Acessibilidade / Reportar erro

Analysis of modern approaches to the processing of poultry waste and by-products: prospects for use in industrial sectors

Abstract

Poultry processing is characterized by the accumulation of significant volumes of industrial waste (manure, waste from the incubation and slaughter of poultry, feathers, and carcasses). The overall purpose of this review is to analyze the current global practice of recycling poultry waste and by-products and to study the technological prospects for modifying their properties in terms of obtaining value-added products and preventing environmental pollution. Processing agricultural raw materials in a waste-free production cycle is based on certain economic and ecological aspects. The variety of morphological structures and chemical compositions of by-products and waste allows to obtain valuable components using a wide range of modern processing technologies. The use of recycled waste and by-products of poultry processing varies widely: from applications in food technologies to the production of biofuels. Many researchers strive to develop efficient technologies for converting secondary poultry products; a great deal of attention is paid to enzyme-based technologies, which have been improved significantly.

Keywords:
poultry processing; waste; by-product; manure; feather; value-added product

1 Introduction

Agriculture plays an important role in the deterioration of the environmental situation. Animal husbandry and poultry farming significantly contribute to environmental pollution in particular. Modern production and processing of poultry are characterized by high numbers of livestock and, as a result, the formation of significant volumes of industrial waste (wastewater, manure, waste from incubation and slaughter of poultry, carcasses, etc.) (Potapov et al., 2020Potapov, M. A., Kurochkin, A. A., & Frolov, D. I. (2020). Equalization of the moisture content of the mixture for obtaining fertilizers from high-moisture waste of poultry farming by extrusion. IOP Conference Series. Materials Science and Engineering, 1001(1), 012029. http://dx.doi.org/10.1088/1757-899X/1001/1/012029.
http://dx.doi.org/10.1088/1757-899X/1001...
; Potti & Fahad, 2017Potti, R. B., & Fahad, M. O. (2017). Extraction and characterization of collagen from broiler chicken feet (Gallus gallus domesticus)-biomolecules from poultry waste. Journal of Pure & Applied Microbiology, 11(1), 315-322. http://dx.doi.org/10.22207/JPAM.11.1.39.
http://dx.doi.org/10.22207/JPAM.11.1.39...
).

The production and processing of poultry have been found to be relatively environmentally efficient compared to other livestock processing (Ritchie & Roser, 2019Ritchie, H., & Roser, M. (2019). Meat and dairy production. Our World in Data. Online. Retrieved from https://ourworldindata.org/meat-production#citation
https://ourworldindata.org/meat-producti...
). However, research on processes, the development of new devices, and new methods of production waste disposal can serve to reduce the impact on the environment even further (Leinonen et al., 2012Leinonen, I., Williams, A. G., Wiseman, J., Guy, J., & Kyriazakis, I. (2012). Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: broiler production systems. Poultry Science, 91(1), 8-25. http://dx.doi.org/10.3382/ps.2011-01634. PMid:22184424.
http://dx.doi.org/10.3382/ps.2011-01634...
).

The problem of recycling by-products and waste from processing agricultural raw materials in a waste-free production cycle is based on the following aspects:

– The costs borne by enterprises for the disposal of hazardous organic waste ultimately lead to an increase in the cost of manufactured products. The increase in global poultry production results in increase the volume of waste up to 68 billion tons per year, including litter, feathers, eggshell, carcass, blood, and wastewater (McGauran et al., 2021McGauran, T., Dunne, N., Smyth, B. M., & Cunningham, E. (2021). Feasibility of the use of poultry waste as polymer additives and implications for energy, cost and carbon. Journal of Cleaner Production, 291, 125948. http://dx.doi.org/10.1016/j.jclepro.2021.125948.
http://dx.doi.org/10.1016/j.jclepro.2021...
). In addition, it is economically feasible to expand resources through deep, complex processing of agricultural raw materials into final products such as feed, fertilizers, and new food ingredients (Belc et al., 2019Belc, N., Mustatea, G., Apostol, L., Iorga, S., Vlăduț, V.-N., & Mosoiu, C. (2019). Cereal supply chain waste in the context of circular economy. E3S Web of Conferences, 112, 03031. http://dx.doi.org/10.1051/e3sconf/201911203031.
http://dx.doi.org/10.1051/e3sconf/201911...
).

– Waste production is a key environmental issue (Kumar et al., 2018Kumar, S., Negi, S., Mandpe, A., Singh, R. V., & Hussain, A. (2018). Rapid composting techniques in Indian context and utilization of black soldier fly for enhanced decomposition of biodegradable wastes – a comprehensive review. Journal of Environmental Management, 227, 189-199. http://dx.doi.org/10.1016/j.jenvman.2018.08.096. PMid:30193208.
http://dx.doi.org/10.1016/j.jenvman.2018...
; Jakimiuk et al., 2021Jakimiuk, A., Vaverková, M. D., & Maxianová, A. (2021). Food waste – challenges and approaches for new devices journal of ecological engineering. Journal of Ecological Engineering, 22(3), 231-238. http://dx.doi.org/10.12911/22998993/132430.
http://dx.doi.org/10.12911/22998993/1324...
). Anaerobic fermentation of organic waste releases significant methane emissions into the atmosphere (Mashur et al., 2021Mashur, M., Bilad, M. R., Hunaepi, H., Huda, N., & Roslan, J. (2021). Formulation of organic wastes as growth media for cultivation of earthworm nutrient-rich Eisenia foetida. Sustainability, 13(18), 10322. http://dx.doi.org/10.3390/su131810322.
http://dx.doi.org/10.3390/su131810322...
). Dumping waste into the environment or improperly disposed waste from poultry processing pollutes ground and surface water and the air, as a result of which the morbidity of both animals and the population increases. Accordingly, organic waste is a favorable breeding ground for dangerous microorganisms, including pathogenic microorganisms, which can cause great harm to society and the environment (Hubbard et al., 2020Hubbard, L. E., Givens, C. E., Griffin, D. W., Iwanowicz, L. R., Meyer, M. T., & Kolpin, D. W. (2020). Poultry litter as potential source of pathogens and other contaminants in groundwater and surface water proximal to large-scale confined poultry feeding operations. The Science of the Total Environment, 735, 139459. http://dx.doi.org/10.1016/j.scitotenv.2020.139459. PMid:32485450.
http://dx.doi.org/10.1016/j.scitotenv.20...
).

The rational use of by-products from agricultural raw materials processing is associated with the ecological policies of each country (Khomych et al., 2020Khomych, G., Krusir, G., Horobets, O., Levchenko, Y., & Gaivoronska, Z. (2020). Development of resource effective and cleaner technologies using the waste of plant raw materials. Journal of Ecological Engineering, 21(4), 178-184. http://dx.doi.org/10.12911/22998993/119814.
http://dx.doi.org/10.12911/22998993/1198...
).

Considerable quantities of waste and by-products generated during the processing of broiler chickens, as well as in the technological production in the food industry, contain a significant amount of natural polymers and biologically-valuable components. It has been scientifically proven that it is essential to apply comprehensive, effective methods to make full use of animal resources (Galali et al., 2020Galali, Y., Omar, Z. A., & Sajadi, S. M. (2020). Biologically active components in by-products of food processing. Food Science & Nutrition, 8(7), 3004-3022. http://dx.doi.org/10.1002/fsn3.1665. PMid:32724565.
http://dx.doi.org/10.1002/fsn3.1665...
; Kannah et al., 2020Kannah, R. Y., Merrylin, J., Devi, T. P., Kavitha, S., Sivashanmungam, P., Kumar, G., & Banu, J. R. (2020). Food waste valorization: biofuels and value added product recovery. Bioresource Technology Reports, 11, 100524. http://dx.doi.org/10.1016/j.biteb.2020.100524.
http://dx.doi.org/10.1016/j.biteb.2020.1...
; Voběrkova et al., 2020Voběrkova, S., Maxianová, A., Schlosserová, N., Adamcová, D., Vršanská, M., Richtera, L., Gagić, M., Zloch, J., & Vaverková, M. D. (2020). Food waste composting. Is it really so simple as stated in scientific literature? A case study. The Science of the Total Environment, 723, 138202. http://dx.doi.org/10.1016/j.scitotenv.2020.138202. PMid:32224413.
http://dx.doi.org/10.1016/j.scitotenv.20...
).

Poultry by-products and waste include bones, viscera, feet, head, blood, and feathers. Poultry processing waste can be divided into several groups depending on their morphological characteristics and biochemical composition (Figure 1). The structure and properties of the raw materials determine the specific processing methods, which are presented in a diagram (Figure 2).

Figure 1
Morphological classification of poultry waste and by-products.
Figure 2
Methods for processing of poultry waste and by-products.

In addition to traditional technologies such as composting and incineration, poultry waste is processed by various methods: chemical, physical, microbiological, and complex methods. Currently, a great deal of these materials are processed into meat and bone meal, feather meal, blood meal, and fats through rendering, which is the predominant waste valorization pathway for poultry processing by-products. Many researchers recommend using hydrothermal treatment to treat poultry waste, during which pathogenic microorganisms are deactivated (Dhillon et al., 2017Dhillon, G. S., Kaur, S., Oberoi, H. S., Spier, M. R., & Brar, S. K. (2017). Agricultural-based protein by-products: characterization and applications. In G. S. Dhillon (Ed.), Protein byproducts: transformation from environmental burden into value-added products (pp. 21-36). Edmonton: Academic Press.; Lasekan et al., 2013Lasekan, A., Bakar, F. A., & Hashim, D. (2013). Potential of chicken byproducts as sources of useful biological resources. Waste Management, 33(3), 552-565. http://dx.doi.org/10.1016/j.wasman.2012.08.001. PMid:22985619.
http://dx.doi.org/10.1016/j.wasman.2012....
; Vikman et al., 2017Vikman, Y. M., Siipola, V., Kanerva, H., Šližyte, R., & Wikberg, H. (2017). Poultry by-products as a potential source of nutrients. Advances in Recycling and Waste Management, 2(3), 1000142.; Volik et al., 2017Volik, V. G., Ismailova, D. Y., Zinoviev, S. V., & Erokhina, O. N. (2017). Improving the efficiency of using secondary raw materials obtained during poultry processing. Poultry and Poultry Products, 2, 40-42.).

