Acessibilidade / Reportar erro

Use of Aluminosilicate Residue from Insulators of High Voltage Transformers for the Adsorption of Basic Dyes

Abstract

In this study, an aluminosilicate residue from insulators of high voltage transformers was used for the adsorption of basic dyes. The absorbent was characterized by X-ray fluorescence analysis, X-ray diffraction analysis, scanning electron microscopy, multimolecular adsorption theory (Branauer-Emmet-Teller (BET)) and determination of the point of zero charge (pHPZC). The effect of solution pH and adsorbent mass, the kinetic and thermodynamic behavior at different temperatures and the application of non-linear isotherm models of Langmuir, Freundlich, Temkin and Dubinin-Radushevich were investigated. The pHPZC value for the aluminosilicate was 3.7. The best conditions for adsorption of methylene blue and crystal violet dyes were pH 8.0 and adsorbent mass of 1100 mg in 25 mL. The best fit for the experimental data was obtained applying the pseudo-second-order kinetic model, with an equilibrium time of 480 to 720 min, and the activation energy suggests a physical adsorption mechanism. Isothermal parameters suggest a heterogeneous, favorable and predominantly physical surface adsorption. The thermodynamic studies indicated that the adsorption process is not spontaneous and is exothermic and the Gibbs energy values (∆Gº) suggest physisorption.

Keywords:
aluminosilicate residue; basic dyes; adsorption


Introduction

The textile industry is one of the biggest consumers of dyes, which are used in the production stages, and thus the control and treatment of the effluents generated are required, since they have a high toxic organic load. The degradation of aquatic environments is strongly related to an increase in the organic load provided by these industrial dyes.11 Konicki, W.; Helminiaki, A.; Arabczyk, W.; Mijwoska, E.; Chem. Eng. Res. Des. 2018, 129, 259. Environmental changes due to dyes discarded without proper treatment disrupt the natural dynamics of biological communities, with negative impacts being associated with the pH, turbidity, chemical and biological oxygen demand, the amount of total solids in suspension and other physicochemical parameters of the hydric body.22 Idris, A. M.; El-Zahhar, A. A.; Microchem. J. 2019, 146, 429.

3 Srinvasan, A.; Viraraghavan, T.; J. Environ. Manage. 2010, 91, 1915.
-44 Vasques, A. R.; de Souza, S. M. A. G. U.; Weissenberg, L.; de Souza, A. A. U.; Vale, J. A. B.; Eng. Sanit. Ambient. 2011, 16, 245. Many techniques can be used to remove dyes from effluents, including oxidation,55 Wang, C.; Zhang, Y.; Yu, L.; Zhang, Z.; Sun, H.; J. Hazard. Mater. 2013, 260, 851. photocatalytic degradation,33 Srinvasan, A.; Viraraghavan, T.; J. Environ. Manage. 2010, 91, 1915.,66 Liu, H.; Guo, W.; Li, Y.; He, S.; He, C.; J. Environ. Chem. Eng. 2018, 6, 59.,77 Saleh, T. A.; Gupta, V. K.; J. Colloid Interface Sci. 2012, 371, 101. adsorption88 Aguiar, J. E.; Cecilia, J. A.; Tavares, P. A. S.; Azevedo, D. C. S.; Castellón, E. R.; Lucena, S. M. P.; Silva Jr., I. J.; Appl. Clay Sci. 2017, 135, 35. and others.33 Srinvasan, A.; Viraraghavan, T.; J. Environ. Manage. 2010, 91, 1915.,99 Banat, I. M.; Nigam, P.; Armour, G.; Singh, D.; Marchant, R.; Mchale, A. P.; Mcmullan, G.; Bioresour. Technol. 2000, 72, 219. Adsorption is of particular interest due to the fact that trace elements can be removed and the adsorbent can be recovered. The effectiveness of effluent treatments applying an adsorption process is related to the adsorbent, the adsorbate and the medium of diluted solutions. In general, adsorption processes are more versatile and superior to other techniques for wastewater treatment in terms of initial cost, simplicity of design, ease of operation, sensitivity to toxic substances and removal of dyes even from dilute solutions.1010 Yang, R.; Dawei, L.; Li, A.; Yang, H.; Appl. Clay Sci. 2018, 151, 20. A wide variety of adsorbents are available for this purpose, such as activated carbon,1111 Mor, S.; Chhavi, K. M.; Sushil, K. K.; Ravindra, K.; Environ. Dev. Sustainable 2018, 20, 625.

12 Jawad, A. H.; Ismail, K.; Ishak, M. A. M.; Wilson, L. D.; Chin. J. Chem. Eng. 2019, 27, 1716.

13 Jawad, A. H.; Abdulhameed, A. S.; Energy Ecol. Environ. 2020, 5, 456.
-1414 Jawad, A. H.; Hum, N. N. M. F.; Abdulhameed, A. S.; Ishak, M. A. M.; Int. J. Environ. Anal. Chem. 2020, DOI: 10.1080/03067319.2020.1807529.
https://doi.org/10.1080/03067319.2020.18...
carbonized watermelon rind,1515 Jawad, A. H.; Razuana, R.; Appaturib, J. N.; Wilsonc, L. D.; Surf. Interface 2019, 16, 76. coconut shell,1616 Jawad, A. H.; Abdulhameed, A. S.; Mastulihttps, M. S.; J. Taibah Univ. Sci. 2020, 14, 305. clays,1010 Yang, R.; Dawei, L.; Li, A.; Yang, H.; Appl. Clay Sci. 2018, 151, 20.,1717 Chicinas, R. P.; Bedelean, H.; Stefan, R.; Mãicãneanu, A.; J. Mol. Struct. 2018, 1154, 187.,1818 Jawad, A. H.; Abdulhameed, A. S.; Surf. Interface 2020, 18, 100422. silicas,1919 Li, P.; Gao, B.; Li, A.; Yang, H.; Microporous Mesoporous Mater. 2017, 8714, 35.,2020 Maucec, D.; Suligoj, A.; Ristik, A.; Drazic, G.; Pintar, A.; Tusar, N. N.; Catal. Today 2018, 30, 32. chitosan,2121 Abbasi, M.; Habibi, M. M.; J. Taiwan Inst. Chem. Eng. 2016, 62, 112. chitosan-activated charcoal composite,2222 Jawad, A. H.; Abdulhameed, A. S.; Surip, S. N.; Sabar, S.; Int. J. Environ. Anal. Chem. 2020, DOI: 10.1080/03067319.2020.1807966.
https://doi.org/10.1080/03067319.2020.18...
,2323 Jawad, A. H.; Abdulhameed, A. S.; Mastuli, M. S.; J. Polym. Environ. 2020, 28, 1095. and chitosan-epichlorohydrin/zeolite,2424 Jawad, A. H.; Abdulhameed, A. S.; Abdallah, R.; Yaseen, Z. M.; Int. J. Biol. Macromol. 2020, 163, 756. and these can be reused in the process several times.

Companies that supply electricity generate residues of ceramic material from electrical insulators, through equipment maintenance and modernization processes, and these accumulated over time. The characteristics of this material differ from those of traditional ceramics. Its basic composition consists of kaolin, clay, quartz and potassic feldspar,2525 Santos, P. S.; Clays Science and Technology, vol. 1, 2nd ed.; Edgard Blücher Publisher: São Paulo, Brazil, 1992. and it is referred to by the generic name of white ceramic. Chemically, it is composed of hydrated aluminum silicates (xSiO2/yAl2O3) and iron, along with a limited number of minerals comprised of alkaline and alkaline earth elements called aluminosilicates.2626 Pinto, A. T.; Introdução ao Estudo dos Geopolímeros; Geopolymer System Inc., Universidade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 2006, available at http://www.geopolymer.com.br/PDF/introducao.pdf, accessed in April 2021.
http://www.geopolymer.com.br/PDF/introdu...
,2727 Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Nazli, Z. H.; Bhatti, H. N.; Nouren, S.; J. Mol. Liq. 2018, 256, 395. The adsorbent structure can lead to greater adsorption efficiency and ion exchange capacity than the conventional methods for such treatments1717 Chicinas, R. P.; Bedelean, H.; Stefan, R.; Mãicãneanu, A.; J. Mol. Struct. 2018, 1154, 187. and this material is suitable for use as a catalyst.2525 Santos, P. S.; Clays Science and Technology, vol. 1, 2nd ed.; Edgard Blücher Publisher: São Paulo, Brazil, 1992.,2828 Moshoeshoe, M.; Nadiye-Tabbiruka, M. S.; Obuseng, V.; Am. J. Mater. Sci. 2017, 7, 196.

