tomato spider mite, Tetranychus evansi: genetic variation and multiple cryptic invasions. Biol Invasions 13: 81-92. https://doi.org/10.1007/s10530-010-9791-y.
    » https://doi.org/10.1007/s10530-010-9791-y
  • BROWN JK & HOVMØLLER MS. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297(5581): 537-541. https://doi.org/10.1126/science.1072678.
    » https://doi.org/10.1126/science.1072678
  • BROWN S. 2012. Apple. In: Badenes ML, Byrne DH (Ed). Fruit breeding. Boston: Springer Science&Business Media 8: 329-367. https://doi.org/10.1007/978-1-4419-0763-9_10.
    » https://doi.org/10.1007/978-1-4419-0763-9_10
  • BROWN S, KERNS DL, GORE J, LORENZ G & STEWART S. 2017. Susceptibility of twospotted spider mites (Tetranychus urticae) to abamectin in Midsouth cotton. Crop Prot 98: 179-183. https://doi.org/10.1016/j.cropro.2017.04.002.
    » https://doi.org/10.1016/j.cropro.2017.04.002
  • CAMILO AP & DENARDI F. 2002. Epagri. Cultivares: descrição e comportamento no sul do Brasil. A cultura da macieira. Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI), p. 113-168.
  • CHO JR, HONG KJ, CHOI BR, LEE SG, LEE GS, YOO JK & LEE JO. 1995. The inhibition effect of the two-spotted spider mite population density by using the introduced predacious mite (Phytoseiulus persimilis Athias-Henriot) and effect of several pesticides to the predacious mite. RDA J Agric Sci 37: 340-347.
  • CLEMENTS DR & HARMSEN R. 1990. Predatory behavior and prey-stage preferences of stigmaeid and phytoseiid mites and their potential compatibility in biological control. Can Entomol 122(2): 321-328. https://doi.org/10.4039/Ent122321-3.
    » https://doi.org/10.4039/Ent122321-3
  • COLI WM, CIURLINO RA & HOSMER T. 1994. Effect of understory and border vegetation composition on phytophagous and predatory mites in Massachusetts commercial apple orchards. Agric Ecosyst Environ 50(1): 49-60. https://doi.org/10.1016/0167-8809(94)90124-4.
    » https://doi.org/10.1016/0167-8809(94)90124-4
  • COLLYER E & VAN GELDERMALSEN M. 1975. Integrated control of apple pests in New Zealand 1. Outline of experiment and general results. N Z J Zool 2(1): 101-134. https://doi.org/10.1080/03014223.1975.9517865.
    » https://doi.org/10.1080/03014223.1975.9517865
  • CORRÊA LLC, SILVA DE, NASCIMENTO JMD, OLIVEIRA SV & FERLA NJ. 2021. Predictive distribution of Aculus schlechtendali (Acari: Eriophyidae) in southern Brazil. Int. J. Acarology 47(1): 70-73. https://doi.org/10.1080/01647954.2020.1870548.
    » https://doi.org/10.1080/01647954.2020.1870548
  • CROFT BA & BROWN AWA. 1975. Responses of arthropod natural enemies to insecticides. Annu Rev Entomol 20(1): 285-335.
  • CROFT BA & MCGROARTY DL. 1977. The role of Amblyseius fallacis (Acarina: Phytoseiidae) in Michigan apple orchards. Research Report 333: 2-22.
  • CROFT BA, MONETTI LN & PRATT PD. 1998. Comparative life histories and predation types: are Neoseiulus californicus and N. fallacis (Acari: Phytoseiidae) similar type II selective predators of spider mites. Environ Entomol 27(3): 531-538. https://doi.org/10.1093/ee/27.3.531.
    » https://doi.org/10.1093/ee/27.3.531
  • CUTHBERTSON AG & MURCHIE AK. 2010. A brief life history of Panonychus ulmi (red spider mite) in apple orchards. Applied Plant Science Division, UK.
  • DELATTRE P. 1974. Study of the effectiveness of Zetzellia mali (Acari: Stigmaeidae) as a predator of red spider mite Panonychus ulmi (Acari: Tetranychidae) on apple. Entomophaga 19: 13-31. https://doi.org/10.1007/BF02371505.
    » https://doi.org/10.1007/BF02371505
  • DERAL - DEPARTAMENTO DE ECONOMIA RURAL. 2020. Fruticultura - Análise da Conjuntura. Available at: https://www.agricultura.pr.gov.br/sites/default/arquivos_restritos/files/ documento/2020-01/fruticultura_2020.pdf Access on July 25, 2022.
    » https://www.agricultura.pr.gov.br/sites/default/arquivos_restritos/files/ documento/2020-01/fruticultura_2020.pdf
  • DI CASTRI F. 1990. On invading species and invaded ecosystems: the interplay of historical chance and biological necessity. In: Biological invasions in Europe and the Mediterranean Basin. Dordrecht, Springer, p. 3-16.
  • DUSO C, CASTAGNOLI M, SIMONI S & ANGELI G. 2010. The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Exp Appl Acarol 51: 151-168. https://doi.org/10.1007/s10493-009-9300-0.
    » https://doi.org/10.1007/s10493-009-9300-0
  • DUSO C, POZZEBON A, KREITER S, TIXIER MS & CANDOLFI M. 2012. Management of phytophagous mites in European vineyards. In: Bostanian, NJ, Vincent C & Rufus I (Eds). Arthropod Management in Vineyards. Dordrecht: Springer, p. 191-217.
  • EASTERBROOK MA & PALMER JW. 1996. The relationship between early-season leaf feeding by apple rust mite, Aculus schlechtendali (Nal.), and fruit set and photosynthesis of apple. J Hortic Sci 71(6): 939-944. https://doi.org/10.1080/14620316.1996.11515478.