Poultry processing by-products are resources not only for obtaining technical and fodder products, but also for the medical and food industry (Tram et al., 2021Tram, N. X. T., Ishikawa, K., Minh, T. H., Benson, D., & Tsuru, K. (2021). Characterization of carbonate apatite derived from chicken bone and its in-vitro evaluation using MC3T3-E1 cells. Materials Research Express, 8(2), 025401. http://dx.doi.org/10.1088/2053-1591/abe018.
http://dx.doi.org/10.1088/2053-1591/abe0...
). Enzymatic hydrolysis, chemical, and thermal treatments of raw materials are used to obtain biologically active compounds, lipids, flavor enhancers, and bioactive peptides (Borrajo et al., 2019Borrajo, P., Pateiro, M., Barba, F. J., Mora, L., Franco, D., Toldrá, F., & Lorenzo, M. J. (2019). Antioxidant and antimicrobial activity of peptides extracted from meat by-products: a review. Food Analytical Methods, 12(11), 2401-2415. http://dx.doi.org/10.1007/s12161-019-01595-4.
http://dx.doi.org/10.1007/s12161-019-015...
; Chakka et al., 2015Chakka, A. K., Elias, M., Jini, R., Sakhare, P. Z., & Bhaskar, N. (2015). In-vitro antioxidant and antibacterial properties of fermentatively and enzymatically prepared chicken liver protein hydrolysates. Journal of Food Science and Technology, 52(12), 8059-8067. http://dx.doi.org/10.1007/s13197-015-1920-2. PMid:26604378.
http://dx.doi.org/10.1007/s13197-015-192...
; Khiari et al., 2014Khiari, Z., Ndagijimana, M., & Betti, M. (2014). Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization/precipitation process of turkey by-products. Poultry Science, 93(9), 2347-2362. http://dx.doi.org/10.3382/ps.2014-03953. PMid:24931971.
http://dx.doi.org/10.3382/ps.2014-03953...
; Rivero-Pino et al., 2020Rivero-Pino, F., Espejo-Carpio, F. J., & Guadix, E. M. (2020). Antidiabetic food-derived peptides for functional feeding: production, functionality and in vivo evidences. Foods, 9(8), 983. http://dx.doi.org/10.3390/foods9080983. PMid:32718070.
http://dx.doi.org/10.3390/foods9080983...
).

At the moment, the world production of poultry meat is about 136 million tons per year (Food and Agriculture Organization, 2021Food and Agriculture Organization – FAO. (2021). Gateway to poultry production and products. Retrieved from http://www.fao.org/poultry-production-products/production/en/
http://www.fao.org/poultry-production-pr...
). Taking into account the active growth in the consumption of poultry meat, it is especially important to apply a scientific approach to the processing of secondary raw materials and waste, focusing on the global experience and the achievements of leading researchers in this area. The concept of deep conversion of animal raw materials is worth studying. The overall purpose of this review was to analyze the current global practice of recycling poultry waste and by-products, study the technological prospects for modifying their properties in terms of obtaining value-added products, as well as prevent environmental pollution by poultry industry waste.

2 Directions for processing certain types of waste and by-products

2.1 Manure recycling

As poultry production increases, so does the amount of manure that needs to be processed. When analyzing the types of waste from a chicken farm with 100-150 heads, researchers found that a large share of the waste was manure (98.45%)—fresh manure in particular (73%) (Potapov et al., 2020Potapov, M. A., Kurochkin, A. A., & Frolov, D. I. (2020). Equalization of the moisture content of the mixture for obtaining fertilizers from high-moisture waste of poultry farming by extrusion. IOP Conference Series. Materials Science and Engineering, 1001(1), 012029. http://dx.doi.org/10.1088/1757-899X/1001/1/012029.
http://dx.doi.org/10.1088/1757-899X/1001...
).

Due to the high content of such components as nitrogen, phosphorus, potassium, and others, poultry manure can be used as a fertilizer to improve soil and increase soil fertility (Fomicheva & Rabinovich, 2021Fomicheva, N. V., & Rabinovich, G. Y. (2021). Technological line for processing animal waste. IOP Conference Series: Earth and Environmental Science, 677, 052004.; Samoraj et al., 2022Samoraj, M., Mironiuk, M., Izydorczyk, G., Witek-Krowiak, A., Szopa, D., Moustakas, K., & Chojnacka, K. (2022). The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. Chemosphere, 295, 133799. http://dx.doi.org/10.1016/j.chemosphere.2022.133799. PMid:35114259.
http://dx.doi.org/10.1016/j.chemosphere....
). However, excessive use of poultry manure can harm the soil, water, and air. Uncontrolled removal of poultry manure can lead to emissions of methane, carbon dioxide, and ammonia (Briukhanov et al., 2017Briukhanov, A., Subbotin, I., Uvarov, R., & Vasilev, E. (2017). Method of designing of manure utilization technology. Agronomy Research, 15(3), 658-663.; Dróżdż et al., 2020Dróżdż, D., Wystalska, K., Malinska, K., Grosser, A., Grobelak, A., & Kacprzak, M. (2020). Management of poultry manure in Poland – current state and future perspectives. Journal of Environmental Management, 264, 110327. http://dx.doi.org/10.1016/j.jenvman.2020.110327. PMid:32217329.
http://dx.doi.org/10.1016/j.jenvman.2020...
). In addition, manure can contaminate soil and water with potentially hazardous foreign substances such as antibiotics, pesticides, and pathogens (Kyakuwaire et al., 2019Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P., & Basamba, T. A. (2019). How safe is chicken litter for land application as an organic fertilizer? A review. International Journal of Environmental Research and Public Health, 16(19), 3521. http://dx.doi.org/10.3390/ijerph16193521. PMid:31547196.
http://dx.doi.org/10.3390/ijerph16193521...
). According to the FAO, with a world livestock of 18.5 billion broiler chickens, the amount of nitrogen released into the environment with manure amounted to 6.7 million tons, while the share of manure left on pastures accounted for 40.7%, and the share of processed manure is 58.4% (Food and Agriculture Organization, 2022Food and Agriculture Organization – FAO. (2022). Crops and livestock products. Retrieved from https://www.fao.org/faostat/en/#data/QCL
https://www.fao.org/faostat/en/#data/QCL...
).

There are biological, physical, chemical, and mixed methods for processing poultry manure (Zapevalov et al., 2019Zapevalov, M. V., Sergeyev, N. S., Redreev, G. V., Chetyrkin, Y. B., & Zapevalov, M. S. (2019). Technology of poultry manure utilization as a renewable energy source. IOP Conference Series. Materials Science and Engineering, 582(1), 012036. http://dx.doi.org/10.1088/1757-899X/582/1/012036.
http://dx.doi.org/10.1088/1757-899X/582/...
.). Many scientists are aiming to develop new and more efficient technologies for converting poultry manure into energy or value-added products (Feng et al., 2019Feng, G., Adeli, A., Read, J., McCarty, J., & Jenkins, J. (2019). Consequences of pelletized poultry litter applications on soil physical and hydraulic properties in reduced tillage, continuous cotton system. Soil & Tillage Research, 194, 104309. http://dx.doi.org/10.1016/j.still.2019.104309.
http://dx.doi.org/10.1016/j.still.2019.1...
; Blake & Hess, 2014Blake, J., & Hess, J. (2014). Suitability of poultry litter ash as a feed supplement for broiler chickens. Journal of Applied Poultry Research, 23(1), 94-100. http://dx.doi.org/10.3382/japr.2013-00836.
http://dx.doi.org/10.3382/japr.2013-0083...
; Liu et al., 2021Liu, C., Yin, Z., Hu, D., Mo, F., Chu, R., Zhu, L., & Hu, C. (2021). Biochar derived from chicken manure as a green adsorbent for naphthalene removal. Environmental Science and Pollution Research International, 28(27), 36585-36597. http://dx.doi.org/10.1007/s11356-021-13286-x. PMid:33704645.
http://dx.doi.org/10.1007/s11356-021-132...
). The main applications of poultry manure are as follows:

  • enriching soil without preliminary treatment – according to recent studies, this method is undesirable (Kyakuwaire et al., 2019Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P., & Basamba, T. A. (2019). How safe is chicken litter for land application as an organic fertilizer? A review. International Journal of Environmental Research and Public Health, 16(19), 3521. http://dx.doi.org/10.3390/ijerph16193521. PMid:31547196.
    http://dx.doi.org/10.3390/ijerph16193521...
    );

  • production of organic fertilizers (Feng et al., 2019Feng, G., Adeli, A., Read, J., McCarty, J., & Jenkins, J. (2019). Consequences of pelletized poultry litter applications on soil physical and hydraulic properties in reduced tillage, continuous cotton system. Soil & Tillage Research, 194, 104309. http://dx.doi.org/10.1016/j.still.2019.104309.
    http://dx.doi.org/10.1016/j.still.2019.1...
    ; Purnomo et al., 2017Purnomo, C. W., Indarti, S., Wulandari, C., Hinode, H., & Nakasaki, K. (2017). Slow release fertiliser production from poultry manure. Chemical Engineering Transactions, 56, 1531-1536.);

  • composting or conversion to biogas (Achi et al., 2020Achi, C. G., Hassanein, A., & Lansing, S. (2020). Enhanced biogas production of cassava wastewater using zeolite and biochar additives and manure co-digestion. Energies, 13(2), 491. http://dx.doi.org/10.3390/en13020491.
    http://dx.doi.org/10.3390/en13020491...
    ; Hassanein et al., 2019Hassanein, A., Lansing, S., & Tikekar, R. (2019). Impact of metal nanoparticles on biogas production from poultry litter. Bioresource Technology, 275, 200-206. http://dx.doi.org/10.1016/j.biortech.2018.12.048. PMid:30590206.
    http://dx.doi.org/10.1016/j.biortech.201...
    ; Ojo et al., 2018Ojo, A. O., Taiwo, L. B., Adediran, J. A., Oyedele, A. O., Fademi, I., & Uthman, A. C. O. (2018). Physical, chemical and biological properties of an accelerated cassava based compost prepared using different ratios of cassava peels and poultry manure. Communications in Soil Science and Plant Analysis, 49(14), 1774-1786. http://dx.doi.org/10.1080/00103624.2018.1474914.
    http://dx.doi.org/10.1080/00103624.2018....
    ; Mehryar et al., 2017Mehryar, E., Ding, W. M., Hemmat, A., Hassan, M., Bi, J. H., Huang, H. Y., & Kafashan, J. (2017). Anaerobic co-digestion of oil refinery wastewater and chicken manure to produce biogas, and kinetic parameters determination in batch reactors. Agronomy Research, 15(5), 1983-1996.);

  • production of feed supplements (Blake & Hess, 2014Blake, J., & Hess, J. (2014). Suitability of poultry litter ash as a feed supplement for broiler chickens. Journal of Applied Poultry Research, 23(1), 94-100. http://dx.doi.org/10.3382/japr.2013-00836.
    http://dx.doi.org/10.3382/japr.2013-0083...
    ; Jackson et al., 2006Jackson, D. J., Rude, B. J., Karanja, K. K., & Whitley, N. C. (2006). Utilization of poultry litter pellets in meat goat diets. Small Ruminant Research, 66(1-3), 278-281. http://dx.doi.org/10.1016/j.smallrumres.2005.09.005.
    http://dx.doi.org/10.1016/j.smallrumres....
    );