Investigations into the adsorption mechanisms of clay minerals, as well as their derivatives and residues, are of interest for the treatment of wastewater, due to their low-cost, abundance in nature, wide availability locally, low sensitivity to toxic substances, cation exchange capacity and high chemical stability.1010 Yang, R.; Dawei, L.; Li, A.; Yang, H.; Appl. Clay Sci. 2018, 151, 20. The modification of clays and residues can increase the processing cost, but treatments applying these residues to remove organic and inorganic dyes from effluent can be viable and highly reliable.1010 Yang, R.; Dawei, L.; Li, A.; Yang, H.; Appl. Clay Sci. 2018, 151, 20.,2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921. The effectiveness of ceramic residues as adsorption agents for basic dyes is associated with the chemical and structural composition of the adsorbent3030 Dominguini, L.; Menegaro, D. A.; Miguel, T. F.; dal Bó, M.; Cerâmica 2014, 60, 218. and the removal of cationic dyes by natural clay is strongly dependent on the process temperature, initial dye concentration and pH of the solution.3131 Bentahar, S.; Dbik, A.; El Khomri, M.; El Messaoudi, N.; Lacherai, A.; Groundwater Sustainable Dev. 2018, 6, 255.

In this study, the use of waste material as an adsorbent was investigated through its application in the treatment of diluted aqueous solutions of dyes used at textile plants. The residue from insulators of high voltage transformers (aluminosilicate) was subjected to ASTM3232 ASTM D2149-13: Standard Test Method for Permittivity (Dielectric Constant) and Dissipation Factor of Solid Ceramic Dielectrics at Frequencies to 10 MHz and Temperatures to 500 °C, ASTM International: West Conshohocken, PA, 2013.,3333 ISO 29581-2: Cement Test Methods-Part 2 Chemical Analysis by X-Ray Fluorescence, ISO/TC 74, Cement and Lime, ISO: Vernier-Geneva, Switzerland, 2010. tests to ensure that the chemical composition and physicochemical properties of the waste of electrical insulators are constant and reproducible. The material was used in adsorption experiments to investigate the ion exchange with dyes present in wastewater from textile plants, such as methylene blue and crystal violet. The samples were characterized by vibrational spectroscopy in the infrared region with Fourier transform (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF) and Branauer-Emmet-Teller (BET) multimolecular adsorption analysis in N2 atmosphere and the point of zero charge (PZC) was determined. Physicochemical parameters were also investigated through studies on the kinetics, adsorption isotherms, pH, adsorbent dosage and thermodynamics.

Experimental

Materials

The aluminosilicate (ALMS) residue from high voltage transformers was obtained from the company Enel. The material was cleaned to remove visible residues, crushed in mills up to a suitable granulometric size, separated using sieves of 80 to 150 mesh, and packaged in hermetically-sealed polyethylene vials, in different granulometries, in a clean dry environment. Methylene blue (MB) and crystal violet (CV) dyes were purchased from Sigma-Aldrich (St. Louis, USA). Hydrochloric acid (HCl), sodium hydrate (NaOH) and all the other compounds were obtained as analytical reagents from Sigma-Aldrich (St. Louis, USA).

Characterization of the aluminosilicate residue

The FTIR spectroscopy study of ALMS and ALMS/dyes was performed on a PerkinElmer Frontier spectrophotometer, Model FT-IR/NIR (Waltham, USA). The chemical analysis was performed by X-ray fluorescence spectrometry (XRF), using a Thermo spectrometer by Malvern Panalytical, model Claisse M4 Fusion (Malvern Hills, UK), with a power of 4.2 KV, according to the ISO 29581-2.3333 ISO 29581-2: Cement Test Methods-Part 2 Chemical Analysis by X-Ray Fluorescence, ISO/TC 74, Cement and Lime, ISO: Vernier-Geneva, Switzerland, 2010. The average pore diameter (D), specific surface area (S) and pore volume (Vp) were obtained from N2 adsorption measurements taken on an automatic physisorption analyzer model ASAP 2020 by Micromeritics Instrument Corp., (Norcross, GA, USA). The morphology was analyzed by scanning electron microscopy (SEM) on a Jeol Ltd., model JSM-IT300 microscope, with an electron acceleration voltage of 7 kV (Akishima, Japan). X-ray diffraction (XRD) patterns of the powdered samples were collected on an Oxford diffractometer, model 51-ADD0048 (Yarnton, UK) (λ = 1.54 Å), in the range of 10-80°, using a continuous scan with a velocity of 0.05° min−1.

Study on the pHpzc

To determine the point of zero charge (PZC), 20 mL of 0.1 mol L−1 NaCl at different pH values (11 Konicki, W.; Helminiaki, A.; Arabczyk, W.; Mijwoska, E.; Chem. Eng. Res. Des. 2018, 129, 259.

2 Idris, A. M.; El-Zahhar, A. A.; Microchem. J. 2019, 146, 429.

3 Srinvasan, A.; Viraraghavan, T.; J. Environ. Manage. 2010, 91, 1915.

4 Vasques, A. R.; de Souza, S. M. A. G. U.; Weissenberg, L.; de Souza, A. A. U.; Vale, J. A. B.; Eng. Sanit. Ambient. 2011, 16, 245.

5 Wang, C.; Zhang, Y.; Yu, L.; Zhang, Z.; Sun, H.; J. Hazard. Mater. 2013, 260, 851.

6 Liu, H.; Guo, W.; Li, Y.; He, S.; He, C.; J. Environ. Chem. Eng. 2018, 6, 59.

7 Saleh, T. A.; Gupta, V. K.; J. Colloid Interface Sci. 2012, 371, 101.

8 Aguiar, J. E.; Cecilia, J. A.; Tavares, P. A. S.; Azevedo, D. C. S.; Castellón, E. R.; Lucena, S. M. P.; Silva Jr., I. J.; Appl. Clay Sci. 2017, 135, 35.

9 Banat, I. M.; Nigam, P.; Armour, G.; Singh, D.; Marchant, R.; Mchale, A. P.; Mcmullan, G.; Bioresour. Technol. 2000, 72, 219.

10 Yang, R.; Dawei, L.; Li, A.; Yang, H.; Appl. Clay Sci. 2018, 151, 20.
-1111 Mor, S.; Chhavi, K. M.; Sushil, K. K.; Ravindra, K.; Environ. Dev. Sustainable 2018, 20, 625.) was added to 20 mg of the adsorbent. The samples were shaken at 100 rpm for 24 h at 298 K, after which time the solutions were filtered and the final pH was measured. To determine the pHpzc, a graph of the final pH as a function of the initial pH was constructed, where pHpzc is the point at which the difference between final pH - initial pH = 0.

Adsorption experiments

The concentrations of the dyes before and after the equilibrium were determined on a PerkinElmer UV-Vis spectrophotometer, model Lambda 25 (Waltham, USA) at wavelengths of 665 and 589 cm−1 for methylene blue (MB) and crystal violet (CV), respectively. The adsorption studies were carried out in triplicate. The dye removal (%) and adsorption capacity (qe) were calculated as follows:

(1) removal (%)=C0CeqC0×100
(2)qe=(C0Ceq)×Vm
where C0 and Ceq are, respectively, the concentrations (in mg L−1) of the dyes in the aqueous phase before and after (Ceq) the equilibration, qe is the equilibrium adsorption capacity (mg g−1), m is the adsorbent mass (g) and V is the solution volume (L).

For the pH studies, 100 mg of adsorbent were added to 25 mL of the dye solution with a concentration of 10 mg L−1 and the suspensions were kept under stirring (110 rpm) for 24 h at 298 K. Solutions of HCl and NaOH (0.1 mol L−1) were used to adjust the initial pH. For the effect of the mass on the adsorption process, 25 mL of the dye solution at a concentration of 10 mg L−1 were used, at the optimum pH, and the suspension was kept under stirring for 24 h at 298 K. The mass of the adsorbent varied from 200 to 1500 mg.

The experiments to investigate the adsorption kinetics were carried out at 298, 308 and 318 K with dyes concentration of 10 mg L−1 and adsorbent mass of 1100 mg, at optimum pH. The kinetics were studied using the pseudo first order (equation 3),2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,3434 Crini, G.; Peindy, H. N.; Gimber, T. F.; Robert, C.; Sep. Purif. Technol. 2007, 53, 97.,3535 Kumar, P. S.; Ramalingam, S.; Kirupha, S. D.; Murugesan, A.; Vidhyadevi, T.; Sivanesan, S.; Chem. Eng. J. 2011, 167, 122. pseudo second order (equation 4),2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,3636 Atkins, P.; Loretta, J.; Laverm, L.; Principles of Chemistry: Questioning Modern Life and the Environment, printed by Bookman Publisher: Porto Alegre, Brazil, 2001, ch. 13.