    » https://doi.org/10.1080/14620316.1996.11515478
  • ELLINGSEN IJ. 1971. Biology of Zetzellia mali (Ewing) and Agistemus fleschneri (Acarina: Stigmaeidae) related to their abilities to control the European red mite Panonychus ulmi (Koch) (Acarina: Tetranychidae). Master of Science, Ohio State University.
  • EVANS GO. 1992. Principles of Acarology. Wallingford: CAB International, p. 563.
  • FAN QH & FLECHTMANN CH. 2015. Stigmaeidae. In: Carrillo D, Moraes GJ & Peña JE (Ed). Prospects for biological control of plant feeding mites and other harmful organisms. Springer, p. 185-206. https://doi.org/10.1007/978-3-319-15042-0_7.
  • FAN QH & ZHANG ZQ. 2005. Raphignathoidea (Acari: Prostigmata). Fauna N Z https://doi.org/10.7931/J2/FNZ.52
    » https://doi.org/10.7931/J2/FNZ.52
  • FAORO ID. 2018. Seleção de mutantes espontâneos de macieira. Boletim Técnico, Florianópolis, 39. Available at: https://publicacoes.epagri.sc.gov.br/BT/article/view/427 Access on July 25, 2022.
    » https://publicacoes.epagri.sc.gov.br/BT/article/view/427
  • FERLA NJ & BOTTON M. 2008. Ocorrência do ácaro vermelho europeu Panonychus ulmi (Koch) (Tetranychidae) associado à cultura da videira no Rio Grande do Sul, Brasil. Cienc Rural 38: 1758-1761. https://doi.org/10.1590/S0103-84782008000600042.
    » https://doi.org/10.1590/S0103-84782008000600042
  • FERLA NJ & MORAES GJ. 1998. Ácaros predadores em pomares de maçã no Rio Grande do Sul. Neotrop Entomol 27: 649-654. https://doi.org/10.1590/S0301-80591998000400019.
    » https://doi.org/10.1590/S0301-80591998000400019
  • FERLA NJ, SILVA DE, NAVIA D, NASCIMENTO JM, JOHANN L & LILLO E. 2018. Occurrence of the quarantine mite pest Aculus schlechtendali (Acari: Eriophyidae) in apple orchards of Serra Gaúcha, Rio Grande do Sul state, Brazil. Syst Appl Acarol 23(6): 1190-1198. https://doi.org/10.11158/saa.23.6.14.
    » https://doi.org/10.11158/saa.23.6.14
  • FERNANDEZ DE, BEERS EH, BRUNNER JF, DOERR MD & DUNLEY JE. 2006. Horticultural mineral oil applications for apple powdery mildew and codling moth, Cydia pomonella (L.). Crop Prot 25(6): 585-591. https://doi.org/10.1016/j.cropro.2005.08.014.
    » https://doi.org/10.1016/j.cropro.2005.08.014
  • FIORAVANÇO JC, GIRARDI CL, CZERMAINSKI ABC, SILVA GA, NACHTIGALL GR & OLIVEIRA PRD. 2010. Cultura da macieira no Rio Grande do Sul: análise situacional e descrição varietal. Embrapa Uva e Vinho-Documentos (INFOTECA-E). Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/864891/cultura-da-macieira-no-rio-grande-do-sul-analise-situacional-e-descricao-varietal-folder Access on July 25, 2022.
    » https://www.embrapa.br/busca-de-publicacoes/-/publicacao/864891/cultura-da-macieira-no-rio-grande-do-sul-analise-situacional-e-descricao-varietal-folder
  • FISHER MC, HENK DA, BRIGGS CJ, BROWNSTEIN JS, MADOFF LC, MCCRAW SL & GURR SJ. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393): 186-194. https://doi.org/10.1038/nature10947.
    » https://doi.org/10.1038/nature10947
  • FLECHTMANN CHW. 1967. Ácaros encontrados sobre maçãs de procedência Argentina. Sci Agric 24: 83-85. https://doi.org/10.1590/S0071-12761967000100007.
    » https://doi.org/10.1590/S0071-12761967000100007
  • FLECHTMANN CHW. 1975. Fundamentals of acarology. São Paulo: Livraria Nobel S.A., 344 p.
  • FLOOD J. 2010. The importance of plant health to food security. Food Secur 2(3): 215-231. https://doi.org/10.1007/s12571-010-0072-5.
    » https://doi.org/10.1007/s12571-010-0072-5
  • FUNAYAMA K, KOMATUS M, SONODA S, TAKAHASHI I & HARA K. 2015. Management of apple orchards to conserve generalist phytoseiid mites suppresses two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 65: 43-54. https://doi.org/10.1007/s10493-014-9850-7.
    » https://doi.org/10.1007/s10493-014-9850-7
  • FUNAYAMA K & TAKAHASHI Y. 1992. Studies on ecology of Apple rust mite Aculus schlechtendali (Nalepa) (Acarina: Eriophyidae). Bulletin of Akita Fruit-Tree Experimental Station 22: 9-22.
  • GALLO D, NAKANO O, NETO SS, CARVALHO RPL, BATISTA GD. 1988 (Ed). Manual de entomologia agrícola. São Paulo: Agronômica Ceres, 649 p.
  • GERSON U. 1972. Mites of the genus Ledermuelleria (Prostigmata: Stigmaeidae) associated with mosses in Canada. Acarologia 13(2): 319-343.
  • GERSON U, SMILEY RL & OCHOA R. 2008. Mites (Acari) for pest control. J Wiley & Sons.