  • conversion to combustion fuel (Zapevalov et al., 2019Zapevalov, M. V., Sergeyev, N. S., Redreev, G. V., Chetyrkin, Y. B., & Zapevalov, M. S. (2019). Technology of poultry manure utilization as a renewable energy source. IOP Conference Series. Materials Science and Engineering, 582(1), 012036. http://dx.doi.org/10.1088/1757-899X/582/1/012036.
    http://dx.doi.org/10.1088/1757-899X/582/...
    );

  • processing into vermicompost with the help of worms and insects (Subbotina, 2020Subbotina, Y. M. (2020). Microbiological and biocenotic utilization of bird droppings by natural biocenoses. Problems of Veterinary Sanitation, Hygiene and Ecology, 1(3), 341-350. http://dx.doi.org/10.36871/vet.san.hyg.ecol.202003009.
    http://dx.doi.org/10.36871/vet.san.hyg.e...
    );

  • producing biochar (Liu et al., 2021Liu, C., Yin, Z., Hu, D., Mo, F., Chu, R., Zhu, L., & Hu, C. (2021). Biochar derived from chicken manure as a green adsorbent for naphthalene removal. Environmental Science and Pollution Research International, 28(27), 36585-36597. http://dx.doi.org/10.1007/s11356-021-13286-x. PMid:33704645.
    http://dx.doi.org/10.1007/s11356-021-132...
    ).

Researchers have noted the possibility of using methane obtained through anaerobic decomposition of manure in household or farmed biogas plants to meet the energy demand (Arthur et al., 2020Arthur, R., Baidoo, M. F., Osei, G., Boamah, L., & Kwofie, S. (2020). Evaluation of potential feedstocks for sustainable biogas production in Ghana: quantification, energy generation, and CO2abatement. Cogent Environmental Science, 6(1), 1868162. http://dx.doi.org/10.1080/23311843.2020.1868162.
http://dx.doi.org/10.1080/23311843.2020....
; Dróżdż et al., 2020Dróżdż, D., Wystalska, K., Malinska, K., Grosser, A., Grobelak, A., & Kacprzak, M. (2020). Management of poultry manure in Poland – current state and future perspectives. Journal of Environmental Management, 264, 110327. http://dx.doi.org/10.1016/j.jenvman.2020.110327. PMid:32217329.
http://dx.doi.org/10.1016/j.jenvman.2020...
; Kanani et al., 2020Kanani, F., Heidari, M. D., Gilroyed, B. H., & Pelletier, N. (2020). Waste valorization technology options for the egg and broiler industries: a review and recommendations. Journal of Cleaner Production, 262, 121129. http://dx.doi.org/10.1016/j.jclepro.2020.121129.
http://dx.doi.org/10.1016/j.jclepro.2020...
). There are also studies on the integrated use of poultry manure: first, it is fermented in anaerobic conditions to obtain biogas, then the biogas suspension is subjected to additional processing to obtain fertilizers (Li et al., 2017Li, P., Zhang, C. J., Zhao, T. K., & Zhong, H. (2017). Removal of suspended solids in anaerobically digested slurries of livestock and poultry manure by coagulation using different dosages of polyaluminum chloride. In M. Gibson & Y. Fan (Eds.), 2016 International Conference on Environmental Engineering and Sustainable Development (p. 012008). Bristol: IOP Publishing. http://dx.doi.org/10.1088/1742-6596/51/1/012008.
http://dx.doi.org/10.1088/1742-6596/51/1...
).

Promising methods for processing poultry manure include the accelerated fermentation of organic raw materials in reactors or fermenters of various designs; extrusion (Fomicheva & Rabinovich, 2021Fomicheva, N. V., & Rabinovich, G. Y. (2021). Technological line for processing animal waste. IOP Conference Series: Earth and Environmental Science, 677, 052004.); using an ultrahigh-frequency electromagnetic field for drying and disinfecting (Soboleva et al., 2017Soboleva, O. M., Kolosova, M. M., Filipovich, L. A., & Aksenov, V. A. (2017). Electromagnetic processing as a way of increasing microbiological safety of animal waste. IOP Conference Series: Earth and Environmental Science, 66, 012025. http://dx.doi.org/10.1088/1755-1315/66/1/012025.
http://dx.doi.org/10.1088/1755-1315/66/1...
). The following technologies of valorization of poultry manure are recommended as priority methods: single-stage anaerobic digestion; anaerobic co-digestion (biological technologies); gasification and fast pyrolysis (thermal technologies) (Kanani et al., 2020Kanani, F., Heidari, M. D., Gilroyed, B. H., & Pelletier, N. (2020). Waste valorization technology options for the egg and broiler industries: a review and recommendations. Journal of Cleaner Production, 262, 121129. http://dx.doi.org/10.1016/j.jclepro.2020.121129.
http://dx.doi.org/10.1016/j.jclepro.2020...
). A comparative analysis of poultry manure processing technologies is presented in Table 1.

Table 1
Comparative characteristics of the directions of poultry manure processing.

2.2 Feather processing

Poultry processing produces tens of millions of tons of keratin-containing waste each year (Stiborova et al., 2016Stiborova, H., Branska, B., Vesela, T., Lovecka, P., Stranska, M., Hajslova, J., Jiru, M., Patakova, P., & Demnerova, K. (2016). Transformation of raw feather waste into digestible peptides and amino acids. Journal of Chemical Technology and Biotechnology, 91(6), 1629-1637. http://dx.doi.org/10.1002/jctb.4912.
http://dx.doi.org/10.1002/jctb.4912...
). Poultry feathers and down are resources for obtaining additional materials for many industries, such as agro-industrial, food, textile, construction, and many others (Ahmad et al., 2022Ahmad, A., Othman, I., Tardy, B. L., Hasan, S. W., & Banat, F. (2022). Enhanced lactic acid production with indigenous microbiota from date pulp waste and keratin protein hydrolysate from chicken feather waste. Bioresource Technology Reports, 18, 101089. http://dx.doi.org/10.1016/j.biteb.2022.101089.
http://dx.doi.org/10.1016/j.biteb.2022.1...
). Numerous studies report on effective methods for recovering keratin waste (Kshetri et al., 2019Kshetri, P., Roy, S. S., Sharma, S. K., Singh, T. S., Ansari, M. A., Prakash, N., & Ngachan, S. (2019). Transforming chicken feather waste into feather protein hydrolysate using a newly isolated multifaceted keratinolytic bacterium Chryseobacterium sediminis RCM-SSR-7. Waste and Biomass Valorization, 10(1), 1-11. http://dx.doi.org/10.1007/s12649-017-0037-4.
http://dx.doi.org/10.1007/s12649-017-003...
).

Feather and down, as a secondary raw material, contain up to 85% protein; converting feather keratin into an easily digestible form is an important task to obtain native protein components. Keratin materials contain a large number of disulfide and hydrogen bonds, hydrophobic interactions, which are difficult to decompose (Bray et al., 2015Bray, D. J., Walsh, T. R., Noro, M. G., & Notman, R. (2015). Complete structure of an epithelial keratin dimer: implications for intermediate filament assembly. PLoS One, 10(7), e0132706. http://dx.doi.org/10.1371/journal.pone.0132706. PMid:26181054.
http://dx.doi.org/10.1371/journal.pone.0...
; McKittrick et al., 2012McKittrick, J., Chen, P. Y., Bodde, S. G., Yang, W., Novitskaya, E. E., & Meyers, M. A. (2012). The structure, functions, and mechanical properties of keratin. JOM, 64(4), 449-468. http://dx.doi.org/10.1007/s11837-012-0302-8.
http://dx.doi.org/10.1007/s11837-012-030...
). High temperature, microwaving, and chemical methods have been explored for the decomposition of feathers (Brebu & Spiridon, 2011Brebu, M., & Spiridon, I. (2011). Thermal degradation of keratin waste. Journal of Analytical and Applied Pyrolysis, 91(2), 288-295. http://dx.doi.org/10.1016/j.jaap.2011.03.003.
http://dx.doi.org/10.1016/j.jaap.2011.03...
; Stiborova et al., 2016Stiborova, H., Branska, B., Vesela, T., Lovecka, P., Stranska, M., Hajslova, J., Jiru, M., Patakova, P., & Demnerova, K. (2016). Transformation of raw feather waste into digestible peptides and amino acids. Journal of Chemical Technology and Biotechnology, 91(6), 1629-1637. http://dx.doi.org/10.1002/jctb.4912.
http://dx.doi.org/10.1002/jctb.4912...
). However, aggressive methods of exposure lead to a significant loss of essential amino acids in the product, as well as considerable energy consumption, which imposes a notable burden on the environment (Brebu & Spiridon, 2011Brebu, M., & Spiridon, I. (2011). Thermal degradation of keratin waste. Journal of Analytical and Applied Pyrolysis, 91(2), 288-295. http://dx.doi.org/10.1016/j.jaap.2011.03.003.
http://dx.doi.org/10.1016/j.jaap.2011.03...
; Coward-Kelly et al., 2006Coward-Kelly, G., Chang, V. S., Agbogbo, F. K., & Holtzapple, M. T. (2006). Lime treatment of keratinous materials for the generation of highly digestible animal feed: chicken feathers. Bioresource Technology, 97(11), 1337-1343. http://dx.doi.org/10.1016/j.biortech.2005.05.021. PMid:16098740.
http://dx.doi.org/10.1016/j.biortech.200...
).

Recently, enzyme-based technologies have been significantly improved. The efficiency of using new industrial biocatalysts, which includes keratinase obtained by microbiological synthesis, have been proven. Keratinase is widespread in fungi and bacteria; it can convert keratin materials into soluble proteins, antioxidant peptides, and amino acids (Bernal et al., 2018Bernal, C., Rodríguez, K., & Martínez, R. (2018). Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnology Advances, 36(5), 1470-1480. http://dx.doi.org/10.1016/j.biotechadv.2018.06.002. PMid:29894813.
http://dx.doi.org/10.1016/j.biotechadv.2...
; Peng et al., 2019Peng, Z., Mao, X., Zhang, J., Du, G., & Chen, J. (2019). Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microbial Cell Factories, 18(1), 84. http://dx.doi.org/10.1186/s12934-019-1134-9. PMid:31103032.
http://dx.doi.org/10.1186/s12934-019-113...
; Verma et al., 2017Verma, A., Singh, H., Anwar, S., Chattopadhyay, A., Tiwari, K. K., Kaur, S., & Dhilon, G. S. (2017). Microbial keratinases: industrial enzymes with waste management potential. Critical Reviews in Biotechnology, 37(4), 476-491. http://dx.doi.org/10.1080/07388551.2016.1185388. PMid:27291252.
http://dx.doi.org/10.1080/07388551.2016....
).