37 Altenor, S.; Ncibi, M. C.; Emmanuel, E.; Gaspard, S.; Biochem. Eng. J. 2012, 67, 35.
-3838 Zhang, J.; Dang, L.; Zhang, M.; Zhao, S.; Lu, Q.; Mater. Lett. 2017, 196, 194. intraparticle diffusion2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921. (equation 5) and Elovich3939 Peers, A.; J. Catal. 1965, 4, 499.,4040 Rafati, L.; Ehrampoush, M. H.; Rafati, A. A.; Mokhtari, M.; Mahv, A. M.; J. Mol. Liq. 2016, 224, 832. (equation 6) models.

(3)log(qeqt)=logqk12.303t
(4)tqt=1k2qe2+1qet
(5)qt=kd(t)1/2
(6)qt=1βln(αβ)+1βlnt
where qt (mg g−1) is the quantity adsorbed at time t, qe (mg g−1) is the quantity adsorbed at equilibrium and k1 (min−1) and k2 (g mg−1 min−1) and kd are the pseudo-first-order, pseudo-second-order and diffusion kinetics rate constants, respectively, and α and β are the Elovich model parameters.

The isothermal adsorption experiments were conducted at 298, 308 and 318 K at optimum pH for 24 h. The concentrations of the dye solutions ranged from 0.625 to 20 mg L−1, the adsorbent mass was 1100 mg, and the time was that required to reach equilibrium. The correlation of the equilibrium adsorption parameters was analyzed applying the following non-linear isotherm models: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R).

The Langmuir isotherm model considers a mechanism of physical adsorption and non linearity, and is obtained through the general formula:2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,4141 Ghosal, P. S.; Gupta, A. K.; J. Mol. Liq. 2017, 225, 137.

(7)qe=qmax×KL×Ceq1+KL×Ceq
where qe is the concentration of dye adsorbed by the adsorbent in mg g−1, Ceq the final concentration of the dye in solution, qmax the maximum adsorption capacity in mg g−1 and KL (L mg−1) the Langmuir constant.4242 Ong, S.-T.; Tay, E.; Ha, S.-T.; Lee, W.; Keng, P. S.; Int. J. Phys. Sci. 2009, 4, 683.

43 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615.
-4444 Stanly, S.; Jelmy, E. J.; John, Q.; J. Polym. Environ. 2020, 28, 2433.

The RL parameter is an adimensional constant, called the equilibrium parameter, and it represents the degree of adsorption of the system. This parameter is calculated through the Langmüir isotherm model, and is defined by equation 8.4141 Ghosal, P. S.; Gupta, A. K.; J. Mol. Liq. 2017, 225, 137.,4242 Ong, S.-T.; Tay, E.; Ha, S.-T.; Lee, W.; Keng, P. S.; Int. J. Phys. Sci. 2009, 4, 683.,4545 Langmüir, I.; J. Am. Chem. Soc. 1916, 38, 2221.

(8)RL=11+KL×C0

The value of the RL parameter indicates whether the process is favorable or unfavorable.2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,4242 Ong, S.-T.; Tay, E.; Ha, S.-T.; Lee, W.; Keng, P. S.; Int. J. Phys. Sci. 2009, 4, 683.,4343 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615. Values of RL greater than 1 indicate that the isothermal process is unfavorable, RL equals 1 indicates that the isotherm is linear, RL values between 0 and 1 indicate that the process is favorable, and when RL equals zero the process is irreversible.4242 Ong, S.-T.; Tay, E.; Ha, S.-T.; Lee, W.; Keng, P. S.; Int. J. Phys. Sci. 2009, 4, 683.,4444 Stanly, S.; Jelmy, E. J.; John, Q.; J. Polym. Environ. 2020, 28, 2433.

In the case of the Freundlich isotherm model, it is considered that the adsorption of the molecules of the adsorbate occurs in multilayers on the adsorbent surface.4646 Saha, B.; Orvig, C.; Coord. Chem. Rev. 2010, 254, 2959.

47 Shukla, S. R.; Pai, R. S.; Shendarkar, A. D.; Sep. Purif. Technol. 2006, 47, 141.
-4848 Gilles, C. H.; Smith, D.; Huitson, A.; J. Colloid Interface Sci. 1974, 47, 755. Its parameters obtained by the construction of an adsorption isotherm indicate the heterogeneity of the adsorbent surface or the adsorption intensity in the system.4747 Shukla, S. R.; Pai, R. S.; Shendarkar, A. D.; Sep. Purif. Technol. 2006, 47, 141.

48 Gilles, C. H.; Smith, D.; Huitson, A.; J. Colloid Interface Sci. 1974, 47, 755.
-4949 Gupta, V. K.; Ali, I.; Rio Saini, V. K.; J. Colloid Interface Sci. 2007, 315, 87. The non linearized form was given by the formula below.

(9)qe=KF×Ceq1/n

The KF parameter is the Freundlich constant for the system4343 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615.,4444 Stanly, S.; Jelmy, E. J.; John, Q.; J. Polym. Environ. 2020, 28, 2433. qe is the amount of dye adsorbed in the equilibrium state, Ceq is the final concentration of the solution. The empirical parameter 1/n measures the adsorption intensity or the heterogeneity of the surface, varying from 0 to 1. The closer the value is to 0 the greater the heterogeneity of the solid surface will be.4848 Gilles, C. H.; Smith, D.; Huitson, A.; J. Colloid Interface Sci. 1974, 47, 755.

49 Gupta, V. K.; Ali, I.; Rio Saini, V. K.; J. Colloid Interface Sci. 2007, 315, 87.
-5050 Abidi, N.; Errais, E.; Duplay, J.; Berez, A.; Jrad, A.; Schafer, G.; Ghazi, M.; Semhi, K.; Trabelsi-ayadi, M.; J. Cleaner Prod. 2015, 86, 432. The Freundlich parameter n indicates the degree of non-linearity between the initial concentration, the equilibrium concentration, and the maximum adsorption capacity of the system.4747 Shukla, S. R.; Pai, R. S.; Shendarkar, A. D.; Sep. Purif. Technol. 2006, 47, 141. Values equal to 1 indicate that the adsorption process is linear while values lower than 1 indicate that the adsorption process is chemical and favorable for the entire concentration range studied. Values greater than 1 indicate that the process is physical and favorable for a higher concentration range, but unfavorable for lower concentrations.3434 Crini, G.; Peindy, H. N.; Gimber, T. F.; Robert, C.; Sep. Purif. Technol. 2007, 53, 97.,4747 Shukla, S. R.; Pai, R. S.; Shendarkar, A. D.; Sep. Purif. Technol. 2006, 47, 141.,5050 Abidi, N.; Errais, E.; Duplay, J.; Berez, A.; Jrad, A.; Schafer, G.; Ghazi, M.; Semhi, K.; Trabelsi-ayadi, M.; J. Cleaner Prod. 2015, 86, 432.

Proposed in 1940, the Temkin isotherm model is based on assessing the indirect interactions that occur between adsorbent and adsorbate. The nonlinear form of the Temkin5151 Allen, S. J.; Gan, Q.; Matthews, R.; Johnson, P. A.; Bioresour. Technol. 2003, 88, 143. and Pyzhev model is expressed as:

(10)qe=BTln(KTCeq)
where KT is the Temkin isotherm constant (L g−1), BT = RT/b, b is the Temkin5151 Allen, S. J.; Gan, Q.; Matthews, R.; Johnson, P. A.; Bioresour. Technol. 2003, 88, 143. constant related to the heat of sorption (J mol−1), T is the absolute temperature (K) and R is the ideal gas constant (8.314 J mol−1 K−1).

The nature of the adsorption (i.e., chemical or physical) can be determined from the Dubinin-Radushkevich (D-R) isotherm.5252 Stoeckli, F.; Russ. Chem. Bull. 2001, 50, 2265.,5353 Dubinin, M. M.; Zaverina, E. D.; Russ. Chem. Bull. 1955, 4, 531. The nonlinear form of the Dubinin-Radushkevich (D-R) isotherm is:

(11)qe=qmeBε2
where B is the sorption energy constant (mol2 J−2), qm is the theoretical monolayer sorption capacity (mol g−1), and ε is Polanyi potential, which is given as:
(12)ε=Rln(1+1/Ce)
where R is the ideal gas constant (8.314 J mol−1 K−1) and T is the solution temperature (K).4444 Stanly, S.; Jelmy, E. J.; John, Q.; J. Polym. Environ. 2020, 28, 2433. The value of the mean sorption energy,5252 Stoeckli, F.; Russ. Chem. Bull. 2001, 50, 2265. E (kJ mol−1), is expressed as:
(13)E=1(2 B)

The value of this parameter indicates the most likely type of adsorption mechanism occurring: 1 < E <8 kJ mol−1 is related to physical adsorption and 8 < E <16 kJ mol−1 is associated with a chemical adsorption process (ion-exchange).4646 Saha, B.; Orvig, C.; Coord. Chem. Rev. 2010, 254, 2959.

