Acessibilidade / Reportar erro

NMR Relaxometry Applied to Chemical Studies of Paramagnetic Metal Cation Complexes: Fundamentals and Applications

Abstract

Low field time-domain nuclear magnetic resonance (TD-NMR) relaxometry of paramagnetic metal cations (PMC) has been widely used to study and improve contrast agents for magnetic resonance imaging (MRI). However, despite its remarkable potential, TD-NMR is rarely used to study PMC complexes, and coordination compounds in non-biomedical application. Therefore, this review aimed to provide comprehensive information not only to non-nuclear magnetic resonance (NMR) relaxation specialists, but also to scientists from distinct levels and expertise, as a way to pave the path for modern analytical and research of PMC complexes. Some fundamental concepts about NMR, paramagnetic relaxation mechanism, as well as traditional and modern methods to measure the longitudinal (T1) and transverse (T2) relaxation times constants are addressed. Here, we address some applications in analytical, electrochemical, and inorganic chemistry, electrodeposition reactions, as well as studies on PMC complexes and coordination compounds in solution.

Keywords:
time-domain NMR; bench-top NMR; low-field NMR; NMR relaxometry; paramagnetic relaxation; analytical chemistry; inorganic chemistry; electrochemistry; coordination complexes


1. Introduction

Paramagnetic metal cations (PMC) containing one or more unpaired electrons in the d- or f-orbitals have important roles in living organisms, in chemical and pharmaceutical processes and in products and are widely used as contrast agents for magnetic resonance imaging (MRI) for diagnostic purposes.11 Aime, S.; Botta, M.; Fasano, M.; Terreno, E.; Chem. Soc. Rev. 1998, 27, 19.

2 Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F.; Acc. Chem. Res. 2011, 44, 1029.

3 Castelli, D. D.; Gianolio, E.; Crich, S. G.; Terreno, E.; Aime, S.; Coord. Chem. Rev. 2008, 252, 2424.
-44 Terreno, E.; Uggeri, F.; Aime, S.; J. Controlled Release 2012, 161, 328. In biology, FeII, CuII, MnII, CoII, NiII, MoIII, VII, and other PMC, are normally coordinated to oxygen, nitrogen, or sulfur centers and are involved in several essential biological processes including mass and electron transports, enzymatic activities, among several other processes.55 Luchinat, C.; Magn. Reson. Chem. 1993, 31, S145.

PMC containing unpaired electrons, PMC complexes, and coordination compounds can be directly detected using electron spin resonance (ESR), also known as electron paramagnetic resonance (EPR).66 Telser, J.; J. Braz. Chem. Soc. 2006, 17, 1501.,77 Helm, L.; Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 45. They can also be indirectly detected by high-resolution nuclear magnetic resonance (HR-NMR) spectroscopy using their effects to enhance chemical shift dispersion (paramagnetic shift)55 Luchinat, C.; Magn. Reson. Chem. 1993, 31, S145.,88 Pell, A. J.; Pintacuda, G.; Grey, C. P.; Prog. Nucl. Magn. Reson. Spectrosc. 2019, 111, 1.,99 Bertini, I.; Kowalewski, J.; Luchinat, C.; Nilsson, T.; Parigi, G.; J. Chem. Phys. 1999, 111, 5795. or to enhance relaxation processes.1010 Kellar, K. E.; Foster, N.; Inorg. Chem. 1992, 31, 1353.,1111 Aime, S.; Baroni, S.; Castelli, D. D.; Brücher, E.; Fábián, I.; Serra, S. C.; Mingo, A. F.; Napolitano, R.; Lattuada, L.; Tedoldi, F.; Baranyai, Z.; Inorg. Chem. 2018, 57, 5567. However, the use of both EPR and HR-NMR requires expensive instrumentation, limiting their application in routine analysis, as well as at small universities and research facilities that do not have adequate instrumentation for these analyses.

This review shows how to obtain valuable information about PMC, complexes, and coordination compounds in solution using relaxometric measurements performed at low-cost, based on cryogen free, permanent magnets, and bench top low-field NMR instruments. The relaxometric analyses are normally performed in low (B0 (static magnetic field) ca. 0.05 to 0.6 T) and inhomogeneous (∆B0 >> 10 ppm) magnetic field and directly in the time domain NMR (TD-NMR) signal, as no chemical shift information is observed. TD-NMR are affordable instruments when compared to superconducting high-resolution NMR spectrometers and can be useful method to obtain valuable structural, dynamical, and quantitative information on PMC in solution.

The TD-NMR relaxometers are a common analytical instrument used in several chemical areas where PMC are important. Therefore, we present here a brief theory about the effect of PMC on longitudinal (T1) and transverse (T2) relaxation times constants, the pulse sequences used for measuring them, and the applications of TD-NMR relaxometry to obtain valuable information on PMC in solution, which are important in inorganic,1212 Helm, L.; Merbach, A. E.; Chem. Rev. 2005, 105, 1923. analytical,1313 Gomes, B. F.; Nunes, L. M. S.; Lobo, C. M. S.; Cabeça, L. F.; Colnago, L. A.; Anal. Chem. 2014, 86, 9391. electrochemistry1414 Gomes, B. F.; Lobo, C. M. S.; Colnago, L. A.; Appl. Sci. 2019, 9, 498. and coordination chemistry1515 Helm, L.; Merbach, A. E.; Coord. Chem. Rev. 1999, 187, 151. studies.