It is reported that keratinases from Bacillus subtilis demonstrated high keratinase activity under extreme conditions, such as high salinity and high temperature (Tork et al., 2013Tork, S. E., Shahein, Y. E., El-Hakim, A. E., Abdel-Aty, A. M., & Aly, M. M. (2013). Production and characterization of thermostable metallo-keratinase from newly isolated Bacillus subtilis NRC 3. International Journal of Biological Macromolecules, 55, 169-175. http://dx.doi.org/10.1016/j.ijbiomac.2013.01.002. PMid:23313822.
http://dx.doi.org/10.1016/j.ijbiomac.201...
). However, the activity of recombinant keratinase can be greatly enhanced via using genetically modified Bacillus subtilis (Peng et al., 2020Peng, Z., Mao, X., Zhang, J., Du, G., & Chen, J. (2020). Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis. Biotechnology for Biofuels, 13(1), 61. http://dx.doi.org/10.1186/s13068-020-01700-4. PMid:32266007.
http://dx.doi.org/10.1186/s13068-020-017...
).

The use of secondary resources of animal origin in modern feed production requires deep processing technologies. Vasilenko et al. (2021)Vasilenko, V. N., Frolova, L. N., Mikhailova, N. A., & Dragan, I. V. (2021). Innovative technology to obtain forage flour from keratincontaining waste by extrusion. IOP Conference Series: Earth and Environmental Science, 640, 022010. proposed an extrusion technology to obtain a feed protein supplement, which is recommended in the diet of growing poultry, valuable species of fish, and mammals. The technology implements the principle of simultaneous exposure to high temperature and pressure for processing keratin-containing waste. It is noted that extrusion of keratin makes it possible to extract up to 80% of this hard-to-reach dietary protein (Vasilenkо et al., 2021).

Protein hydrolysates from down feathers have found application in cosmetology, skincare creams, hair and nail strengthening products, and in the manufacture of detergents. The prospects of industrial application of Bacillus sp. CSK2 keratinase are being studied. Researchers have worked to optimize the physicochemical conditions for obtaining CSK2 keratinase from feathers and suggest its application as a bio additive in detergent formulations (Nnolim & Nwodo, 2020Nnolim, N. E., & Nwodo, U. U. (2020). Bacillus sp. CSK2 produced thermostable alkaline keratinase using agro-wastes: keratinolytic enzyme characterization. BMC Biotechnology, 20(1), 65. http://dx.doi.org/10.1186/s12896-020-00659-2. PMid:33317483.
http://dx.doi.org/10.1186/s12896-020-006...
). Keratin protein solutions can also be used for medical purposes, such as in bone replacement and bone grafting (Roiter et al., 2019Roiter, L. M., Zazykina, L. A., & Eremeeva, N. A. (2019). Poultry by-products, reserve for growth of export potential of the industry. IOP Conference Series: Earth and Environmental Science, 341, 012209. http://dx.doi.org/10.1088/1755-1315/341/1/012209.
http://dx.doi.org/10.1088/1755-1315/341/...
).

The textile industry is a significant consumer of down feathers. The raw material is used as filler in blankets, pillows, and duvets. The highest category of feathers is used to produce coats and overalls, which are light and offer good protection from frost, wind, and moisture. The hydrolyzed feather waste protein can also be used as a modifier to improve the properties of cotton fabric and increase the susceptibility to natural dyes (Zhang et al., 2020Zhang, L., Li, H., Zhu, J., & Yan, J. (2020). Structure and dyeing properties of cotton fabric modified by protein from waste feathers. IOP Conference Series. Materials Science and Engineering, 774(1), 012043. http://dx.doi.org/10.1088/1757-899X/774/1/012043.
http://dx.doi.org/10.1088/1757-899X/774/...
).

Consisting of 90% keratin, feathers are a promising resource for the production of biodegradable materials. Ramadhan & Handayani; Ramakrishnan et al., have studied the use of ingredients made from chicken feather keratin in bioplastics manufacturing (Ramadhan & Handayani, 2020Ramadhan, M. O., & Handayani, M. N. (2020). The potential of food waste as bioplastic material to promote environmental sustainability: a review. IOP Conference Series. Materials Science and Engineering, 980(1), 012082. http://dx.doi.org/10.1088/1757-899X/980/1/012082.
http://dx.doi.org/10.1088/1757-899X/980/...
; Ramakrishnan et al., 2018Ramakrishnan, N., Sharma, S., Gupta, A., & Alashwal, B. Y. (2018). Keratin based bioplastic film from chicken feathers and its characterization. International Journal of Biological Macromolecules, 111, 352-358. http://dx.doi.org/10.1016/j.ijbiomac.2018.01.037. PMid:29320725.
http://dx.doi.org/10.1016/j.ijbiomac.201...
). They found that the resulting bioplastic had good mechanical and thermal properties and was proven to be biodegradable. The development of bioplastics from feather waste can solve two problems, namely, reducing the amount of plastic and agro-industrial waste, thereby contributing to environmental sustainability (Ullah et al., 2011Ullah, A., Vasanthan, T., Bressler, D., Elias, A. L., & Wu, J. (2011). Bioplastics from feather quill. Biomacromolecules, 12(10), 3826-3832. http://dx.doi.org/10.1021/bm201112n. PMid:21888378.
http://dx.doi.org/10.1021/bm201112n...
). Li et al. performed a complex analysis of biocarbon obtained from chicken feathers under pyrolysis at different temperatures. They concluded that the resulting biocarbon can serve as a cost-effective filler for creating sustainable biobased composites (Li et al., 2020Li, Z., Reimer, C., Picard, M., Mohanty, A. K., & Misra, M. (2020). Characterization of chicken feather biocarbon for use in sustainable biocomposites. Frontiers in Materials, 7, 3. http://dx.doi.org/10.3389/fmats.2020.00003.
http://dx.doi.org/10.3389/fmats.2020.000...
).

Feathers can be used quite effectively in the development of alternative building materials; adding waste feather fibers to fiberboard improved its thermal insulation, sound absorption, and biodegradability (Šafarič et al., 2020Šafarič, R., Zemljič, L. F., Novak, M., Dugonik, B., Bratina, B., Gubeljak, N., Bolka, S., & Strnad, S. (2020). Preparation and characterisation of waste poultry feathers composite fibreboards. Materials, 13(21), 4964. http://dx.doi.org/10.3390/ma13214964. PMid:33158218.
http://dx.doi.org/10.3390/ma13214964...
).

2.3 By-products processing

Poultry slaughter generates a large amount of by-products, most of which are unsuitable for human consumption. In many countries, poultry by-products such as legs, heads, heart, gizzard, liver are consumed directly or used as part of meat products as an affordable source of animal protein and other essential nutrients (Gorlov et al., 2016Gorlov, I. F., Giro, T. M., Sitnikova, O. I., Slozhenkina, M. I., Zlobina, E. Y., & Karpenko, E. V. (2016). New functional products with chickpeas: reception, functional properties. American Journal of Food Technology, 11(6), 273-281. http://dx.doi.org/10.3923/ajft.2016.273.281.
http://dx.doi.org/10.3923/ajft.2016.273....
; Zhumanova et al., 2018Zhumanova, G., Rebezov, M., Assenova, B., & Okuskhanova, E. (2018). Prospects of using poultry by-products in the technology of chopped semi-finished products. International Journal of Engineering & Technology, 7(3.34), 495-498. http://dx.doi.org/10.14419/ijet.v7i3.34.19367.
http://dx.doi.org/10.14419/ijet.v7i3.34....
). Another common method for processing secondary raw materials is to use them in the production of feed flour for livestock and poultry (Caires et al., 2010Caires, C. M. I., Fernandes, E. A., Fagundes, N. S., Carvalho, A. P., Maciel, M. P., & Oliveira, B. R. (2010). The use of animal byproducts in broiler feeds. Use of animal co-products in broilers diets. Revista Brasileira de Ciência Avícola, 12(1), 41-46. http://dx.doi.org/10.1590/S1516-635X2010000100006.
http://dx.doi.org/10.1590/S1516-635X2010...
; Silva et al., 2014Silva, E. P., Rabello, C. B.-V., Lima, M. B., Ludke, J. V., Arruda, E. M. F., & Albino, L. F. T. (2014). Poultry offal meal in broiler chicken feed. Scientia Agrícola, 71(3), 188-194. http://dx.doi.org/10.1590/S0103-90162014000300003.
http://dx.doi.org/10.1590/S0103-90162014...
; Alves et al., 2021Alves, F. E. S. B., Carpiné, D., Teixeira, G. L., Goedert, A. C., Scheer, A. P., & Ribani, R. H. (2021). Valorization of an abundant slaughterhouse by-product as a source of highly technofunctional and antioxidant protein hydrolysates. Waste and Biomass Valorization, 12(1), 263-279. http://dx.doi.org/10.1007/s12649-020-00985-8.
http://dx.doi.org/10.1007/s12649-020-009...
). One of the by-products from rendering chicken waste for meal preparation is chicken fat, which is converted into biofuel (Mahyari et al., 2021Mahyari, Z. F., Khorasanizadeh, Z., Khanali, M., & Mahyari, K. F. (2021). Biodiesel production from slaughter wastes of broiler chicken: a potential survey in Iran. SN Applied Sciences, 3(1), 57. http://dx.doi.org/10.1007/s42452-020-04045-7.
http://dx.doi.org/10.1007/s42452-020-040...
; Sivamani et al., 2021Sivamani, S., Manickam, A., Karthiban, S., Karthikeyan, S., & Balajii, M. (2021). Process modelling and simulation of biodiesel synthesis reaction for non-edible yellow oleander (yellow bells) oil and waste chicken fat. In M. Srivastava, N. Srivastava & R. Singh (Eds.), Bioenergy research: revisiting latest development. (pp. 129-160). Singapore: Springer. http://dx.doi.org/10.1007/978-981-33-4615-4_6.
http://dx.doi.org/10.1007/978-981-33-461...
) or bio lubricant (Hernández-Cruz et al., 2021Hernández-Cruz, M. C., Meza-Gordillo, R., Domínguez, Z., Rosales-Quintero, A., Abud-Archila, M., Ayora-Talavera, T., & Villalobos-Maldonado, J. J. (2021). Optimization and characterization of in situ epoxidation of chicken fat with peracetic acid. Fuel, 285, 119127. http://dx.doi.org/10.1016/j.fuel.2020.119127.
http://dx.doi.org/10.1016/j.fuel.2020.11...
).