Additionally, the effect of temperature was evaluated with the dye solutions at 298, 308 and 318 K. In this procedure, 1100 mg of adsorbent was placed in a glass bottle containing 50 mL of 10 mg L−1 dyes solutions, for the time required to reach equilibrium. Performing the adsorption study at different temperatures allows the thermodynamic parameters, that is, the variations in the Gibbs energy (∆Gº), entropy (∆Sº) and enthalpy (∆Hº), to be determined. These parameters can be calculated using the following equations:2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,4343 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615.

44 Stanly, S.; Jelmy, E. J.; John, Q.; J. Polym. Environ. 2020, 28, 2433.
-4545 Langmüir, I.; J. Am. Chem. Soc. 1916, 38, 2221.

(14)lnKd=ΔSRΔHRT
(15)Kd=(C0Ceq)CeqVm
(16)ΔG=ΔHTΔS
where Kd is the partition coefficient in (mL mg−1), R is the universal gas constant (8.314 J mol−1 K−1), T is the absolute temperature (K), C0 is the initial concentration, Ceq is the equilibrium concentration, V is the volume (in L) and m is the mass (in mg).4343 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615.,4444 Stanly, S.; Jelmy, E. J.; John, Q.; J. Polym. Environ. 2020, 28, 2433.

Results and Discussion

Characterization

The FTIR spectra for the aluminosilicate and aluminosilicate with dyes were found to be similar (Figure 1), suggesting that the mass of dye retained in the adsorbent is very small (predominantly on the surface). The spectra indicate the presence of bond (Si-O) stretching of the accompanying minerals1717 Chicinas, R. P.; Bedelean, H.; Stefan, R.; Mãicãneanu, A.; J. Mol. Struct. 2018, 1154, 187. at 795 cm−1, silica bands characteristic of the quartz (Si-O-Si) of siloxane groups linked to vicinal silanols1818 Jawad, A. H.; Abdulhameed, A. S.; Surf. Interface 2020, 18, 100422.,2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,3131 Bentahar, S.; Dbik, A.; El Khomri, M.; El Messaoudi, N.; Lacherai, A.; Groundwater Sustainable Dev. 2018, 6, 255. at 1079 cm−1, a C-N bond stretching band at 1211 cm−1 typical of aliphatic and aromatic amines,2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,3131 Bentahar, S.; Dbik, A.; El Khomri, M.; El Messaoudi, N.; Lacherai, A.; Groundwater Sustainable Dev. 2018, 6, 255. and weak absorption at 639 to 666 cm−1 with a doublet signal, indicating the presence of aromatic rings (R-Ar) originating from the dye.2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,3131 Bentahar, S.; Dbik, A.; El Khomri, M.; El Messaoudi, N.; Lacherai, A.; Groundwater Sustainable Dev. 2018, 6, 255.

Figure 1
FTIR spectra of ALMS and ALMS after adsorption of MB and CV dyes.

The X-ray fluorescence spectrometry (XRF) results were used to quantified the contents of the following oxides: SiO2, Fe2O3, Al2O3, Mn2O3, CaO, MgO, SO3, P2O5, Na2O and K2O (Table 1). The main compounds found in the adsorbent were silicon dioxide (SiO2), aluminum oxide (Al2O3), sodium oxides and potassium oxide, indicating that the structure of the material provides, primarily, the exchange of K+ and Na+ cations (Table 1). The adsorbent material presented an Si/Al ratio of 4.2 (m:m), suggesting that it has the characteristics of an acid adsorbent,3030 Dominguini, L.; Menegaro, D. A.; Miguel, T. F.; dal Bó, M.; Cerâmica 2014, 60, 218. functioning as a Bronsted-Lowry acid. Acid adsorbents are recommended for the removal of cationic dyes such as methylene blue and crystal violet.2828 Moshoeshoe, M.; Nadiye-Tabbiruka, M. S.; Obuseng, V.; Am. J. Mater. Sci. 2017, 7, 196.,2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.

Table 1
The chemical analysis of the adsorbent

The morphology of the ALMS sample is shown in Figure 2 where it can be observed that it has rough and striated irregular surface and a non-porous appearance. Based on the measurement results for the specific surface area (S), pore volume (Vp) (Table 2) and average pore diameter (D), and the BET spectra shown in Figure 3, the adsorbent was characterized as a non-porous material, suggesting that adsorption occurred predominantly on the surface of the material (Table 2). Although aluminosilicate has a low surface area compared to activated carbon (neutral material), it has a greater surface charge, provides ion exchange at low cost, is easy to regenerate and represents an efficient alternative for wastewater treatment. In this study, cationic dyes were used, to ensure a greater influence from the surface charge than the large surface area.

Table 2
Physicochemical properties of the adsorbent

X-ray diffraction patterns provide three basic types of information: the position of the peaks are characteristic of certain materials; the intensity of the peaks are associated with the chemical composition and the location of atoms in unit cells; and the shape of the peaks is related to the quality of the crystals.5454 Bradley, S. A.; Broach, R. W.; Mezza, T. M.; Prabhakar, S.; Sinkler, W.; Zeolites in Industrial Separations and Catalysis, Zeolite Characterization; Kulprathipanja, S., ed.; Wiley Online Library: Des Plaines, USA, 2010, ch. 4. The diffractogram for the adsorbent (Figure 4a) had peaks (2θ) at 20.85, 26.60 and 26.65º, indicating the presence of the crystalline phase of silica (SiO2) within the aluminosilicate,2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921. a member of the quartz family, thus identifying a partially-organized crystalline or semi-crystalline material. This analysis is based on the large amount of SiO2 found in the XRF analysis of the adsorbent. The peaks at 20.80, 20.90, 26.65 and 26.85º in the reference diffractogram for the quartz (Figure 4b),5555 Varela, M. L.; do Nascimento, R. M.; Martinelli, A. E.; Hotza, D.; Melo, D. M. A.; Melo, M. A. F.; Cerâmica 2005, 51, 388. suggest there is quartz in crystalline phase.

Figure 2
SEM micrographs of the adsorbent: (a) 200× and (b) 5000×.
Figure 3
BET results for the surface area.
Figure 4
XRD diffractogram obtained for (a) the adsorbent and reference diffractogram for (b) quartz (adapted from Varela et al.5555 Varela, M. L.; do Nascimento, R. M.; Martinelli, A. E.; Hotza, D.; Melo, D. M. A.; Melo, M. A. F.; Cerâmica 2005, 51, 388.).

Adsorption study

Study on the pHpzc

The chemical structure and composition of an adsorbent surface are intrinsically linked to its adsorption capacity.5656 Youssef, A. M.; El-Nabarawy, T.; Samra, S. E.; Colloids Surf., A 2004, 235, 153. The point of zero charge (pHPZC) indicates the pH value at which a solid has an electrically null load on its surface, that is, the number of positive charges is equal to the number of negative charges. Thus, if the pH of the solution is less than the pHPZC of the material, the surface will be positively charged and, conversely, if the pH of the solution is greater than the pHPZC of material, the surface will be negatively charged.5757 Hao, W.; Flynn, S. L.; Alessi, D. S.; Konhauser, K. O.; Chem. Geol. 2018, 493, 458. Adsorption will occur more efficiently when the pH of the solution favors the contact and mass transfer of the adsorbate (fluid phase) to the adsorbent surface (solid phase).5858 Komulski, M.; Adv. Colloid Interface Sci. 2018, 251, 115.,5959 Marçal, M. S.: Solketal Production for Glycerin Valorization; MSc. Dissertation, Higher Technical Institute, University of Lisboa, Lisboa, Portugal, 2015, available at https://fenix.tecnico.ulisboa.pt/downloadFile/1126295043835089, accessed in April 2021.
https://fenix.tecnico.ulisboa.pt/downloa...
Based on the relationship between the initial pH and the final pH of the solution, the pHPZC was calculated from the arithmetic mean of the points, in triplicate, for which the final pH is constant (Figure 5).

Figure 5
Graph of point of zero charge for adsorbent.