  • GLIESSMAN SR. 2005. Agroecologia: processos ecológicos em agricultura sustentável, 3rd. Porto Alegre: Editora da UFRGS, 653 p.
  • GONZALEZ RH. 1981. The red spider mites of apple and pear. Revista Fruticola 2(1): 3-9.
  • GONZALEZ RH. 1985. Ácaros eriofidos del manzano y pera en Chile (Acarina: Eriophyidae). Rev Chil Entomol 12: 77-84.
  • HAMPSON CR & KEMP H. 2003. Characteristics of important commercial apple cultivars. In: Ferre DC & Warrington IJ (Eds). Apples: botany, production and uses. Wallingford: CAB International, p. 61-89. https://doi.org/10.1079/9780851995922.0061
    » https://doi.org/10.1079/9780851995922.0061
  • HANCOCK JF. 2014. Plant evolution and the origin of crop species. Cabi, Wallingford, UK, 245 p.
  • HARDMAN JM, FRANKLIN JL, MOREAU DL & BOSTANIAN NJ. 2003. An index for selective toxicity of miticides to phytophagous mites and their predators based on orchard trials. Pest Manag Sci: formerly Pesticide Science 59(12): 1321-1332. https://doi.org/10.1002/ps.769.
    » https://doi.org/10.1002/ps.769
  • HARLAN JR. 1992. Crops and man. 2nd. American Society of Agronomy, Madison, Wisconsin, 284 p.
  • HELLE W & SABELIS MW. 1985. Spider mites: Their biology, natural enemies and control. 1nd. Amsterdam: Elsevier, p. 141-160.
  • HOY MA. 2016. Agricultural acarology: introduction to integrated mite management. CRC Press, Boca Raton.
  • HOYT SC. 1969. Integrated chemical control of insects and biological control of mites on apple in Washington. J Econ Entom 62(1): 74-86. https://doi.org/10.1093/jee/62.1.74.
    » https://doi.org/10.1093/jee/62.1.74
  • HUFFAKER CB, VAN DE VRIE M & MCMURTRY JA. 1969. The ecology of tetranychid mites and their natural control. Annu. Rev. Entomol 14(1): 125-174.
  • IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2021. Produção de Maçã. Available at: https://www.ibge.gov.br/explica/producao-agropecuaria/maca/br Access on July 25, 2022.
    » https://www.ibge.gov.br/explica/producao-agropecuaria/maca/br
  • IGLESIAS I, ECHEVERRIA G & SORIA Y. 2008. Differences in fruit colour development, anthocyanin content, fruit quality and consumer acceptability of eight ‘Gala’ apple strains. Sci Hortic 119(1): 32-40. https://doi.org/10.1016/j.scienta.2008.07.004.
    » https://doi.org/10.1016/j.scienta.2008.07.004
  • JAMALI MA, KAMALI K, SABOORI A & NOWZARI J. 2001. Biology of Zetzellia mali (Ewing) (Acari: Stigmaeidae) in Karaj, Iran. Syst Appl Acarol 6(1): 55-60. https://doi.org/10.11158/saa.6.1.9.
    » https://doi.org/10.11158/saa.6.1.9
  • JAMIL RZR, VANDERVOORT C & WISE JC. 2019. Residual Toxicity of Insecticides to Neoseiulus fallacis (Acari: Phytoseiidae) in Apples. J Econ Entom 112(5): 2262-2267. https://doi.org/10.1093/jee/toz131.
    » https://doi.org/10.1093/jee/toz131
  • JEPPSON LR, KEIFER HH & BAKER EW. 1975. Mites injurious to economic plants. Berkeley, CA: University of California Press, 614 p.
  • JOHANN L & FERLA NJ. 2012. Mite (Acari) population dynamics in grapevines (Vitis vinifera) in two regions of Rio Grande do Sul, Brazil. Int J Acarol 38(5): 386-393. https://doi.org/10.1080/01647954.2012.657240.
    » https://doi.org/10.1080/01647954.2012.657240
  • JOSHI NK, PHAN NT & BIDDINGER DJ. 2023. Management of Panonychus ulmi with Various Miticides and Insecticides and Their Toxicity to Predatory Mites Conserved for Biological Mite Control in Eastern U.S. Apple Orchards. Insects 14(3): 228. https://doi.org/10.3390/insects14030228.
    » https://doi.org/10.3390/insects14030228
  • KAZMIERCZAK B & LEWANDOWSKI M. 2006. Phytoseiid mites (Acari: Phytoseiidae) inhabiting coniferous trees in natural habitats in Poland. Biol Lett 43(2): 315-326.
  • KHAJURIA DR. 2009. Predatory complex of phytophagous mites and their role in integrated pest management in apple orchard. J Biopest 2(2): 141-144.
  • KIST BB, CARVALHO C & BELING RR. 2019. Anuário Brasileiro de Horti & Fruti. Editora Gazeta, Santa Cruz do Sul, RS, 96 p. Available at: https://www.editoragazeta.com.br /produto/anuario-brasileiro-de-horti-fruti-2019/ Access on August 01, 2022.
    » https://www.editoragazeta.com.br /produto/anuario-brasileiro-de-horti-fruti-2019/
  • KIST BB, CARVALHO C & BELING RR. 2022. Anuário Brasileiro de Horti & Fruti. Editora Gazeta, Santa Cruz do Sul, RS, 96 p. Available at: https://www.editoragazeta.com .br/produto/anuario-brasileiro-de-horti-fruti-2022/ Access on August 01, 2022.