Poultry legs, skin, neck, and bones are used to isolate collagen proteins (Fisinin et al., 2017Fisinin, V. I., Ismailova, D. Y., Volik, V. G., Lukashenko, V. S., & Saleeva, I. P. (2017). Deep processing of collagen-rich poultry products for different use. Agricultural Biology, 52(6), 1105-1115. http://dx.doi.org/10.15389/agrobiology.2017.6.1105eng.
http://dx.doi.org/10.15389/agrobiology.2...
). High-quality gelatin can be obtained from chicken legs (Almeida et al., 2013Almeida, P. F., Calarge, F. A., & Santana, J. C. C. (2013). Production of a product similar to gelatin from chicken feet collagen. Agricultural Engineering, 33(6), 1289-1300.). Collagen is isolated from chicken legs in a solution of acetic acid using the proteolytic enzymes papain and pepsin (Hashim et al., 2014Hashim, P., Ridzwan, M. S. M., & Bakar, J. (2014). Isolation and characterization of collagen from chicken feet. International Journal of Bioengineering and Life Sciences, 8(3), 250-254.). The high yield of collagen from chicken bones is ensured by a multistage isolation technology, which includes the stages: removal of impurities, cleaning, demineralization, degreasing (Cansu & Boran, 2015Cansu, Ü., & Boran, G. (2015). Optimization of a multi-step procedure for isolation of chicken bone collagen. Korean Journal for Food Science of Animal Resources, 35(4), 431-440. http://dx.doi.org/10.5851/kosfa.2015.35.4.431. PMid:26761863.
http://dx.doi.org/10.5851/kosfa.2015.35....
).

The most rational approach for processing by-products is to choose integrated methods. Mechanical deboning produces more than just meat. Proteins and lipids are obtained from the subsequent enzymatic treatment of the meat-bone residue, and during the final hydrothermal treatment of the residues—phosphorus, calcium, and nitrogen (Vikman et al., 2017Vikman, Y. M., Siipola, V., Kanerva, H., Šližyte, R., & Wikberg, H. (2017). Poultry by-products as a potential source of nutrients. Advances in Recycling and Waste Management, 2(3), 1000142.).

Enzyme technologies are a promising strategy for waste poultry fat and protein reutilization that combines biodegradation and the production of enzymes from carbon/nitrogen-rich residual biowastes at the same stage and under optimal conditions. The major bioconversion products of poultry waste, biodiesel and bioactivate hydrolysates, can be used as green biofuel and natural bio-additives. Moreover, nutrient-rich animal fat and protein wastes can serve as carbon/nitrogen sources for the growth of enzyme-producing microorganisms (Cheng et al., 2021Cheng, D., Liu, Y., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Zhang, S., Luo, G., & Bui, X. T. (2021). Sustainable enzymatic technologies in waste animal fat and protein management. Journal of Environmental Management, 284, 112040. http://dx.doi.org/10.1016/j.jenvman.2021.112040. PMid:33571854.
http://dx.doi.org/10.1016/j.jenvman.2021...
).

In recent years, the attention of many researchers has been drawn to the production of bioactive peptides from collagen. Different methods are used for the proteolysis of collagen, but the most physiological, enzymatic method of processing raw materials (Iwaniak et al., 2020Iwaniak, A., Minkiewicz, P., Pliszka, M., Mogut, D., & Darewicz, M. (2020). Characteristics of biopeptides released in silico from collagens using quantitative parameters. Foods, 9(7), 965. http://dx.doi.org/10.3390/foods9070965. PMid:32708318.
http://dx.doi.org/10.3390/foods9070965...
; Romero-Garay et al., 2020Romero-Garay, M. G., Martínez-Montaño, E., Hernández-Mendoza, A., Vallejo-Cordoba, B., González-Córdova, A. F., Montalvo-González, E., & García-Magaña, M. L. (2020). Bromelia karatas and Bromelia pinguin: sources of plant proteases used for obtaining antioxidant hydrolysates from chicken and fish by-products. Applied Biological Chemistry, 63(1), 41. http://dx.doi.org/10.1186/s13765-020-00525-x.
http://dx.doi.org/10.1186/s13765-020-005...
). Poultry skin is rarely processed into valuable products, but there are studies examining its processing methods. A method of extracting collagen with unique functional properties from chicken skin has been proposed (Cliché et al., 2003Cliché, S., Amiot, J., Avezard, C., & Gariepy, C. (2003). Extraction and characterization of collagen with or without telopeptides from chicken skin. Poultry Science, 82(3), 503-509. http://dx.doi.org/10.1093/ps/82.3.503. PMid:12705413.
http://dx.doi.org/10.1093/ps/82.3.503...
).

The varied morphological structures and chemical compositions of poultry by-products allows for a wide range of products to be obtained through modern methods of processing and extraction of valuable components (Table 2).

Table 2
Modern technologies for recycling of poultry by-products.

3 Conclusion

The poultry processing industry produces a significant amount of by-products and waste containing useful ingredients. Rational processing of raw materials is associated with both environmental and economic benefits. The variety of morphological structures and chemical compositions of poultry by-products allows for the creation of wide range of products through modern methods of processing and extraction of valuable components.

The use of recycled waste and by-products of poultry processing varies widely in different fields: from applications in food technologies to the production of biofuels. Collagen and keratin proteins, which are components of poultry by-products, are a good substrate for the production of hydrolysates and bioactive peptides with various functional properties.

Many researchers strive to develop innovative and efficient technologies for converting secondary poultry products to obtain value-added products; particular attention is paid to enzyme-based technologies, which have been improved significantly. Enzyme technologies are a promising strategy for organic waste reutilization, which solves the issue of environmental pollution and brings economic benefits.

To reduce the risks associated with poultry waste management, it is essential to carry out detailed life cycle assessments to identify and compare the economic potential and environmental benefits of each technology and to consider regional opportunities and limitations to their implementation.

Acknowledgements

The research was funded by a grant of the Ministry of Science and Higher Education of the Russian Federation for large scientific projects in priority areas of scientific and technological development (subsidy identifier 075-15-2020-775).

  • Practical Application: The main directions of the use of waste and by-products of poultry processing are considered.