The value found to the pHPCZ parameter of the adsorbent was 3.7. Table 3 shows the pHPZC of different silicates found in the literature. The pHPCZ found in this study is similar to values reported in the literature.2828 Moshoeshoe, M.; Nadiye-Tabbiruka, M. S.; Obuseng, V.; Am. J. Mater. Sci. 2017, 7, 196.,5858 Komulski, M.; Adv. Colloid Interface Sci. 2018, 251, 115.,6060 Zhuang, J.; Yu, G. R.; Chemosphere 2002, 49, 619.

61 Milonjic, S. K.; Cerovi, L. S.; Cokeša, D. J.; Zec, S.; J. Colloid Interface Sci. 2007, 309, 155.
-6262 Raiteri, R.; Margesin, B.; Grattarola, M.; Sens. Actuators, B 1998, 46, 126.

Table 3
Comparison of pHPZC obtained in this study with values reported in the literature

Effect of pH on the adsorption system

The study of pH in the system is a main factor in the adsorption of dyes. The effect of pH on dye adsorption onto ALMS was analyzed over the pH range of 5-8 because reports in the literature indicate that pH < pHPZC can cause the dealumination (Al3+) of adsorbent material,2727 Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Nazli, Z. H.; Bhatti, H. N.; Nouren, S.; J. Mol. Liq. 2018, 256, 395. reducing the ion exchange potential by half.5959 Marçal, M. S.: Solketal Production for Glycerin Valorization; MSc. Dissertation, Higher Technical Institute, University of Lisboa, Lisboa, Portugal, 2015, available at https://fenix.tecnico.ulisboa.pt/downloadFile/1126295043835089, accessed in April 2021.
https://fenix.tecnico.ulisboa.pt/downloa...
,6262 Raiteri, R.; Margesin, B.; Grattarola, M.; Sens. Actuators, B 1998, 46, 126.

63 Senthilkumar, P.; Ramalingam, S.; Sathyaselvabala, V.; Kirupha, S. D.; Sivanesan, S.; Desalination 2011, 266, 63.

64 Pizzutti, I. R.; Schwerz, L.; Viaro, N. S. S.; Adaime, M. B.; Quim. Nova 1997, 20, 267.

65 Rahman, M. S.; Islam, M. R.; Chem. Eng. J. 2009, 149, 273.

66 Elmoubarki, R.; Mahjoubi, F. Z.; Tounsadi, H.; Moustadraf, J.; Water Res. 2015, 9, 16.
-6767 Hamza, W.; Dammak, N.; Hadjltaief, H. B.; Eloussaief, M.; Benzina, M.; Ecotoxicol. Environ. Saf. 2018, 163, 365. Values of pH > 8 are inconsistent with the Beer-Lambert law and were neglected. Figure 6 shows that with increasing pH, the adsorption capacity (q) increases slightly. When the initial solution pH was increased from 5 to 8, the adsorption increased from 0.149 to 0.162 mg g−1 for methylene blue and 0.216 to 0.271 mg g−1 for crystal violet. For both dyes, the highest adsorption capacity (q) was observed at pH 8. Alkaline solutions provide an increase in negative groups on the surface of the adsorbent (pH > pHPZC)4343 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615.,6666 Elmoubarki, R.; Mahjoubi, F. Z.; Tounsadi, H.; Moustadraf, J.; Water Res. 2015, 9, 16.

67 Hamza, W.; Dammak, N.; Hadjltaief, H. B.; Eloussaief, M.; Benzina, M.; Ecotoxicol. Environ. Saf. 2018, 163, 365.
-6868 Brião, G. V.; Jahn, S. L.; Foletto, E. L.; Dotto, G. L.; J. Colloid Interface Sci. 2017, 508, 313. promoting the interaction of the dyes crystal violet (Figure 7a) and methylene blue (Figure 7b) with the surface of the material. This increase in electrostatic attraction between the ALMS and the dyes is associated with a small degree of competition for H+ ions or other metal ion substitution in alkaline solutions, providing negative surface charges, as described in the literature.1010 Yang, R.; Dawei, L.; Li, A.; Yang, H.; Appl. Clay Sci. 2018, 151, 20.,2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,4343 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615.,6666 Elmoubarki, R.; Mahjoubi, F. Z.; Tounsadi, H.; Moustadraf, J.; Water Res. 2015, 9, 16.

67 Hamza, W.; Dammak, N.; Hadjltaief, H. B.; Eloussaief, M.; Benzina, M.; Ecotoxicol. Environ. Saf. 2018, 163, 365.
-6868 Brião, G. V.; Jahn, S. L.; Foletto, E. L.; Dotto, G. L.; J. Colloid Interface Sci. 2017, 508, 313.

Figure 6
Effect of pH on the adsorption of methylene blue and crystal violet. Conditions: volume of dye solution (VSC) = 25 mL; mass = 100 mg; T = 25 ºC; time = 24 h, [dyes] = 10 mg L−1.

Mass effect

Figure 8 shows the effect of adsorbent mass on the adsorption of the dyes methylene blue and crystal violet onto aluminosilicate. The results indicate that with a greater amount of adsorbent mass the percentage of dye removal in solution increased, up to a maximum of 1100 mg. At this mass, the system reached the equilibrium concentration since the process was predominantly influenced by the grain size and external surface area of the material (BET analysis). An increase in the adsorption capacity (q) as a function of mass has also been observed in other studies.3030 Dominguini, L.; Menegaro, D. A.; Miguel, T. F.; dal Bó, M.; Cerâmica 2014, 60, 218.,5050 Abidi, N.; Errais, E.; Duplay, J.; Berez, A.; Jrad, A.; Schafer, G.; Ghazi, M.; Semhi, K.; Trabelsi-ayadi, M.; J. Cleaner Prod. 2015, 86, 432.

Adsorption kinetics

The adsorption kinetics (Figure 9) was investigated to establish the optimal contact time between the adsorbent and the adsorbate (dyes), when equilibrium is reached by the system.6969 Almeida, C. A. P.; Debacher, N. A.; Downs, A. J.; Cottet, L.; Rio Melo, C. A. D.; J. Colloid Interface Sci. 2009, 332, 46. In this experiment the temperature was varied: 298, 308 and 318 K. The other parameters in the system were kept fixed. The temperature variation allowed the time at which the system reached equilibrium to be identified, verifying an influence on the adsorption process.2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921. The activation energy (Ea) of the adsorption system was calculated (Table 4) along with the equilibrium concentration coefficient (qe) according to the contact time7070 Sheng, L.; Zhang, Y.; Tang, F.; Liu, S.; Microporous Mesoporous Mater. 2017, 257, 9. at different temperatures (Figure 9). It was observed that the equilibrium occurred between 480 and 510 min for methylene blue (Figure 9a) and between 720 and 780 min for crystal violet (Figure 9b). A marked increase in the qe values and removal percentage was verified in the first moments of the adsorption process after which the adsorption process presented a lower rate of variation until the equilibrium was reached. The initial dye removal rate in the adsorption system was high, followed by a slower reaction over time until the system reached equilibrium.

The kinetic models were constructed and the pseudo-second-order model best described the adsorption of the dyes (Table 4), with coefficients that were close to or equal to 1. Some studies involving the application of models to explain the kinetics of adsorption onto silicas and their derivatives reported in the literature provided correlations with the pseudo-second-order model.2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,3838 Zhang, J.; Dang, L.; Zhang, M.; Zhao, S.; Lu, Q.; Mater. Lett. 2017, 196, 194.,4343 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615.,6666 Elmoubarki, R.; Mahjoubi, F. Z.; Tounsadi, H.; Moustadraf, J.; Water Res. 2015, 9, 16.

67 Hamza, W.; Dammak, N.; Hadjltaief, H. B.; Eloussaief, M.; Benzina, M.; Ecotoxicol. Environ. Saf. 2018, 163, 365.
-6868 Brião, G. V.; Jahn, S. L.; Foletto, E. L.; Dotto, G. L.; J. Colloid Interface Sci. 2017, 508, 313.

Table 5 shows the physical-chemical parameters obtained in the kinetics study of dyes. It was observed that the rate constant (k2) in the pseudo-second-order model decreased with an increase in temperature, evidencing faster kinetics.4343 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615.,6666 Elmoubarki, R.; Mahjoubi, F. Z.; Tounsadi, H.; Moustadraf, J.; Water Res. 2015, 9, 16. In fact, it can be observed that the equilibrium time tends to decrease with an increase in temperature. It can be observed that the experimental and calculated adsorption capacity (q) have very similar values.