    » https://www.editoragazeta.com .br/produto/anuario-brasileiro-de-horti-fruti-2022/
  • KLOCK CL, BOTTON M & FERLA NJ. 2011. Mitefauna (Arachnida: Acari) associated to grapevine, Vitis vinifera L. (Vitaceae), in the municipalities of Bento Gonçalves and Candiota, Rio Grande do Sul, Brazil. Check List 7: 522-536. https://doi.org/10.15560/7.4.522.
    » https://doi.org/10.15560/7.4.522
  • KNOWLES CO. 1997. Mechanisms of resistance to acaricides. In: (Ed), Molecular Mechanisms of Resistance to Agrochemicals. Chemistry of Plant Protection, Springer, Berlin, Heidelberg, p. 57-77. https://doi.org/10.1007/978-3-662-03458-3_3
    » https://doi.org/10.1007/978-3-662-03458-3_3
  • KOMATSU H. 1998. Red Fuji in Japan – choosing the best strain for your business strategy. Compact Fruit Tree, Middleburg. Bulletin of the Nagano Fruit Tree Experiment Station 31: 44-45.
  • KOVALESKI A & RIBEIRO LG. 2002. Manejo de pragas na produção integrada de maçã. Embrapa Uva e Vinho-Circular Técnica (INFOTECA-E). Available at: https://www.infoteca.cnptia.embrapa.br/handle/doc/536603?locale=es Access on August 01, 2022.
    » https://www.infoteca.cnptia.embrapa.br/handle/doc/536603?locale=es
  • KOZLOWSKI J & BOCZEK J. 1987. Overwintering of the apple rust mite Aculus schlechtendali (Nal.) (Acarina: Eriophyoidea). Prace Naukowe Instytutu Ochrony Roślin 29(1): 51-62.
  • KOZLOWSKI J & BOCZEK J. 1989. Life-cycle of apple rust mite, Aculus schlechtendali (Nal.). Prace Naukowe Instytutu Ochrony Roślin 31(2): 49-65.
  • KOZLOWSKI J & ZIELINSKA LIDIA. 1997. Cytological changes in apple leaves infested with the apple rust mite - Aculus schlechtendali [Nal.][Acarina: Eriophyidae]. J Plant Prot Res 37(1-2).
  • KVITSCHAL MV, COUTO M & LEITE GB. 2022. Necessidade da diversificação de cultivares na cadeia produtiva da maçã no Brasil. Agropecuária catarinense, Florianópolis 35(3): 7-10.
  • LANDAU EC & SILVA GA. 2020. Evolução da produção de maçã (Malus x domestica, Rosaceae). Embrapa Milho e Sorgo. EMBRAPA. Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1122681/evolucao-da-producao-de-maca-malus-x-domestica-rosaceae Access on August 01, 2022.
    » https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1122681/evolucao-da-producao-de-maca-malus-x-domestica-rosaceae
  • LINDQUIST EE, BRUIN J & SABELIS MW. 1996. Eriophyoid mites: their biology, natural enemies and control. Elsevier. https://doi.org/10.1146/annurev-ento-010715-023907
    » https://doi.org/10.1146/annurev-ento-010715-023907
  • LORENZATO D. 1987. Controle biológico de ácaros fitófagos na cultura da macieira no município de Farroupilha - RS. Agronomia Sulriograndense 23(2): 167-183.
  • LORENZATO D. 1988. Ocorrência e controle biológico de ácaros fitófagos em fruteiras rosáceas. IPAGRO informa 31: 93-96.
  • LORENZATO D, GRELLMANN EO, CHOUENE EC & CACHAPUZ LMM. 1986. Flutuação populacional de ácaros fitófagos e seus predadores associados à cultura da macieira (Malus domestica Bork) e efeitos dos controles químicos e biológicos. Agronomia Sulriograndense 22(2): 215-242.
  • LORENZATO D & MELZER R. 1984. Efeitos dos acaricidas e inseticidas no controle do ácaro vermelho europeu Panonychus ulmi (Koch), na cultura da macieira (Malus domestica Bork). Agronomia Sulriograndense 20(2): 135-151.
  • LORENZATO D & SECCHI VA. 1993. Controle biológico de ácaros da macieira no Rio Grande do Sul: 1- Ocorrência e efeitos dos ácaros fitófagos e seus inimigos naturais em pomares submetidos ao controle biológico e com acaricidas. Rev Bras Frutic 15(1): 211-220.
  • MAEYER L, VINCINAUX C, PEUMANS H, VERREYDT J, BERGE C, MERKENS W & STERK G. 1992. Usefulness of tolylfluanid in integrated pest control on apples as a regulator of the mite complex equilibrium and with contribution to intrinsic fruit quality of apple cv. Acta Hortic 253-264. https://doi.org/10.17660/ActaHortic.1993.347.28
    » https://doi.org/10.17660/ActaHortic.1993.347.28
  • MAILLOUX J, BELLEC FL, KREITER S, TIXIER MS & DUBOIS P. 2010. Influence of ground cover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in Guadeloupean citrus orchards. Exp Appl Acarol 52: 275-290. https://doi.org/10.1007/s10493-010-9367-7.
    » https://doi.org/10.1007/s10493-010-9367-7
  • MARCIC D. 2012. Acaricides in modern management of plant-feeding mites. J Pest Sci 85(4): 395-408. https://doi.org/10.1007/s10340-012-0442-1.
    » https://doi.org/10.1007/s10340-012-0442-1
  • MARINI RP, PFEIFFER DG & SOWERS DS. 1994. Influence of European red mite (Acari: Tetranychidae) and crop density on fruit size and quality and on crop value of ‘Delicious’ apples. J Econ Entomol 87(5): 1302-1311. https://doi.org/10.1093/jee/87.5.1302.