References

  • Abid, M., & Touzani, M. (2017). First step of waste chicken skin valorization by production of biodiesel in Morocco. Journal of Materials and Environmental Science, 8, 2372-2380.
  • Achi, C. G., Hassanein, A., & Lansing, S. (2020). Enhanced biogas production of cassava wastewater using zeolite and biochar additives and manure co-digestion. Energies, 13(2), 491. http://dx.doi.org/10.3390/en13020491
    » http://dx.doi.org/10.3390/en13020491
  • Ahmad, A., Othman, I., Tardy, B. L., Hasan, S. W., & Banat, F. (2022). Enhanced lactic acid production with indigenous microbiota from date pulp waste and keratin protein hydrolysate from chicken feather waste. Bioresource Technology Reports, 18, 101089. http://dx.doi.org/10.1016/j.biteb.2022.101089
    » http://dx.doi.org/10.1016/j.biteb.2022.101089
  • Almeida, P. F., Calarge, F. A., & Santana, J. C. C. (2013). Production of a product similar to gelatin from chicken feet collagen. Agricultural Engineering, 33(6), 1289-1300.
  • Alves, F. E. S. B., Carpiné, D., Teixeira, G. L., Goedert, A. C., Scheer, A. P., & Ribani, R. H. (2021). Valorization of an abundant slaughterhouse by-product as a source of highly technofunctional and antioxidant protein hydrolysates. Waste and Biomass Valorization, 12(1), 263-279. http://dx.doi.org/10.1007/s12649-020-00985-8
    » http://dx.doi.org/10.1007/s12649-020-00985-8
  • Arthur, R., Baidoo, M. F., Osei, G., Boamah, L., & Kwofie, S. (2020). Evaluation of potential feedstocks for sustainable biogas production in Ghana: quantification, energy generation, and CO2abatement. Cogent Environmental Science, 6(1), 1868162. http://dx.doi.org/10.1080/23311843.2020.1868162
    » http://dx.doi.org/10.1080/23311843.2020.1868162
  • Belc, N., Mustatea, G., Apostol, L., Iorga, S., Vlăduț, V.-N., & Mosoiu, C. (2019). Cereal supply chain waste in the context of circular economy. E3S Web of Conferences, 112, 03031. http://dx.doi.org/10.1051/e3sconf/201911203031
    » http://dx.doi.org/10.1051/e3sconf/201911203031
  • Bernal, C., Rodríguez, K., & Martínez, R. (2018). Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnology Advances, 36(5), 1470-1480. http://dx.doi.org/10.1016/j.biotechadv.2018.06.002 PMid:29894813.
    » http://dx.doi.org/10.1016/j.biotechadv.2018.06.002
  • Blake, J., & Hess, J. (2014). Suitability of poultry litter ash as a feed supplement for broiler chickens. Journal of Applied Poultry Research, 23(1), 94-100. http://dx.doi.org/10.3382/japr.2013-00836
    » http://dx.doi.org/10.3382/japr.2013-00836
  • Borrajo, P., Pateiro, M., Barba, F. J., Mora, L., Franco, D., Toldrá, F., & Lorenzo, M. J. (2019). Antioxidant and antimicrobial activity of peptides extracted from meat by-products: a review. Food Analytical Methods, 12(11), 2401-2415. http://dx.doi.org/10.1007/s12161-019-01595-4
    » http://dx.doi.org/10.1007/s12161-019-01595-4
  • Bray, D. J., Walsh, T. R., Noro, M. G., & Notman, R. (2015). Complete structure of an epithelial keratin dimer: implications for intermediate filament assembly. PLoS One, 10(7), e0132706. http://dx.doi.org/10.1371/journal.pone.0132706 PMid:26181054.
    » http://dx.doi.org/10.1371/journal.pone.0132706
  • Brebu, M., & Spiridon, I. (2011). Thermal degradation of keratin waste. Journal of Analytical and Applied Pyrolysis, 91(2), 288-295. http://dx.doi.org/10.1016/j.jaap.2011.03.003
    » http://dx.doi.org/10.1016/j.jaap.2011.03.003
  • Briukhanov, A., Subbotin, I., Uvarov, R., & Vasilev, E. (2017). Method of designing of manure utilization technology. Agronomy Research, 15(3), 658-663.
  • Caires, C. M. I., Fernandes, E. A., Fagundes, N. S., Carvalho, A. P., Maciel, M. P., & Oliveira, B. R. (2010). The use of animal byproducts in broiler feeds. Use of animal co-products in broilers diets. Revista Brasileira de Ciência Avícola, 12(1), 41-46. http://dx.doi.org/10.1590/S1516-635X2010000100006
    » http://dx.doi.org/10.1590/S1516-635X2010000100006
  • Cansu, Ü., & Boran, G. (2015). Optimization of a multi-step procedure for isolation of chicken bone collagen. Korean Journal for Food Science of Animal Resources, 35(4), 431-440. http://dx.doi.org/10.5851/kosfa.2015.35.4.431 PMid:26761863.
    » http://dx.doi.org/10.5851/kosfa.2015.35.4.431
  • Chakka, A. K., Elias, M., Jini, R., Sakhare, P. Z., & Bhaskar, N. (2015). In-vitro antioxidant and antibacterial properties of fermentatively and enzymatically prepared chicken liver protein hydrolysates. Journal of Food Science and Technology, 52(12), 8059-8067. http://dx.doi.org/10.1007/s13197-015-1920-2 PMid:26604378.
    » http://dx.doi.org/10.1007/s13197-015-1920-2
  • Cheng, D., Liu, Y., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Zhang, S., Luo, G., & Bui, X. T. (2021). Sustainable enzymatic technologies in waste animal fat and protein management. Journal of Environmental Management, 284, 112040. http://dx.doi.org/10.1016/j.jenvman.2021.112040 PMid:33571854.
    » http://dx.doi.org/10.1016/j.jenvman.2021.112040
  • Cliché, S., Amiot, J., Avezard, C., & Gariepy, C. (2003). Extraction and characterization of collagen with or without telopeptides from chicken skin. Poultry Science, 82(3), 503-509. http://dx.doi.org/10.1093/ps/82.3.503 PMid:12705413.
    » http://dx.doi.org/10.1093/ps/82.3.503
  • Coward-Kelly, G., Chang, V. S., Agbogbo, F. K., & Holtzapple, M. T. (2006). Lime treatment of keratinous materials for the generation of highly digestible animal feed: chicken feathers. Bioresource Technology, 97(11), 1337-1343. http://dx.doi.org/10.1016/j.biortech.2005.05.021 PMid:16098740.
    » http://dx.doi.org/10.1016/j.biortech.2005.05.021
  • Dhillon, G. S., Kaur, S., Oberoi, H. S., Spier, M. R., & Brar, S. K. (2017). Agricultural-based protein by-products: characterization and applications. In G. S. Dhillon (Ed.), Protein byproducts: transformation from environmental burden into value-added products (pp. 21-36). Edmonton: Academic Press.
  • Dróżdż, D., Wystalska, K., Malinska, K., Grosser, A., Grobelak, A., & Kacprzak, M. (2020). Management of poultry manure in Poland – current state and future perspectives. Journal of Environmental Management, 264, 110327. http://dx.doi.org/10.1016/j.jenvman.2020.110327 PMid:32217329.
    » http://dx.doi.org/10.1016/j.jenvman.2020.110327
  • Feng, G., Adeli, A., Read, J., McCarty, J., & Jenkins, J. (2019). Consequences of pelletized poultry litter applications on soil physical and hydraulic properties in reduced tillage, continuous cotton system. Soil & Tillage Research, 194, 104309. http://dx.doi.org/10.1016/j.still.2019.104309
    » http://dx.doi.org/10.1016/j.still.2019.104309
  • Fisinin, V. I., Ismailova, D. Y., Volik, V. G., Lukashenko, V. S., & Saleeva, I. P. (2017). Deep processing of collagen-rich poultry products for different use. Agricultural Biology, 52(6), 1105-1115. http://dx.doi.org/10.15389/agrobiology.2017.6.1105eng
    » http://dx.doi.org/10.15389/agrobiology.2017.6.1105eng
  • Fomicheva, N. V., & Rabinovich, G. Y. (2021). Technological line for processing animal waste. IOP Conference Series: Earth and Environmental Science, 677, 052004.
  • Food and Agriculture Organization – FAO. (2021). Gateway to poultry production and products Retrieved from http://www.fao.org/poultry-production-products/production/en/
    » http://www.fao.org/poultry-production-products/production/en/
  • Food and Agriculture Organization – FAO. (2022). Crops and livestock products Retrieved from https://www.fao.org/faostat/en/#data/QCL
    » https://www.fao.org/faostat/en/#data/QCL
  • Gál, R., Mokrejš, P., Mrázek, P., Pavlačková, J., Janáčová, D., & Orsavová, J. (2020). Chicken heads as a promising by-product for preparation of food gelatins. Molecules, 25(3), 494. http://dx.doi.org/10.3390/molecules25030494 PMid:31979349.
    » http://dx.doi.org/10.3390/molecules25030494
  • Galali, Y., Omar, Z. A., & Sajadi, S. M. (2020). Biologically active components in by-products of food processing. Food Science & Nutrition, 8(7), 3004-3022. http://dx.doi.org/10.1002/fsn3.1665 PMid:32724565.
    » http://dx.doi.org/10.1002/fsn3.1665
  • Gorlov, I. F., Giro, T. M., Sitnikova, O. I., Slozhenkina, M. I., Zlobina, E. Y., & Karpenko, E. V. (2016). New functional products with chickpeas: reception, functional properties. American Journal of Food Technology, 11(6), 273-281. http://dx.doi.org/10.3923/ajft.2016.273.281
    » http://dx.doi.org/10.3923/ajft.2016.273.281
  • Hashim, P., Ridzwan, M. S. M., & Bakar, J. (2014). Isolation and characterization of collagen from chicken feet. International Journal of Bioengineering and Life Sciences, 8(3), 250-254.
  • Hassanein, A., Lansing, S., & Tikekar, R. (2019). Impact of metal nanoparticles on biogas production from poultry litter. Bioresource Technology, 275, 200-206. http://dx.doi.org/10.1016/j.biortech.2018.12.048 PMid:30590206.
    » http://dx.doi.org/10.1016/j.biortech.2018.12.048
  • Hernández-Cruz, M. C., Meza-Gordillo, R., Domínguez, Z., Rosales-Quintero, A., Abud-Archila, M., Ayora-Talavera, T., & Villalobos-Maldonado, J. J. (2021). Optimization and characterization of in situ epoxidation of chicken fat with peracetic acid. Fuel, 285, 119127. http://dx.doi.org/10.1016/j.fuel.2020.119127
    » http://dx.doi.org/10.1016/j.fuel.2020.119127
  • Hubbard, L. E., Givens, C. E., Griffin, D. W., Iwanowicz, L. R., Meyer, M. T., & Kolpin, D. W. (2020). Poultry litter as potential source of pathogens and other contaminants in groundwater and surface water proximal to large-scale confined poultry feeding operations. The Science of the Total Environment, 735, 139459. http://dx.doi.org/10.1016/j.scitotenv.2020.139459 PMid:32485450.
    » http://dx.doi.org/10.1016/j.scitotenv.2020.139459
  • Iwaniak, A., Minkiewicz, P., Pliszka, M., Mogut, D., & Darewicz, M. (2020). Characteristics of biopeptides released in silico from collagens using quantitative parameters. Foods, 9(7), 965. http://dx.doi.org/10.3390/foods9070965 PMid:32708318.
    » http://dx.doi.org/10.3390/foods9070965
  • Jackson, D. J., Rude, B. J., Karanja, K. K., & Whitley, N. C. (2006). Utilization of poultry litter pellets in meat goat diets. Small Ruminant Research, 66(1-3), 278-281. http://dx.doi.org/10.1016/j.smallrumres.2005.09.005
    » http://dx.doi.org/10.1016/j.smallrumres.2005.09.005