The activation energy was determined by equation 17:

(17)lnk2=lnAEaR×1 T
Figure 7
Chemical structure of dyes (a) crystal violet and (b) methylene blue.
where k2 is the kinetic rate constant of pseudo-first-order, T is the temperature in Kelvin, R = 8.314 J K−1 mol−1 and A is the frequency factor or pre-exponential factor. The activation energy in the crystal violet adsorption process was higher than that for methylene blue, because an increase in temperature can strongly influence the rate constant decrease.2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,4343 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615. The Ea value indicates if the adsorption process is physical or chemical, being physical for the range of 4 to 40 kJ mol−1 and chemical for 40 to 95 kJ mol−1.7171 Demarchi, C. A.; Debrassi, A.; Rodrigues, C. A.; Color. Technol. 2012, 128, 208. Thus, the Ea value obtained in this study suggests that a physical mechanism is involved in the adsorption (Table 5).

Figure 8
Effect of adsorbent mass on the adsorption efficiency. Conditions: VSC = 25 mL; pH = 8.0; T = 25 ºC; time = 24 h, [dyes] = 10 mg L−1.

Adsorption isotherms

The adsorption isotherms at different temperatures of methylene blue and crystal violet are shown in Figure 10 and the parameters obtained are listed in Table 6.

The qmax values obtained ranged from 0.35 to 0.52 mg g−1, indicating that the adsorbent has little affinity with the dyes. This low affinity can be explained by the fact that the material goes through a sintering processes, which can modify the active sites capable of promoting ion exchange and adsorption.3030 Dominguini, L.; Menegaro, D. A.; Miguel, T. F.; dal Bó, M.; Cerâmica 2014, 60, 218.

Figure 9
Kinetics results for the adsorption of dyes onto the adsorbent: (a) methylene blue and (b) crystal violet. Conditions: VSC = 50 mL; pH = 8.0; mass = 1100 mg; T = 25 ºC; time = 24 h, [dyes] = 10 mg L−1.
Table 4
Adj. R-square for kinetic models of the dye adsorption onto the adsorbent
Table 5
Physical-chemical p arameters of the pseudo-second order model in the adsorption of methylene blue and crystal violet dyes
Table 6
Parameters for methylene blue and crystal violet adsorption isotherms obtained for adsorbent at different temperatures

Table 7 shows the maximum adsorption capacity of similar industrial and ceramic solid residues found in the literature.7272 Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V. K.; J. Colloid Interface. Sci. 2010, 343, 463.

73 Zhou, L.; Zhou, H.; Hu, Y.; Yan, S.; Yang, J.; J. Environ. Manage. 2019, 234, 245.

74 Chakrabarti, S.; Dutta, B. K.; J. Colloid Interface Sci. 2005, 286, 807.

75 Wang, S.; Boyjoo, Y.; Choueib, A. A.; Chemosphere 2005, 60, 1401.

76 Woolard, C.; Forte, J.; Erasmus, C.; Appl. Geochem. 2002, 17, 1159.
-7777 Janos, P.; Buchtova, H.; Rýznarová, M.; Water Res. 2003, 37, 4938.

It was observed that the temperature has very little influence on the adsorption process (Figure 10) and the methylene blue adsorption process is less sensitive to the temperature effect than the adsorption of crystal violet onto the aluminosilicate.4242 Ong, S.-T.; Tay, E.; Ha, S.-T.; Lee, W.; Keng, P. S.; Int. J. Phys. Sci. 2009, 4, 683. The application of a physical or chemical treatment may increase the adsorption capacity of the clays and ceramic residues.2626 Pinto, A. T.; Introdução ao Estudo dos Geopolímeros; Geopolymer System Inc., Universidade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 2006, available at http://www.geopolymer.com.br/PDF/introducao.pdf, accessed in April 2021.
http://www.geopolymer.com.br/PDF/introdu...
,7878 Sanghi, R.; Verma, P.; Color. Technol. 2013, 129, 85.

The Langmuir and Freundlich parameters (KL, n, and KF) are also of the same order of magnitude as those reported in the literature, according to Bentahar et al.2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921. and Ong et al.4242 Ong, S.-T.; Tay, E.; Ha, S.-T.; Lee, W.; Keng, P. S.; Int. J. Phys. Sci. 2009, 4, 683. In this study, the maximum adsorption capacity calculated using the Langmuir isotherm is much closer to the experimental adsorption value and with this approach there was a good fit with the equilibrium data, with a high correlation coefficient (R2). The values for the separation factor (RL) observed for the adsorption of the dyes onto ALMS indicated that the adsorption process is favorable. Another way to evaluate whether the adsorption process is favorable or not is to observe the n parameter obtained from the Freundlich model. The value for the n parameter obtained in this study, regardless of the adsorbent, was > 1, again suggesting that the process is favorable.

Table 7
Maximum adsorption capacity (qmax) of the materials and ceramic residues found in the literature
Figure 10
Adsorption isotherms obtained at different temperatures (a) methylene blue and (b) crystal violet. Conditions: VSC = 50 mL; pH = 8.0; mass = 1100 mg; T = 25 ºC; time = 24 h.

The constant β obtained from the D-R isotherm allows an estimation of the adsorption energy (E) (see equation 13), which provides information on the adsorption mechanism. The values for the adsorption energy (E) of the dyes in ALMS were all lower than 8 kJ mol−1, suggesting a weak interaction and indicating that the dye adsorption onto

ALMS occurs through a physical mechanism.2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,7878 Sanghi, R.; Verma, P.; Color. Technol. 2013, 129, 85.

Thermodynamic parameters of the adsorption process

Table 8 shows the thermodynamic parameters obtained for the dye adsorption onto ALMS. It can be observed that the dye removal by the adsorbent decreased with an increase in temperature, suggesting an exothermic adsorption process.4343 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615. On the other hand, in studies on the adsorption equilibrium and adsorption isotherms at different temperatures the qmax values showed an insignificant increase at different temperatures. These small differences can be explained by considering the Gibbs energy of individual systems.44 Vasques, A. R.; de Souza, S. M. A. G. U.; Weissenberg, L.; de Souza, A. A. U.; Vale, J. A. B.; Eng. Sanit. Ambient. 2011, 16, 245.

The enthalpy values (∆Hº) associated with the dyes adsorption onto the adsorbent were found to be negative (Table 8), indicating an exothermic process4343 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615.,6969 Almeida, C. A. P.; Debacher, N. A.; Downs, A. J.; Cottet, L.; Rio Melo, C. A. D.; J. Colloid Interface Sci. 2009, 332, 46. and the entropy values (∆Sº) were also negative,4343 Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615.,6969 Almeida, C. A. P.; Debacher, N. A.; Downs, A. J.; Cottet, L.; Rio Melo, C. A. D.; J. Colloid Interface Sci. 2009, 332, 46. indicating that there is a decrease in the randomness at the solid-solution interface.2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,7979 Lee, C. K.; Low, K. S.; Chow, S. W.; Environ. Technol. 1996, 17, 1023.

80 Liu, Y.; Liu, Y.-J.; Sep. Purif. Technol. 2008, 61, 229.

81 Ghosh, D.; Bhattacharyya, K. G.; Appl. Clay Sci. 2002, 20, 295.
-8282 Belbachir, I.; Makhoukhi, B.; J. Taiwan Inst. Chem. Eng. 2017, 75, 105.

The Gibbs energy values (∆Gº) indicated that the adsorption process was not spontaneous and decreases with an increase in temperature.6666 Elmoubarki, R.; Mahjoubi, F. Z.; Tounsadi, H.; Moustadraf, J.; Water Res. 2015, 9, 16.,8383 El Messaoudi, N.; El Khomri, M.; Dbik, A.; Bentahar, S.; Lacherai, A.; J. Dispersion Sci. Technol. 2017, 38, 1168. This suggests that the adsorption process is mainly influenced by the area of contact between the adsorbent and the adsorbate. This, in turn, is directly influenced by the grain size, the adsorbent mass and the degree of randomness of the system at the solid-solution interface. Some authors have reported positive Gibbs energy values (∆Gº > 0) for soils, clay minerals and their derivatives.8282 Belbachir, I.; Makhoukhi, B.; J. Taiwan Inst. Chem. Eng. 2017, 75, 105.