    » https://doi.org/10.1093/jee/87.5.1302
  • MARKÓ V, JENSER G, MIHÁLYI K, HEGYI T & BALÁZS K. 2012. Flowers for better pest control? Effects of apple orchard groundcover management on mites (Acari), leafminers (Lepidoptera, Scitellidae), and fruit pests. Biocontrol Sci Technol 22(1): 39-60. https://doi.org/10.1080/09583157.2011.642337.
    » https://doi.org/10.1080/09583157.2011.642337
  • MCMURTRY JA & CROFT BA. 1997. Life-styles of Phytoseiid mites and their roles in biological control. Annu Rev Entomol 42(1): 291–321. https://doi.org/10.1146/annurev.ento.42.1.291.
    » https://doi.org/10.1146/annurev.ento.42.1.291
  • MCMURTRY JA, HUFFAKER CB & VRIE MV. 1970. Tetranychids enemies: their biological characteres and the impact of spray practices. Hilgardia 40: 331-390.
  • MCMURTRY JA, MORAES GJ & SOURASSOU NF. 2013. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18(4): 297-320. https://doi.org/10.11158/saa.18.4.1.
    » https://doi.org/10.11158/saa.18.4.1
  • MCMURTRY JA & RODRIGUEZ JG. 1987. Nutritional Ecology of Phytoseiid Mites, Nutritional Ecology of Insects, Mites. Spiders, and Related Invertebrates 609-644.
  • MCMURTRY JA, SOURASSOU NF & DEMITE PR. 2015. The Phytoseiidae (Acari: Mesostigmata) as biological control agents. In: Prospects for biological control of plant feeding mites and other harmful organisms, Springer, Cham 133-149. https://doi.org/10.1007/978-3-319-15042-0_5
    » https://doi.org/10.1007/978-3-319-15042-0_5
  • MENDONÇA RS, NAVIA D, DINIZ IR & FLECHTMANN CH. 2011. South American spider mites: New hosts and localities. J Insect Sci 11(1): 121. https://doi.org/10.1673/031.011.12101.
    » https://doi.org/10.1673/031.011.12101
  • MEYER GA, KOVALESKI A & SANHUEZA RMV. 2009. Seletividade de agrotóxicos usados na cultura da macieira a Neoseiulus Californicus (McGregor) (Acari: Phytoseiidae). Rev Bras Frutic 31: 381-387. https://doi.org/10.1590/S0100-29452009000200011.
    » https://doi.org/10.1590/S0100-29452009000200011
  • MICHALSKA K, SKORACKA A, NAVIA D & AMRINE JW. 2010. Behavioural studies on eriophyoid mites: an overview. Exp Appl Acarol 51: 31-59. https://doi.org/10.1007/s10493-009-9319-2.
    » https://doi.org/10.1007/s10493-009-9319-2
  • MIGEON A & DORKELD F. 2023. Spider mites Web: a comprehensive database for the Tetranychidae. Trends in Acarology 557-560. Available at: https://www1.montpellier.inra.fr/CBGP/spmweb/ Access on August 01, 2022
    » https://www1.montpellier.inra.fr/CBGP/spmweb/ Access on August 01, 2022
  • MIGEON A, FERRAGUT F, COLOMAR LAE, FIABOE K, KNAPP M, MORAES GJ, UECKERMANN E & NAVAJAS M. 2009. Modelling the potential distribution of the invasive tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Exp Appl Acarol 48: 199-212. https://doi.org/10.1007/s10493-008-9229-8.
    » https://doi.org/10.1007/s10493-008-9229-8
  • MONETTI LN & FERNANDEZ NA. 1995. Seasonal population dynamics of the European red mite (Panonychus ulmi) and its predator Neoseiulus californicus in a sprayed apple orchard in Argentina (Acari: Tetranychidae, Phytoseiidae). Acarologia 36(4): 325-331.
  • MONTEIRO LB. 1994. Manejo integrado de Panonychus ulmi em macieira. Primeiras experiências com a introdução de Neoseiulus californicus. Rev Bras Frutic 16: 46-53.
  • MONTEIRO LB. 2001. Seletividade de inseticidas a Neoseiulus californicus McGregor (Acari: Phytoseiidae) em macieira, no Rio Grande do Sul. Rev Bras Frutic 23: 589-592. https://doi.org/10.1590/S0100-29452001000300029.
    » https://doi.org/10.1590/S0100-29452001000300029
  • MONTEIRO LB. 2002. Apple integrated pest management in Rio Grande do Sul: II. the use of The Neoseiulus californicus for control of the Panonychus ulmi. Rev Bras Frutic 24: 395-405. https://doi.org/10.1590/S0100-29452002000200024.
    » https://doi.org/10.1590/S0100-29452002000200024
  • MONTEIRO LB, BELLI L, SOUZA AD & WERNER AL. 2002. Effect of weed management on Neoseiulus californicus (Acari: Phytoseiidae) in apple orchard. Rev Bras Frutic 24: 680-682. https://doi.org/10.1590/S0100-29452002000300027.
    » https://doi.org/10.1590/S0100-29452002000300027
  • MONTEIRO LB, DOLL A & BOEING LF. 2008. Densidade de Neoseiulus californicus (McGregor, 1954) (Acari: Phytoseiidae) no controle do ácaro-vermelho da macieira, Fraiburgo-SC. Rev Bras Frutic 30: 902-906. https://doi.org/10.1590/S0100-29452008000400011.
    » https://doi.org/10.1590/S0100-29452008000400011
  • MONTEIRO LB, SOUZA A & PASTORI PL. 2006. Economic comparison of biological and chemical control in the management of red spider mites in apple orchard. Rev Bras Frutic 28: 514-517. https://doi.org/10.1590/S0100-29452006000300038.