  • Jakimiuk, A., Vaverková, M. D., & Maxianová, A. (2021). Food waste – challenges and approaches for new devices journal of ecological engineering. Journal of Ecological Engineering, 22(3), 231-238. http://dx.doi.org/10.12911/22998993/132430
    » http://dx.doi.org/10.12911/22998993/132430
  • Kanani, F., Heidari, M. D., Gilroyed, B. H., & Pelletier, N. (2020). Waste valorization technology options for the egg and broiler industries: a review and recommendations. Journal of Cleaner Production, 262, 121129. http://dx.doi.org/10.1016/j.jclepro.2020.121129
    » http://dx.doi.org/10.1016/j.jclepro.2020.121129
  • Kannah, R. Y., Merrylin, J., Devi, T. P., Kavitha, S., Sivashanmungam, P., Kumar, G., & Banu, J. R. (2020). Food waste valorization: biofuels and value added product recovery. Bioresource Technology Reports, 11, 100524. http://dx.doi.org/10.1016/j.biteb.2020.100524
    » http://dx.doi.org/10.1016/j.biteb.2020.100524
  • Khiari, Z., Ndagijimana, M., & Betti, M. (2014). Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization/precipitation process of turkey by-products. Poultry Science, 93(9), 2347-2362. http://dx.doi.org/10.3382/ps.2014-03953 PMid:24931971.
    » http://dx.doi.org/10.3382/ps.2014-03953
  • Khomych, G., Krusir, G., Horobets, O., Levchenko, Y., & Gaivoronska, Z. (2020). Development of resource effective and cleaner technologies using the waste of plant raw materials. Journal of Ecological Engineering, 21(4), 178-184. http://dx.doi.org/10.12911/22998993/119814
    » http://dx.doi.org/10.12911/22998993/119814
  • Kshetri, P., Roy, S. S., Sharma, S. K., Singh, T. S., Ansari, M. A., Prakash, N., & Ngachan, S. (2019). Transforming chicken feather waste into feather protein hydrolysate using a newly isolated multifaceted keratinolytic bacterium Chryseobacterium sediminis RCM-SSR-7. Waste and Biomass Valorization, 10(1), 1-11. http://dx.doi.org/10.1007/s12649-017-0037-4
    » http://dx.doi.org/10.1007/s12649-017-0037-4
  • Kumar, S., Negi, S., Mandpe, A., Singh, R. V., & Hussain, A. (2018). Rapid composting techniques in Indian context and utilization of black soldier fly for enhanced decomposition of biodegradable wastes – a comprehensive review. Journal of Environmental Management, 227, 189-199. http://dx.doi.org/10.1016/j.jenvman.2018.08.096 PMid:30193208.
    » http://dx.doi.org/10.1016/j.jenvman.2018.08.096
  • Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P., & Basamba, T. A. (2019). How safe is chicken litter for land application as an organic fertilizer? A review. International Journal of Environmental Research and Public Health, 16(19), 3521. http://dx.doi.org/10.3390/ijerph16193521 PMid:31547196.
    » http://dx.doi.org/10.3390/ijerph16193521
  • Lasekan, A., Bakar, F. A., & Hashim, D. (2013). Potential of chicken byproducts as sources of useful biological resources. Waste Management, 33(3), 552-565. http://dx.doi.org/10.1016/j.wasman.2012.08.001 PMid:22985619.
    » http://dx.doi.org/10.1016/j.wasman.2012.08.001
  • Lee, J. H., Lee, J., & Song, K. B. (2015). Development of a chicken feet protein film containing essential oils. Food Hydrocolloids, 46, 208-215. http://dx.doi.org/10.1016/j.foodhyd.2014.12.020
    » http://dx.doi.org/10.1016/j.foodhyd.2014.12.020
  • Leinonen, I., Williams, A. G., Wiseman, J., Guy, J., & Kyriazakis, I. (2012). Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: broiler production systems. Poultry Science, 91(1), 8-25. http://dx.doi.org/10.3382/ps.2011-01634 PMid:22184424.
    » http://dx.doi.org/10.3382/ps.2011-01634
  • Li, P., Zhang, C. J., Zhao, T. K., & Zhong, H. (2017). Removal of suspended solids in anaerobically digested slurries of livestock and poultry manure by coagulation using different dosages of polyaluminum chloride. In M. Gibson & Y. Fan (Eds.), 2016 International Conference on Environmental Engineering and Sustainable Development (p. 012008). Bristol: IOP Publishing. http://dx.doi.org/10.1088/1742-6596/51/1/012008
    » http://dx.doi.org/10.1088/1742-6596/51/1/012008
  • Li, Z., Reimer, C., Picard, M., Mohanty, A. K., & Misra, M. (2020). Characterization of chicken feather biocarbon for use in sustainable biocomposites. Frontiers in Materials, 7, 3. http://dx.doi.org/10.3389/fmats.2020.00003
    » http://dx.doi.org/10.3389/fmats.2020.00003
  • Liu, C., Yin, Z., Hu, D., Mo, F., Chu, R., Zhu, L., & Hu, C. (2021). Biochar derived from chicken manure as a green adsorbent for naphthalene removal. Environmental Science and Pollution Research International, 28(27), 36585-36597. http://dx.doi.org/10.1007/s11356-021-13286-x PMid:33704645.
    » http://dx.doi.org/10.1007/s11356-021-13286-x
  • Mahyari, Z. F., Khorasanizadeh, Z., Khanali, M., & Mahyari, K. F. (2021). Biodiesel production from slaughter wastes of broiler chicken: a potential survey in Iran. SN Applied Sciences, 3(1), 57. http://dx.doi.org/10.1007/s42452-020-04045-7
    » http://dx.doi.org/10.1007/s42452-020-04045-7
  • Mashur, M., Bilad, M. R., Hunaepi, H., Huda, N., & Roslan, J. (2021). Formulation of organic wastes as growth media for cultivation of earthworm nutrient-rich Eisenia foetida. Sustainability, 13(18), 10322. http://dx.doi.org/10.3390/su131810322
    » http://dx.doi.org/10.3390/su131810322
  • McGauran, T., Dunne, N., Smyth, B. M., & Cunningham, E. (2021). Feasibility of the use of poultry waste as polymer additives and implications for energy, cost and carbon. Journal of Cleaner Production, 291, 125948. http://dx.doi.org/10.1016/j.jclepro.2021.125948
    » http://dx.doi.org/10.1016/j.jclepro.2021.125948
  • McKittrick, J., Chen, P. Y., Bodde, S. G., Yang, W., Novitskaya, E. E., & Meyers, M. A. (2012). The structure, functions, and mechanical properties of keratin. JOM, 64(4), 449-468. http://dx.doi.org/10.1007/s11837-012-0302-8
    » http://dx.doi.org/10.1007/s11837-012-0302-8
  • Mehryar, E., Ding, W. M., Hemmat, A., Hassan, M., Bi, J. H., Huang, H. Y., & Kafashan, J. (2017). Anaerobic co-digestion of oil refinery wastewater and chicken manure to produce biogas, and kinetic parameters determination in batch reactors. Agronomy Research, 15(5), 1983-1996.
  • Mokrejš, P., Gál, R., Pavlačková, J., & Janáčová, D. (2021). Valorization of a by-product from the production of mechanically deboned chicken meat for preparation of gelatins. Molecules, 26(2), 349. http://dx.doi.org/10.3390/molecules26020349 PMid:33445455.
    » http://dx.doi.org/10.3390/molecules26020349
  • Nadalian, M., Kamaruzaman, N., Yusop, M. S. M., Babji, A. S., & Yusop, S. M. (2019). Isolation, purification and characterization of antioxidative bioactive elastin peptides from poultry skin. Food Science of Animal Resources, 39(6), 966-979. http://dx.doi.org/10.5851/kosfa.2019.e90 PMid:31950112.
    » http://dx.doi.org/10.5851/kosfa.2019.e90
  • Nnolim, N. E., & Nwodo, U. U. (2020). Bacillus sp. CSK2 produced thermostable alkaline keratinase using agro-wastes: keratinolytic enzyme characterization. BMC Biotechnology, 20(1), 65. http://dx.doi.org/10.1186/s12896-020-00659-2 PMid:33317483.
    » http://dx.doi.org/10.1186/s12896-020-00659-2
  • Ojo, A. O., Taiwo, L. B., Adediran, J. A., Oyedele, A. O., Fademi, I., & Uthman, A. C. O. (2018). Physical, chemical and biological properties of an accelerated cassava based compost prepared using different ratios of cassava peels and poultry manure. Communications in Soil Science and Plant Analysis, 49(14), 1774-1786. http://dx.doi.org/10.1080/00103624.2018.1474914
    » http://dx.doi.org/10.1080/00103624.2018.1474914
  • Park, J. H., Wang, J. J., Kim, S. H., Kang, S. W., Cho, J. S., Delaune, R. D., Ok, Y. S., & Seo, D. C. (2019). Lead sorption characteristics of various chicken bone part-derived chars. Environmental Geochemistry and Health, 41(4), 1675-1685. http://dx.doi.org/10.1007/s10653-017-0067-7 PMid:29344748.
    » http://dx.doi.org/10.1007/s10653-017-0067-7
  • Peng, Z., Mao, X., Zhang, J., Du, G., & Chen, J. (2019). Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microbial Cell Factories, 18(1), 84. http://dx.doi.org/10.1186/s12934-019-1134-9 PMid:31103032.
    » http://dx.doi.org/10.1186/s12934-019-1134-9
  • Peng, Z., Mao, X., Zhang, J., Du, G., & Chen, J. (2020). Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis. Biotechnology for Biofuels, 13(1), 61. http://dx.doi.org/10.1186/s13068-020-01700-4 PMid:32266007.
    » http://dx.doi.org/10.1186/s13068-020-01700-4
  • Potapov, M. A., Kurochkin, A. A., & Frolov, D. I. (2020). Equalization of the moisture content of the mixture for obtaining fertilizers from high-moisture waste of poultry farming by extrusion. IOP Conference Series. Materials Science and Engineering, 1001(1), 012029. http://dx.doi.org/10.1088/1757-899X/1001/1/012029
    » http://dx.doi.org/10.1088/1757-899X/1001/1/012029
  • Potti, R. B., & Fahad, M. O. (2017). Extraction and characterization of collagen from broiler chicken feet (Gallus gallus domesticus)-biomolecules from poultry waste. Journal of Pure & Applied Microbiology, 11(1), 315-322. http://dx.doi.org/10.22207/JPAM.11.1.39
    » http://dx.doi.org/10.22207/JPAM.11.1.39
  • Purnomo, C. W., Indarti, S., Wulandari, C., Hinode, H., & Nakasaki, K. (2017). Slow release fertiliser production from poultry manure. Chemical Engineering Transactions, 56, 1531-1536.
  • Rafieian, F., Keramat, J., & Kadivar, M. (2013). Optimization of gelatin extraction from chicken deboner residue using RSM method. Journal of Food Science and Technology, 50(2), 374-380. http://dx.doi.org/10.1007/s13197-011-0355-7 PMid:24425930.
    » http://dx.doi.org/10.1007/s13197-011-0355-7
  • Raj, K. R., & Mahendrakar, N. S. (2010). Effect of ensiling and organic solvents treatment on proteolytic enzymes of layer chicken intestine. Journal of Food Science and Technology, 47(3), 320-324. http://dx.doi.org/10.1007/s13197-010-0051-z PMid:23572645.
    » http://dx.doi.org/10.1007/s13197-010-0051-z
  • Ramadhan, M. O., & Handayani, M. N. (2020). The potential of food waste as bioplastic material to promote environmental sustainability: a review. IOP Conference Series. Materials Science and Engineering, 980(1), 012082. http://dx.doi.org/10.1088/1757-899X/980/1/012082
    » http://dx.doi.org/10.1088/1757-899X/980/1/012082
  • Ramakrishnan, N., Sharma, S., Gupta, A., & Alashwal, B. Y. (2018). Keratin based bioplastic film from chicken feathers and its characterization. International Journal of Biological Macromolecules, 111, 352-358. http://dx.doi.org/10.1016/j.ijbiomac.2018.01.037 PMid:29320725.