Table 8
Thermodynamic parameters obtained for the adsorption of the dyes

The Gibbs free energy value provides information on the adsorption mechanism. The ∆G° values for physisorption are in the range of −20 to 0 kJ mol–11 Konicki, W.; Helminiaki, A.; Arabczyk, W.; Mijwoska, E.; Chem. Eng. Res. Des. 2018, 129, 259.,8484 Sölener, M.; Tunali, S.; Özcan, A. S.; Özcan, A.; Gedikbey, T.; Desalination 2008, 223, 308. for chemisorption they are between −80 and −400 kJ mol–11 Konicki, W.; Helminiaki, A.; Arabczyk, W.; Mijwoska, E.; Chem. Eng. Res. Des. 2018, 129, 259., and for an equilibrium between physisorption and chemisorption the range is −20 to −80 kJ mol–11 Konicki, W.; Helminiaki, A.; Arabczyk, W.; Mijwoska, E.; Chem. Eng. Res. Des. 2018, 129, 259..3131 Bentahar, S.; Dbik, A.; El Khomri, M.; El Messaoudi, N.; Lacherai, A.; Groundwater Sustainable Dev. 2018, 6, 255.,5555 Varela, M. L.; do Nascimento, R. M.; Martinelli, A. E.; Hotza, D.; Melo, D. M. A.; Melo, M. A. F.; Cerâmica 2005, 51, 388. The Gibbs free energy values for the adsorption process (Table 8) were lower than 20 kJ mol−1, thus suggesting a physisorption process.2929 Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng. 2017, 5, 5921.,3131 Bentahar, S.; Dbik, A.; El Khomri, M.; El Messaoudi, N.; Lacherai, A.; Groundwater Sustainable Dev. 2018, 6, 255.,6969 Almeida, C. A. P.; Debacher, N. A.; Downs, A. J.; Cottet, L.; Rio Melo, C. A. D.; J. Colloid Interface Sci. 2009, 332, 46.,8484 Sölener, M.; Tunali, S.; Özcan, A. S.; Özcan, A.; Gedikbey, T.; Desalination 2008, 223, 308.

85 Karak, T.; Paul, R. K.; Das, D. K.; Boruah, R. K.; Sonar, I.; Sci. World J. 2014, 216451.
-8686 Li, Q.; Yue, Q.-Y.; Su, Y.; Gao, B.-Y.; Sun, H.-J.; Chem. Eng. J. 2010, 158, 489.

Conclusions

The adsorbent material had an Si/Al ratio of 4.2 (m:m), suggesting that it can be characterized as an acid adsorbent. It has a rough and striated surface with the presence of silica crystals (quartz), associated with partially-organized crystalline materials. The most efficient dye adsorption occurred at pH 8.0. The adsorption kinetics was favored by an increase in temperature and lower activation energy, and the pseudo-second-order kinetic model provided the best fit. The adsorption process was found to be predominantly physical, exothermic, favorable and non-spontaneous.

Acknowledgments

We acknowledge FAPEG and CAPES for financial support, the Regional Center for Technological Development and Innovation (CRTI) for the SEM analysis, the Institute of Chemistry of the Federal University of Brasília for the diffractogram and BET analysis data, FURNAS Centrais Elétricas for chemical analysis and Enel for donating aluminosilicate material.