    » https://doi.org/10.1590/S0100-29452006000300038
  • MORAES GJ & FLECHTMANN CHW. 2008. Manual de acarologia. Acarologia básica e ácaros de plantas cultivadas no Brasil. São Paulo: Holos Editora, 308 p.
  • MORAES GJ, MCMURTRY JA & DENMARK HA. 1986. A catalog of the mite family Phytoseiidae: reference to taxonomy, synonymy, distribution and habitat. 1nd. Brasília: EMBRAPA-DDT, 361 p.
  • MORAES GJ, MCMURTRY JA, DENMARK HA & CAMPOS CB. 2004. A revised catalog of the mite family Phytoseiidae. Zootaxa 434(1): 1-494. https://doi.org/10.11646/zootaxa.434.1.1.
    » https://doi.org/10.11646/zootaxa.434.1.1
  • MORAES GJ, MESA NC & BRAUN A. 1991. Some phytoseiid mites of Latin America (Acari: phytoseiidae). Int J Acarol 17(2): 117-139. https://doi.org/10.1080/01647959108683892.
    » https://doi.org/10.1080/01647959108683892
  • MORGANTE JS. 1991. Analítico: Mosca das frutas (Tephritidae) - Características biológicas: detecção e controle.
  • MOTA-SANCHEZ D & WISE JC. 2023. The Arthropod Pesticide Resistance Database. Michigan State University. Available at: http://www.pesticideresistance.org Access on March 15, 2023.
    » http://www.pesticideresistance.org
  • NALEPA A. 1890. Systematics of gall mites. Sitzunsberichte Akademiia Wissenschaftlichen Wien 99: 40-69.
  • NASCIMENTO JM, SILVA DE, PAVAN AM, CORRÊA LLC, SCHUSSLER M, JOHANN L & FERLA NJ. 2020. Abundance and distribution of Aculus schlechtendali on apple orchards in Southern of Brazil. Acarologia 60(4): 659-667. https://doi.org/10.24349/acarologia/20204394.
    » https://doi.org/10.24349/acarologia/20204394
  • NAVIA D. 2022. Phytophagous mite invasions in Latin America and Europe—lessons learnt from the last three decades. Zoosymposia 22: 65-65.
  • NAVIA D, MENDONÇA RS & FLECHTMANN CHW. 2006. Ácaros de expressão quarentenária para o Brasil. In: Diversidade, taxonomia e manejo de ácaros neotropicais; livros de resumos. Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo.
  • NAVIA D & MARSARO ALJ. 2010. First report of the citrus hindu mite, Schizotetranychus hindustanicus (Hirst) (Prostigmata: Tetranychidae), in Brazil. Neotrop Entomol 39: 140-143. https://doi.org/10.1590/S1519-566X2010000100021.
    » https://doi.org/10.1590/S1519-566X2010000100021
  • NAVIA D, MARSARO ALJ, SILVA FR, GONDIM MGCJ & MORAES GJ. 2011. First report of the red palm mite, Raoiella indica Hirst (Acari: Tenuipalpidae), in Brazil. Neotrop Entomol 40: 409-411.
  • NAVIA D, MORAES GJ & FLECHTMANN CHW. 2007. Phytophagous mites as invasive alien species: quarantine procedures. In: Malacara JBM, Pelletier VB, Ueckermann E, Perez TM, Estrada E, Gispert C & Badii M (Eds), Acarology: Proceedings of the XI international congress. Merida, México, p. 307-316.
  • NAVIA D, OCHOA R, WELBOURN C & FERRAGUT F. 2010. Adventive eriophyoid mites: a global review of their impact, pathways, prevention and challenges. Exp Appl Acarol 51: 225-255. https://doi.org/10.1007/s10493-009-9327-2.
    » https://doi.org/10.1007/s10493-009-9327-2
  • OCHOA R. 1991. Ácaros fitófagos de América Central: guía ilustrada. Catie.
  • PARRA JRP, BOTELHO PSM, FERREIRA BSC & BENTO JM. 2002. Controle biológico: uma visão inter e multidisciplinar. Controle biológico no Brasil: parasitóides e predadores. Manole, São Paulo, p. 125-142.
  • PENMAN DR, FERRO DN & WEARING CH. 1976. Azinphosmethyl resistance in strains of Typhlodromus pyri from Nelson. N Z J Exp Agriculture 4(4): 377-380. https://doi.org/10.1080/03015521.1976.10425903.
    » https://doi.org/10.1080/03015521.1976.10425903
  • PENTEADO SR. 2006. Defensivos Alternativos e Naturais. 3rd. Campinas, São Paulo: Livros Via Orgânica.
  • PEREIRA PDS, NAVIA D, SALVADORI J & LAU D. 2009. Ocorrência do ácaro-do-enrolamento-do-trigo Aceria tosichella Keifer (Prostigmata: Eriophyidae) no Rio Grande do Sul. Embrapa Trigo-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E). Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPT-2010/40739/1/p-bp68.pdf Access on July 25, 2022.
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPT-2010/40739/1/p-bp68.pdf
  • PETRI JL & LEITE GB. 2008. Macieira. Rev Bras Frutic 30(4): 854-1166. https://doi.org/10.1590/S0100-29452008000400001.
    » https://doi.org/10.1590/S0100-29452008000400001
  • PETRI JL, LEITE GB, COUTO M & FRANCESCATTO P. 2011. Avanços na cultura da macieira no Brasil. Rev Bras Frutic 33: 48-56. https://doi.org/10.1590/S0100-29452011000500007.