2. Basic Theory about NMR Relaxation Times Constants

The NMR phenomenon is observed when a sample containing nuclei with spin quantum number (i.e., resulting spin magnetic moment) distinct from zero, is submitted to a static magnetic field B0 (z-direction) and excited with a transverse oscillating (radiofrequency, rf) magnetic field B1 (xy-plane). When a sample is placed in presence of B0, the bulk of the magnetic moments collectively behaves as aligned to the z-direction (Mz) and reaches the Boltzmann energy distribution or the magnetization at thermal equilibrium (M0). After a B1 excitation the spins return exponentially to their thermal equilibrium losing energy to the environment (longitudinal relaxation) with a time constant (T1) according to equation 1.

(1)Mz=M0(1-e-τ/T1)
where T1 is the time constant of this exponential process known as longitudinal (z-direction) or spin-lattice relaxation time, and measured ranging specific delay times τ during the acquisition.

The spins also have a second relaxation process after B1 excitation known as transverse (xy-plane) or spin-spin relaxation time or T2. This process consists of losing its phase coherence in xy-plane, returning to a random distribution (Mxy = 0), with the time constant T2 (equation 2).

(2)Mxy(t)=M0(e-t/T2)

Detailed mechanisms involved in T1 and T2 relaxation times constants are outside of the overview scope and can be found elsewhere.77 Helm, L.; Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 45.,1616 Caravan, P.; Acc. Chem. Res. 2009, 42, 851.

17 Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B.; Chem. Rev. 1999, 99, 2293.

18 Caravan, P.; Chem. Soc. Rev. 2006, 35, 512.

19 Blümich, B.; Casanova, F.; Appelt, S.; Chem. Phys. Lett. 2009, 477, 231.

20 Softley, C. A.; Bostock, M. J.; Popowicz, G. M.; Sattler, M.; J. Biomol. NMR 2020, 74, 287.
-2121 Claridge, T. D. W.; High-Resolution NMR Techniques in Organic Chemistry: Third Edition; Elsevier Ltd.: Oxford, 2016. Only the paramagnetic mechanisms are discussed here.

3. Effect of Paramagnetic Ion Complexes in Solvent Relaxation Time

The effect of paramagnetic ions in the relaxation times constants of the solvent nuclei was observed just after the discovery of the NMR phenomenon in 1946.2222 Bloch, F.; Hansen, W. W.; Packard, M.; Phys. Rev. 1946, 70, 474. Bloch et al.2222 Bloch, F.; Hansen, W. W.; Packard, M.; Phys. Rev. 1946, 70, 474. observed that the water longitudinal relaxation time (T1) in aqueous solution of Fe(NO3)3 was much shorter than in distillated water.

The quantitative description of this effect was first described by Bloembergen, Purcell, and Pound2323 Bloembergen, N.; Purcell, E. M.; Pound, R. V.; Phys. Rev. 1948, 73, 679. and improved by Solomon, Bloembergen, and Morgan from 1948 to 1966, known as the SBM heory.2424 Solomon, I.; Phys. Rev. 1955, 99, 559.

25 Bloembergen, N.; J. Chem. Phys. 1957, 27, 572.
-2626 Bloembergen, N.; Morgan, L. O.; J. Chem. Phys. 1961, 34, 842. According to these authors, the longitudinal (R1) and transverse (R2) relaxation rates of the solvent molecules, where R1,2 = 1/T1,2, depend on the paramagnetic (Rp) and the diamagnetic (Rd) contribution, according to the equation 3:11 Aime, S.; Botta, M.; Fasano, M.; Terreno, E.; Chem. Soc. Rev. 1998, 27, 19.

(3)Ri(obs)=Ri,p+Ri,d,wherei=1,2

The Rp term is dominant in the relaxation mechanism for the solvent nuclei even when PMC are at very low concentration. Rp is directly proportional to paramagnetic ions concentration, [M], as described in equation 4:

(4)Ri=[M]×ri
where ri is the 1H relaxivity and is expressed in units of mol L-1 s-1 while [M] is the PMC concentration in mol L-1.11 Aime, S.; Botta, M.; Fasano, M.; Terreno, E.; Chem. Soc. Rev. 1998, 27, 19.