    » http://dx.doi.org/10.1016/j.ijbiomac.2018.01.037
  • Rammaya, K., Ying, V. Q., & Babji, A. S. (2012). Physicochemical analysis of gelatin extracted from mechanically deboned chicken meat (MDCM) residue. International Journal of Food, Nutrition and Public Health, 5(1-2-3), 147-168. http://dx.doi.org/10.47556/J.IJFNPH.5.1-2-3.2012.9
    » http://dx.doi.org/10.47556/J.IJFNPH.5.1-2-3.2012.9
  • Ritchie, H., & Roser, M. (2019). Meat and dairy production. Our World in Data Online. Retrieved from https://ourworldindata.org/meat-production#citation
    » https://ourworldindata.org/meat-production#citation
  • Rivero-Pino, F., Espejo-Carpio, F. J., & Guadix, E. M. (2020). Antidiabetic food-derived peptides for functional feeding: production, functionality and in vivo evidences. Foods, 9(8), 983. http://dx.doi.org/10.3390/foods9080983 PMid:32718070.
    » http://dx.doi.org/10.3390/foods9080983
  • Roiter, L. M., Zazykina, L. A., & Eremeeva, N. A. (2019). Poultry by-products, reserve for growth of export potential of the industry. IOP Conference Series: Earth and Environmental Science, 341, 012209. http://dx.doi.org/10.1088/1755-1315/341/1/012209
    » http://dx.doi.org/10.1088/1755-1315/341/1/012209
  • Romero-Garay, M. G., Martínez-Montaño, E., Hernández-Mendoza, A., Vallejo-Cordoba, B., González-Córdova, A. F., Montalvo-González, E., & García-Magaña, M. L. (2020). Bromelia karatas and Bromelia pinguin: sources of plant proteases used for obtaining antioxidant hydrolysates from chicken and fish by-products. Applied Biological Chemistry, 63(1), 41. http://dx.doi.org/10.1186/s13765-020-00525-x
    » http://dx.doi.org/10.1186/s13765-020-00525-x
  • Saenmuang, S., Phothiset, S., & Chumnanka, C. (2020). Extraction and characterization of gelatin from black-bone chicken by-products. Food Science and Biotechnology, 29(4), 469-478. http://dx.doi.org/10.1007/s10068-019-00696-4 PMid:32296557.
    » http://dx.doi.org/10.1007/s10068-019-00696-4
  • Šafarič, R., Zemljič, L. F., Novak, M., Dugonik, B., Bratina, B., Gubeljak, N., Bolka, S., & Strnad, S. (2020). Preparation and characterisation of waste poultry feathers composite fibreboards. Materials, 13(21), 4964. http://dx.doi.org/10.3390/ma13214964 PMid:33158218.
    » http://dx.doi.org/10.3390/ma13214964
  • Samoraj, M., Mironiuk, M., Izydorczyk, G., Witek-Krowiak, A., Szopa, D., Moustakas, K., & Chojnacka, K. (2022). The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. Chemosphere, 295, 133799. http://dx.doi.org/10.1016/j.chemosphere.2022.133799 PMid:35114259.
    » http://dx.doi.org/10.1016/j.chemosphere.2022.133799
  • Santana, J. C. C., Gardim, R. B., Almeida, P. F., Borini, G. B., Quispe, A. P. B., Llanos, S. A. V., Heredia, J. A., Zamuner, F. M. C., Gamarra, S., Farias, T. M. B., Ho, L. L., & Berssaneti, F. T. (2020). Valorization of chicken feet by-product of the poultry industry: high qualities of gelatin and biofilm from extraction of collagen. Polymers, 12(3), 529. http://dx.doi.org/10.3390/polym12030529 PMid:32121646.
    » http://dx.doi.org/10.3390/polym12030529
  • Silva, E. P., Rabello, C. B.-V., Lima, M. B., Ludke, J. V., Arruda, E. M. F., & Albino, L. F. T. (2014). Poultry offal meal in broiler chicken feed. Scientia Agrícola, 71(3), 188-194. http://dx.doi.org/10.1590/S0103-90162014000300003
    » http://dx.doi.org/10.1590/S0103-90162014000300003
  • Sivamani, S., Manickam, A., Karthiban, S., Karthikeyan, S., & Balajii, M. (2021). Process modelling and simulation of biodiesel synthesis reaction for non-edible yellow oleander (yellow bells) oil and waste chicken fat. In M. Srivastava, N. Srivastava & R. Singh (Eds.), Bioenergy research: revisiting latest development. (pp. 129-160). Singapore: Springer. http://dx.doi.org/10.1007/978-981-33-4615-4_6
    » http://dx.doi.org/10.1007/978-981-33-4615-4_6
  • Soares, M., Rezende, P. C., Corrêa, N. M., Rocha, J. S., Martins, M. A., Andrade, T. C., Fracalossi, D. M., & Vieira, F. N. (2020). Protein hydrolysates from poultry by-product and swine liver as an alternative dietary protein source for the Pacific white shrimp. Aquaculture Reports, 17, 100344. http://dx.doi.org/10.1016/j.aqrep.2020.100344
    » http://dx.doi.org/10.1016/j.aqrep.2020.100344
  • Soboleva, O. M., Kolosova, M. M., Filipovich, L. A., & Aksenov, V. A. (2017). Electromagnetic processing as a way of increasing microbiological safety of animal waste. IOP Conference Series: Earth and Environmental Science, 66, 012025. http://dx.doi.org/10.1088/1755-1315/66/1/012025
    » http://dx.doi.org/10.1088/1755-1315/66/1/012025
  • Sompie, M., & Triasih, A. (2018). Effect of extraction temperature on characteristics of chicken legskin gelatin. IOP Conference Series: Earth and Environmental Science, 102, 012089. http://dx.doi.org/10.1088/1755-1315/102/1/012089
    » http://dx.doi.org/10.1088/1755-1315/102/1/012089
  • Stiborova, H., Branska, B., Vesela, T., Lovecka, P., Stranska, M., Hajslova, J., Jiru, M., Patakova, P., & Demnerova, K. (2016). Transformation of raw feather waste into digestible peptides and amino acids. Journal of Chemical Technology and Biotechnology, 91(6), 1629-1637. http://dx.doi.org/10.1002/jctb.4912
    » http://dx.doi.org/10.1002/jctb.4912
  • Subbotina, Y. M. (2020). Microbiological and biocenotic utilization of bird droppings by natural biocenoses. Problems of Veterinary Sanitation, Hygiene and Ecology, 1(3), 341-350. http://dx.doi.org/10.36871/vet.san.hyg.ecol.202003009
    » http://dx.doi.org/10.36871/vet.san.hyg.ecol.202003009
  • Tork, S. E., Shahein, Y. E., El-Hakim, A. E., Abdel-Aty, A. M., & Aly, M. M. (2013). Production and characterization of thermostable metallo-keratinase from newly isolated Bacillus subtilis NRC 3. International Journal of Biological Macromolecules, 55, 169-175. http://dx.doi.org/10.1016/j.ijbiomac.2013.01.002 PMid:23313822.
    » http://dx.doi.org/10.1016/j.ijbiomac.2013.01.002
  • Tram, N. X. T., Ishikawa, K., Minh, T. H., Benson, D., & Tsuru, K. (2021). Characterization of carbonate apatite derived from chicken bone and its in-vitro evaluation using MC3T3-E1 cells. Materials Research Express, 8(2), 025401. http://dx.doi.org/10.1088/2053-1591/abe018
    » http://dx.doi.org/10.1088/2053-1591/abe018
  • Ullah, A., Vasanthan, T., Bressler, D., Elias, A. L., & Wu, J. (2011). Bioplastics from feather quill. Biomacromolecules, 12(10), 3826-3832. http://dx.doi.org/10.1021/bm201112n PMid:21888378.
    » http://dx.doi.org/10.1021/bm201112n
  • Vasilenko, V. N., Frolova, L. N., Mikhailova, N. A., & Dragan, I. V. (2021). Innovative technology to obtain forage flour from keratincontaining waste by extrusion. IOP Conference Series: Earth and Environmental Science, 640, 022010.
  • Verma, A., Singh, H., Anwar, S., Chattopadhyay, A., Tiwari, K. K., Kaur, S., & Dhilon, G. S. (2017). Microbial keratinases: industrial enzymes with waste management potential. Critical Reviews in Biotechnology, 37(4), 476-491. http://dx.doi.org/10.1080/07388551.2016.1185388 PMid:27291252.
    » http://dx.doi.org/10.1080/07388551.2016.1185388
  • Vikman, Y. M., Siipola, V., Kanerva, H., Šližyte, R., & Wikberg, H. (2017). Poultry by-products as a potential source of nutrients. Advances in Recycling and Waste Management, 2(3), 1000142.
  • Voběrkova, S., Maxianová, A., Schlosserová, N., Adamcová, D., Vršanská, M., Richtera, L., Gagić, M., Zloch, J., & Vaverková, M. D. (2020). Food waste composting. Is it really so simple as stated in scientific literature? A case study. The Science of the Total Environment, 723, 138202. http://dx.doi.org/10.1016/j.scitotenv.2020.138202 PMid:32224413.
    » http://dx.doi.org/10.1016/j.scitotenv.2020.138202
  • Volik, V. G., Ismailova, D. Y., Zinoviev, S. V., & Erokhina, O. N. (2017). Improving the efficiency of using secondary raw materials obtained during poultry processing. Poultry and Poultry Products, 2, 40-42.
  • Yang, T., Han, C., Tang, J., & Luo, Y. (2020). Removal performance and mechanisms of Cr(VI) by an in-situ self-improvement of mesoporous biochar derived from chicken bone. Environmental Science and Pollution Research International, 27(5), 5018-5029. http://dx.doi.org/10.1007/s11356-019-07116-4 PMid:31848961.
    » http://dx.doi.org/10.1007/s11356-019-07116-4
  • Zapevalov, M. V., Sergeyev, N. S., Redreev, G. V., Chetyrkin, Y. B., & Zapevalov, M. S. (2019). Technology of poultry manure utilization as a renewable energy source. IOP Conference Series. Materials Science and Engineering, 582(1), 012036. http://dx.doi.org/10.1088/1757-899X/582/1/012036
    » http://dx.doi.org/10.1088/1757-899X/582/1/012036
  • Zhang, L., Li, H., Zhu, J., & Yan, J. (2020). Structure and dyeing properties of cotton fabric modified by protein from waste feathers. IOP Conference Series. Materials Science and Engineering, 774(1), 012043. http://dx.doi.org/10.1088/1757-899X/774/1/012043
    » http://dx.doi.org/10.1088/1757-899X/774/1/012043
  • Zhu, G., Zhu, X., Wan, X., Fan, Q., Ma, Y., Qian, J., Liu, X., Shen, Y., & Jiang, J. (2010). Hydrolysis technology and kinetics of poultry waste to produce amino acids in subcritical water. Journal of Analytical and Applied Pyrolysis, 88(2), 187-191. http://dx.doi.org/10.1016/j.jaap.2010.04.005
    » http://dx.doi.org/10.1016/j.jaap.2010.04.005
  • Zhumanova, G., Rebezov, M., Assenova, B., & Okuskhanova, E. (2018). Prospects of using poultry by-products in the technology of chopped semi-finished products. International Journal of Engineering & Technology, 7(3.34), 495-498. http://dx.doi.org/10.14419/ijet.v7i3.34.19367
    » http://dx.doi.org/10.14419/ijet.v7i3.34.19367
  • Zou, Y., Yang, H., Zhang, X., Xu, P., Jiang, D., Zhang, M., Xu, W., & Wang, D. (2020). Effect of ultrasound power on extraction kinetic model, and physicochemical and structural characteristics of collagen from chicken lung. Food Production, Processing and Nutrition, 2(1), 3. http://dx.doi.org/10.1186/s43014-019-0016-1
    » http://dx.doi.org/10.1186/s43014-019-0016-1

Publication Dates

  • Publication in this collection
    29 Aug 2022
  • Date of issue
    2022

History

  • Received
    27 Jan 2022
  • Accepted
    10 July 2022
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br