References

  • 1
    Konicki, W.; Helminiaki, A.; Arabczyk, W.; Mijwoska, E.; Chem. Eng. Res. Des. 2018, 129, 259.
  • 2
    Idris, A. M.; El-Zahhar, A. A.; Microchem. J. 2019, 146, 429.
  • 3
    Srinvasan, A.; Viraraghavan, T.; J. Environ. Manage 2010, 91, 1915.
  • 4
    Vasques, A. R.; de Souza, S. M. A. G. U.; Weissenberg, L.; de Souza, A. A. U.; Vale, J. A. B.; Eng. Sanit. Ambient. 2011, 16, 245.
  • 5
    Wang, C.; Zhang, Y.; Yu, L.; Zhang, Z.; Sun, H.; J. Hazard. Mater. 2013, 260, 851.
  • 6
    Liu, H.; Guo, W.; Li, Y.; He, S.; He, C.; J. Environ. Chem. Eng 2018, 6, 59.
  • 7
    Saleh, T. A.; Gupta, V. K.; J. Colloid Interface Sci 2012, 371, 101.
  • 8
    Aguiar, J. E.; Cecilia, J. A.; Tavares, P. A. S.; Azevedo, D. C. S.; Castellón, E. R.; Lucena, S. M. P.; Silva Jr., I. J.; Appl. Clay Sci 2017, 135, 35.
  • 9
    Banat, I. M.; Nigam, P.; Armour, G.; Singh, D.; Marchant, R.; Mchale, A. P.; Mcmullan, G.; Bioresour. Technol. 2000, 72, 219.
  • 10
    Yang, R.; Dawei, L.; Li, A.; Yang, H.; Appl. Clay Sci 2018, 151, 20.
  • 11
    Mor, S.; Chhavi, K. M.; Sushil, K. K.; Ravindra, K.; Environ. Dev. Sustainable 2018, 20, 625.
  • 12
    Jawad, A. H.; Ismail, K.; Ishak, M. A. M.; Wilson, L. D.; Chin. J. Chem. Eng. 2019, 27, 1716.
  • 13
    Jawad, A. H.; Abdulhameed, A. S.; Energy Ecol. Environ. 2020, 5, 456.
  • 14
    Jawad, A. H.; Hum, N. N. M. F.; Abdulhameed, A. S.; Ishak, M. A. M.; Int. J. Environ. Anal. Chem. 2020, DOI: 10.1080/03067319.2020.1807529.
    » https://doi.org/10.1080/03067319.2020.1807529.
  • 15
    Jawad, A. H.; Razuana, R.; Appaturib, J. N.; Wilsonc, L. D.; Surf. Interface 2019, 16, 76.
  • 16
    Jawad, A. H.; Abdulhameed, A. S.; Mastulihttps, M. S.; J. Taibah Univ. Sci 2020, 14, 305.
  • 17
    Chicinas, R. P.; Bedelean, H.; Stefan, R.; Mãicãneanu, A.; J. Mol. Struct. 2018, 1154, 187.
  • 18
    Jawad, A. H.; Abdulhameed, A. S.; Surf. Interface 2020, 18, 100422.
  • 19
    Li, P.; Gao, B.; Li, A.; Yang, H.; Microporous Mesoporous Mater. 2017, 8714, 35.
  • 20
    Maucec, D.; Suligoj, A.; Ristik, A.; Drazic, G.; Pintar, A.; Tusar, N. N.; Catal. Today 2018, 30, 32.
  • 21
    Abbasi, M.; Habibi, M. M.; J. Taiwan Inst. Chem. Eng. 2016, 62, 112.
  • 22
    Jawad, A. H.; Abdulhameed, A. S.; Surip, S. N.; Sabar, S.; Int. J. Environ. Anal. Chem. 2020, DOI: 10.1080/03067319.2020.1807966.
    » https://doi.org/10.1080/03067319.2020.1807966.
  • 23
    Jawad, A. H.; Abdulhameed, A. S.; Mastuli, M. S.; J. Polym. Environ. 2020, 28, 1095.
  • 24
    Jawad, A. H.; Abdulhameed, A. S.; Abdallah, R.; Yaseen, Z. M.; Int. J. Biol. Macromol. 2020, 163, 756.
  • 25
    Santos, P. S.; Clays Science and Technology, vol. 1, 2nd ed.; Edgard Blücher Publisher: São Paulo, Brazil, 1992.
  • 26
    Pinto, A. T.; Introdução ao Estudo dos Geopolímeros; Geopolymer System Inc., Universidade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 2006, available at http://www.geopolymer.com.br/PDF/introducao.pdf, accessed in April 2021.
    » http://www.geopolymer.com.br/PDF/introducao.pdf
  • 27
    Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Nazli, Z. H.; Bhatti, H. N.; Nouren, S.; J. Mol. Liq 2018, 256, 395.
  • 28
    Moshoeshoe, M.; Nadiye-Tabbiruka, M. S.; Obuseng, V.; Am. J. Mater. Sci 2017, 7, 196.
  • 29
    Bentahar, S.; Dbik, A.; Khomri, M.; Messaoudi, N.; Lacherai, A.; J. Environ. Chem. Eng 2017, 5, 5921.
  • 30
    Dominguini, L.; Menegaro, D. A.; Miguel, T. F.; dal Bó, M.; Cerâmica 2014, 60, 218.
  • 31
    Bentahar, S.; Dbik, A.; El Khomri, M.; El Messaoudi, N.; Lacherai, A.; Groundwater Sustainable Dev. 2018, 6, 255.
  • 32
    ASTM D2149-13: Standard Test Method for Permittivity (Dielectric Constant) and Dissipation Factor of Solid Ceramic Dielectrics at Frequencies to 10 MHz and Temperatures to 500 °C, ASTM International: West Conshohocken, PA, 2013.
  • 33
    ISO 29581-2: Cement Test Methods-Part 2 Chemical Analysis by X-Ray Fluorescence, ISO/TC 74, Cement and Lime, ISO: Vernier-Geneva, Switzerland, 2010.
  • 34
    Crini, G.; Peindy, H. N.; Gimber, T. F.; Robert, C.; Sep. Purif. Technol. 2007, 53, 97.
  • 35
    Kumar, P. S.; Ramalingam, S.; Kirupha, S. D.; Murugesan, A.; Vidhyadevi, T.; Sivanesan, S.; Chem. Eng. J. 2011, 167, 122.
  • 36
    Atkins, P.; Loretta, J.; Laverm, L.; Principles of Chemistry: Questioning Modern Life and the Environment, printed by Bookman Publisher: Porto Alegre, Brazil, 2001, ch. 13.
  • 37
    Altenor, S.; Ncibi, M. C.; Emmanuel, E.; Gaspard, S.; Biochem. Eng. J. 2012, 67, 35.
  • 38
    Zhang, J.; Dang, L.; Zhang, M.; Zhao, S.; Lu, Q.; Mater. Lett. 2017, 196, 194.
  • 39
    Peers, A.; J. Catal 1965, 4, 499.
  • 40
    Rafati, L.; Ehrampoush, M. H.; Rafati, A. A.; Mokhtari, M.; Mahv, A. M.; J. Mol. Liq 2016, 224, 832.
  • 41
    Ghosal, P. S.; Gupta, A. K.; J. Mol. Liq 2017, 225, 137.
  • 42
    Ong, S.-T.; Tay, E.; Ha, S.-T.; Lee, W.; Keng, P. S.; Int. J. Phys. Sci 2009, 4, 683.
  • 43
    Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A.; Arabian J. Chem. 2018, 11, 615.
  • 44
    Stanly, S.; Jelmy, E. J.; John, Q.; J. Polym. Environ 2020, 28, 2433.
  • 45
    Langmüir, I.; J. Am. Chem. Soc. 1916, 38, 2221.
  • 46
    Saha, B.; Orvig, C.; Coord. Chem. Rev 2010, 254, 2959.
  • 47
    Shukla, S. R.; Pai, R. S.; Shendarkar, A. D.; Sep. Purif. Technol. 2006, 47, 141.
  • 48
    Gilles, C. H.; Smith, D.; Huitson, A.; J. Colloid Interface Sci. 1974, 47, 755.
  • 49
    Gupta, V. K.; Ali, I.; Rio Saini, V. K.; J. Colloid Interface Sci. 2007, 315, 87.
  • 50
    Abidi, N.; Errais, E.; Duplay, J.; Berez, A.; Jrad, A.; Schafer, G.; Ghazi, M.; Semhi, K.; Trabelsi-ayadi, M.; J. Cleaner Prod. 2015, 86, 432.
  • 51
    Allen, S. J.; Gan, Q.; Matthews, R.; Johnson, P. A.; Bioresour. Technol 2003, 88, 143.
  • 52
    Stoeckli, F.; Russ. Chem. Bull. 2001, 50, 2265.
  • 53
    Dubinin, M. M.; Zaverina, E. D.; Russ. Chem. Bull. 1955, 4, 531.
  • 54
    Bradley, S. A.; Broach, R. W.; Mezza, T. M.; Prabhakar, S.; Sinkler, W.; Zeolites in Industrial Separations and Catalysis, Zeolite Characterization; Kulprathipanja, S., ed.; Wiley Online Library: Des Plaines, USA, 2010, ch. 4.
  • 55
    Varela, M. L.; do Nascimento, R. M.; Martinelli, A. E.; Hotza, D.; Melo, D. M. A.; Melo, M. A. F.; Cerâmica 2005, 51, 388.
  • 56
    Youssef, A. M.; El-Nabarawy, T.; Samra, S. E.; Colloids Surf., A 2004, 235, 153.
  • 57
    Hao, W.; Flynn, S. L.; Alessi, D. S.; Konhauser, K. O.; Chem. Geol. 2018, 493, 458.
  • 58
    Komulski, M.; Adv. Colloid Interface Sci 2018, 251, 115.
  • 59
    Marçal, M. S.: Solketal Production for Glycerin Valorization; MSc. Dissertation, Higher Technical Institute, University of Lisboa, Lisboa, Portugal, 2015, available at https://fenix.tecnico.ulisboa.pt/downloadFile/1126295043835089, accessed in April 2021.
    » https://fenix.tecnico.ulisboa.pt/downloadFile/1126295043835089
  • 60
    Zhuang, J.; Yu, G. R.; Chemosphere 2002, 49, 619.
  • 61
    Milonjic, S. K.; Cerovi, L. S.; Cokeša, D. J.; Zec, S.; J. Colloid Interface Sci 2007, 309, 155.
  • 62
    Raiteri, R.; Margesin, B.; Grattarola, M.; Sens. Actuators, B 1998, 46, 126.
  • 63
    Senthilkumar, P.; Ramalingam, S.; Sathyaselvabala, V.; Kirupha, S. D.; Sivanesan, S.; Desalination 2011, 266, 63.
  • 64
    Pizzutti, I. R.; Schwerz, L.; Viaro, N. S. S.; Adaime, M. B.; Quim. Nova 1997, 20, 267.
  • 65
    Rahman, M. S.; Islam, M. R.; Chem. Eng. J. 2009, 149, 273.
  • 66
    Elmoubarki, R.; Mahjoubi, F. Z.; Tounsadi, H.; Moustadraf, J.; Water Res. 2015, 9, 16.
  • 67
    Hamza, W.; Dammak, N.; Hadjltaief, H. B.; Eloussaief, M.; Benzina, M.; Ecotoxicol. Environ. Saf. 2018, 163, 365.
  • 68
    Brião, G. V.; Jahn, S. L.; Foletto, E. L.; Dotto, G. L.; J. Colloid Interface Sci 2017, 508, 313.
  • 69
    Almeida, C. A. P.; Debacher, N. A.; Downs, A. J.; Cottet, L.; Rio Melo, C. A. D.; J. Colloid Interface Sci. 2009, 332, 46.
  • 70
    Sheng, L.; Zhang, Y.; Tang, F.; Liu, S.; Microporous Mesoporous Mater. 2017, 257, 9.
  • 71
    Demarchi, C. A.; Debrassi, A.; Rodrigues, C. A.; Color. Technol 2012, 128, 208.
  • 72
    Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V. K.; J. Colloid Interface. Sci. 2010, 343, 463.
  • 73
    Zhou, L.; Zhou, H.; Hu, Y.; Yan, S.; Yang, J.; J. Environ. Manage 2019, 234, 245.
  • 74
    Chakrabarti, S.; Dutta, B. K.; J. Colloid Interface Sci 2005, 286, 807.
  • 75
    Wang, S.; Boyjoo, Y.; Choueib, A. A.; Chemosphere 2005, 60, 1401.
  • 76
    Woolard, C.; Forte, J.; Erasmus, C.; Appl. Geochem 2002, 17, 1159.
  • 77
    Janos, P.; Buchtova, H.; Rýznarová, M.; Water Res 2003, 37, 4938.
  • 78
    Sanghi, R.; Verma, P.; Color. Technol. 2013, 129, 85.
  • 79
    Lee, C. K.; Low, K. S.; Chow, S. W.; Environ. Technol 1996, 17, 1023.
  • 80
    Liu, Y.; Liu, Y.-J.; Sep. Purif. Technol 2008, 61, 229.
  • 81
    Ghosh, D.; Bhattacharyya, K. G.; Appl. Clay Sci. 2002, 20, 295.
  • 82
    Belbachir, I.; Makhoukhi, B.; J. Taiwan Inst. Chem. Eng 2017, 75, 105.
  • 83
    El Messaoudi, N.; El Khomri, M.; Dbik, A.; Bentahar, S.; Lacherai, A.; J. Dispersion Sci. Technol. 2017, 38, 1168.
  • 84
    Sölener, M.; Tunali, S.; Özcan, A. S.; Özcan, A.; Gedikbey, T.; Desalination 2008, 223, 308.
  • 85
    Karak, T.; Paul, R. K.; Das, D. K.; Boruah, R. K.; Sonar, I.; Sci. World J. 2014, 216451.
  • 86
    Li, Q.; Yue, Q.-Y.; Su, Y.; Gao, B.-Y.; Sun, H.-J.; Chem. Eng. J 2010, 158, 489.

Publication Dates

  • Publication in this collection
    10 Sept 2021
  • Date of issue
    Sept 2021

History

  • Received
    21 Sept 2020
  • Accepted
    04 May 2021
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br