    » https://doi.org/10.1590/S0100-29452011000500007
  • PIO R, SOUZA FBMD, KALCSITS L, BISI RB & FARIAS DDH. 2018. Advances in the production of temperate fruits in the tropics. Acta Sci Agron 41: e39549 https://doi.org/10.4025/actasciagron.v41i1.39549.
    » https://doi.org/10.4025/actasciagron.v41i1.39549
  • RAMESHGAR J, KHAJEHALI R, NAUEN S, BAJDA W, JONCKHEERE W, DERMAUW T & LEEUWEN C. 2019. Point mutations in the voltage-gated sodium channel gene associated with pyrethroid resistance in Iranian populations of the European red mite Panonychus ulmi. Pestic Biochem Physiol 157: 80-87. https://doi.org/10.1016/j.pestbp.2019.03.008.
    » https://doi.org/10.1016/j.pestbp.2019.03.008
  • RAUDONIS L, VALIUSKAITE A & SURVILIENE E. 2007. Toxicity of Abamectin to rust mite, Aculus schlechtendali (Acari: Eriophyidae) in apple tree orchard. Sodinink Darzinink 26(2): 10-17.
  • SABELIS MW. 1985. Reproductive strategies. In: Sabelis MW & Helle W (Eds). Spider mites: Their biology natural enemies and control. Amsterdam: Elsevier, 1: 141-160.
  • SANTO JMBDE, SANTOS JR, SILVA LEB, LIMA LLC & LOPES EAP. 2022. Populações de insetos-praga: diversidade e similaridade em cultura agrícola. Diversitas Journal 7(1): 203-217. https://doi.org/10.48017/dj.v7i1.2068.
    » https://doi.org/10.48017/dj.v7i1.2068
  • SANTOS LW. 1994. Primórdios da pesquisa com Maçã em Santa Catarina. Agropecuária Catarinense, Florianópolis 7(3): 20-22.
  • SANTOS MA. 1982. Effect of low prey densities on the predation and oviposition of Zetzelli mali (Acari: Stigmaeidae). Environ Entomol 11(4): 972-974. https://doi.org/https://doi.org/10.1093/ee/11.4.972.
    » https://doi.org/https://doi.org/10.1093/ee/11.4.972
  • SANTOS MA & LAING JE. 1985. Stigmaeid predators. In: Helle W & Sabelis MW (Eds). Spider mites: Their biology, natural enemies and control. Amsterdam: Elsevier, 458 p.
  • SATO ME, MIYATA T, SILVA M, RAGA A & SOUZA MF. 2004. Selections for fenpyroximate resistance and susceptibility, and inheritance, cross-resistance and stability of fenpyroximate resistance in Tetranychus urticae Koch (Acari: Tetranychidae). Appl Entomol Zool 39(2): 293-302. https://doi.org/10.1590/S0006-87052007000100011.
    » https://doi.org/10.1590/S0006-87052007000100011
  • SCHMIDT-JEFFRIS RA & BEERS EH. 2018. Potential impacts of orchard pesticides on Tetranychus urticae: a predator-prey perspective. J Crop Prot 103: 56-64. https://doi.org/10.1016/j.cropro.2017.09.009.
    » https://doi.org/10.1016/j.cropro.2017.09.009
  • SILVA DE, DO NASCIMENTO JM, PAVAN AM, CORREA LLC, BIZZARO GL, FERLA JJ, TOLDI T, JOHANN L & FERLA NJ. 2022. Mite fauna abundance and composition on apples in southern Brazil. Syst Appl Acarol 27(11): 2139-2155. https://doi.org/10.34117/bjdv5n10-091.
    » https://doi.org/10.34117/bjdv5n10-091
  • SIMONI S, ANGELI G, BALDESSARI M & DUSO C. 2017. Effects of Aculus schlechtendali (Acari: Eriophyidae) population densities on Golden Delicious apple production. Acarologia 58: 134-144. https://doi.org/10.24349/acarologia/20184276.
    » https://doi.org/10.24349/acarologia/20184276
  • SPIESER F, GRAF B, WALTHER P & NOESBERGER J. 1998. Impact of apple rust mite (Acari: Eriophyidae) feeding on apple leaf gas exchange and leaf color associated with changes in leaf tissue. Environ Entomol 27(5): 1149-1156. https://doi.org/10.1093/ee/27.5.1149.
    » https://doi.org/10.1093/ee/27.5.1149
  • STRANGE RN & SCOTT PR. 2005. Plant disease: a threat to global food security. Annu Rev Phytopathol 43: 83-116. https://doi.org/10.1146/annurev.phyto.43.113004.133839.
    » https://doi.org/10.1146/annurev.phyto.43.113004.133839
  • STRAPAZZON A & MONTA LD. 1988. Role and distribution of Amblyseius andersoni (Chant) and Zetzellia mali (Ewing) in apple orchards by Aculus schlechtendali (Nalepa). Redia 71: 39-54. Available at: https://www.cabdirect.org/cabdirect/abstract/19901134685. Access on July 25, 2022.
  • STRICKLER K, CUSHING N, WHALON M & CROFT BA. 1987. Mite (Acari) species composition in Michigan apple orchards. Environ Entomol 16(1): 30-36. https://doi.org/10.1093/ee/16.1.30.
    » https://doi.org/10.1093/ee/16.1.30
  • STUMPF N & NAUEN R. 2001. Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 94(6): 1577-1583. https://doi.org/10.1603/0022-0493-94.6.1577.
    » https://doi.org/10.1603/0022-0493-94.6.1577
  • SUH E, KOH SH, LEE JH, SHIN KI & CHO K. 2006. Evaluation of resistance pattern to fenpyroximate and pyridaben in Tetranychus urticae collected from greenhouses and apple orchards using lethal concentration-slope relationship. Exp Appl Acarol 38: 151-165. https://doi.org/10.1007/s10493-006-0009-z.
    » https://doi.org/10.1007/s10493-006-0009-z
  • TIXIER MS. 2018. Predatory mites (Acari: Phytoseiidae) in agro-ecosystems and conservation biological control: a review and explorative approach for forecasting plant-predatory mite interactions and mite dispersal. Front Ecol Evol 6: 192. https://doi.org/10.3389/fevo.2018.00192.
    » https://doi.org/10.3389/fevo.2018.00192
  • TOMCZYK A & KROPCZYNSKA D. 1985. Effects on the host plant. In: Helle W & Sabelis MW (Eds). Spider Mites: Their Biology, Natural Enemies and Control, Amsterdam: Elsevier, p. 317-329.
  • TOYOSHIMA S, YAGINUMA K, IHARA F, ARAI T & TAKANASHI M. 2011. The succession of phytophagous and phytoseiid species in a newly planted apple orchard without insecticide application. Nihon Dani Gakkai Shi 20(2): 77-86. https://doi.org/10.2300/acari.20.77.
    » https://doi.org/10.2300/acari.20.77
  • VAN LEEUWEN T & DERMAUW W. 2016. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annu Rev Entomol 61: 475-498. https://doi.org/10.1146/annurev-ento-010715-023907.
    » https://doi.org/10.1146/annurev-ento-010715-023907
  • VAN LEEUWEN T, TIRRY L, YAMAMOTO A, NAUEN R & DERMAUW W. 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic Biochem Phys 121: 12-21. https://doi.org/10.1016/j.pestbp.2014.12.009.
    » https://doi.org/10.1016/j.pestbp.2014.12.009
  • VAN LEEUWEN C, TRÉGOAT O, CHONÉ X, BOIS B, PERNET D & GAUDILLÈRE JP. 2009. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes. Oeno One 43(3): 121-134. https://doi.org/10.20870/oeno-one.2009.43.3.798.
    » https://doi.org/10.20870/oeno-one.2009.43.3.798
  • VAN LEEUWEN T, VONTA J, TSAGKARAKOU A, DERMAUW W & TIRRY L. 2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40(8): 563-572. https://doi.org/10.1016/j.ibmb.2010.05.008.
    » https://doi.org/10.1016/j.ibmb.2010.05.008
  • WALDE SJ, HARDMAN JM & MAGAGULA CN. 1997. Direct and indirect species interactions influencing within-season dynamics of apple rust mite, Aculus schlechtendali (Acari: Eriophyidae). Exp Appl Acarol 21: 587-614. https://doi.org/10.1023/A:1018400500688.
    » https://doi.org/10.1023/A:1018400500688
  • WALKER JTS, SUCKLING DM & WEARING HC. 2017. Past, present, and future of integrated control of apple pests: the New Zealand experience. Annu Rev Entomol 62: 231-248. https://doi.org/10.1146/annurev-ento-031616-035626.
    » https://doi.org/10.1146/annurev-ento-031616-035626
  • WALTER DE & PROCTOR HC. 1999. Mites: ecology, evolution and behaviour. Sydney & Wallingford UK: Univ. of NSW Press & CABI Publishing, 322 p. https://doi.org/10.1007/978-94-007-7164-2
    » https://doi.org/10.1007/978-94-007-7164-2
  • WAY RD, ALDWINCKLE HS, LAMB RC, REJMAN A, SNASAVINI S, SHEN T, WATKINS R, WESTWOOD MN & YOSHIDA Y. 1990. Apples (Malus). In: Moore JN & Ballington JR (Eds). Genetic resources of temperate fruit and nut crops. Wageningen, p. 3-60.
  • WEARING CH & GUNSON FA. 1976. Insecticide resistant predatory mites in apple orchards. Orchardist of N Z 49: 157-158.
  • WEARING CH & PENMAN DR. 1975. Survey for insecticide-resistant predatory mites in Nelson 1974-75. Orchardist of N Z 48: 122.
  • WELTY C. 1995. Survey of predators associated with European red mite (Panonychus ulmi: Acari: Tetranychidae) in Ohio apple orchards. Gt Lakes Entomol 28(2): 171-184.
  • WHEELER AG & HOEBEKE ER. 2009. Adventive (Non-Native) Insects: Importance to Science and Society. In: Foottit RG & Adler PH (Eds). Insect biodivers Blackwell Publishing, UK, p. 475-521. https://doi.org/10.4039/Ent1091275-9
    » https://doi.org/10.4039/Ent1091275-9
  • WHITE ND & LAING JE. 1977. Some aspects of the biology and a laboratory life table of the acarine predator Zetzellia mali. Can Entomol 109(9): 1275-1281. https://doi.org/10.4039/Ent1091275-9.
    » https://doi.org/10.4039/Ent1091275-9
  • YAN X, LI ZY, GREGG WP & LI D. 2001. Invasive species in China - An overview. Biodivers Conserv 10: 1317-1341. https://doi.org/10.1023/A:1016695609745.
    » https://doi.org/10.1023/A:1016695609745
  • YIN L, WANG P, LI M, KE X, LI C, LIANG D, WU S, MA X, LI C, ZOU Y & MA F. 2013. Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 54: 426-434. https://doi.org/10.1111/jpi.12038.
    » https://doi.org/10.1111/jpi.12038
  • ZHANG ZQ. 2003. Mites of greenhouses: identification, biology and control. Cabi, Wallingford, UK, 244 p.

Publication Dates

  • Publication in this collection
    30 Oct 2023
  • Date of issue
    2023

History

  • Received
    20 Dec 2022
  • Accepted
    17 Apr 2023
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br