The effect of paramagnetic ions on solvent relaxation is attributed to strong dipole-dipole interactions between the nuclear spin and the fluctuating local magnetic field of the unpaired electron spins in paramagnetic species.11 Aime, S.; Botta, M.; Fasano, M.; Terreno, E.; Chem. Soc. Rev. 1998, 27, 19.,2727 Debroye, E.; Parac-Vogt, T. N.; Chem. Soc. Rev. 2014, 43, 8178. Rip contribution can be described using two components: contributions of the inner (IS) and outer (OS) spheres (equation 5).11 Aime, S.; Botta, M.; Fasano, M.; Terreno, E.; Chem. Soc. Rev. 1998, 27, 19.,2727 Debroye, E.; Parac-Vogt, T. N.; Chem. Soc. Rev. 2014, 43, 8178.

(5)Ri,p=(Ri,p)IS+(Ri,p)OS,wherei=1,2

The IS and OS contributions account for the relaxation effects caused by the paramagnetic ion directly bound to the solvent molecules and the relaxation effect on the solvent molecules in the bulk, respectively. In addition, in more sophisticated models, other contributions have been considered, such as the second coordination sphere (SS), which concern solvent molecules kept close to the paramagnetic species by hydrogen bonds with hydrophilic groups on the ligand coordination cage.11 Aime, S.; Botta, M.; Fasano, M.; Terreno, E.; Chem. Soc. Rev. 1998, 27, 19.

The inner-sphere (IS) term considers the exchange between the water molecule(s) directly coordinated to the paramagnetic ion and the solvent ions to propagate the paramagnetic effect to the bulk. In particular, the relaxivity of bulk water hydrogens can be described according to equation 6:11 Aime, S.; Botta, M.; Fasano, M.; Terreno, E.; Chem. Soc. Rev. 1998, 27, 19.,2727 Debroye, E.; Parac-Vogt, T. N.; Chem. Soc. Rev. 2014, 43, 8178.

(6)(Ri)IS=q×PMT1M+τM,wherei=1,2
where: q represents the number of water molecules directly coordinated to paramagnetic species, PM is the mole fraction of bound solvent nuclei, τM corresponds to residence lifetime for the solvent molecule in the first coordination sphere, and T1M represents the proton longitudinal relaxation rate for the coordinated solvent molecule.

Therefore, from the SBM theory, in a fast exchange regime for the solvent molecules (τM << T1M), the paramagnetic effect experienced by the solvent molecules far from the paramagnetic ion is equal to that experienced by the solvent molecules directly coordinated to paramagnetic species.2727 Debroye, E.; Parac-Vogt, T. N.; Chem. Soc. Rev. 2014, 43, 8178. In addition, based on equation 7, T1M can be described by a scalar (SC) (by the chemical bond) and a dipolar (DD) (spatial) component. In the presence of a paramagnetic coordination complex, the dipolar term has a higher predominance, due to the 1/r3 dependence of the energy (1/r6 in the relaxation) associated to this term.11 Aime, S.; Botta, M.; Fasano, M.; Terreno, E.; Chem. Soc. Rev. 1998, 27, 19.,2727 Debroye, E.; Parac-Vogt, T. N.; Chem. Soc. Rev. 2014, 43, 8178.

(7)1/TiM=RTiM=(RTi)DD+(RTi)SC,wherei=1,2

On the other hand, dipole-dipole interactions are governed by a set of parameters, summarized in equation 8:2727 Debroye, E.; Parac-Vogt, T. N.; Chem. Soc. Rev. 2014, 43, 8178.

(8)R1DD=215γI2 g2μB2 S( S+1)r6[3τc1(1+ωI2τc2)+7τc2(1+ωS2τc2)]

where: γI and g correspond to the nuclear gyromagnetic ratio and the electron spin g-factor, respectively; μB is the Bohr magneton, S is the spin quantum number for the paramagnetic species (e.g., S = 1/2 for CuII and 7/2 for GdIII), τc is the correlation time, r is the electron spin-proton distance, and ωI and ωS are the proton and electron Larmor precession frequencies, respectively.11 Aime, S.; Botta, M.; Fasano, M.; Terreno, E.; Chem. Soc. Rev. 1998, 27, 19.,2727 Debroye, E.; Parac-Vogt, T. N.; Chem. Soc. Rev. 2014, 43, 8178.

Furthermore, the characteristic correlation time τc is supported by multiple molecular dynamic processes, such as the rotational correlation time (τR), which means the time needed for the reorientation of the paramagnetic ion-proton vector, the water residence time in the first coordination sphere (τM) and the longitudinal (T1e) and transverse (T2e) electronic relaxation times constants for the metal ion, in agreement to equation 9.2727 Debroye, E.; Parac-Vogt, T. N.; Chem. Soc. Rev. 2014, 43, 8178.

(9)1τc=1τR+1τM+1 Tic, wherei=1,2

More detailed quantitative information about the effect of paramagnetic species on the relaxation solvent nuclei can be found elsewhere.11 Aime, S.; Botta, M.; Fasano, M.; Terreno, E.; Chem. Soc. Rev. 1998, 27, 19.,77 Helm, L.; Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 45.,1717 Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B.; Chem. Rev. 1999, 99, 2293.,2727 Debroye, E.; Parac-Vogt, T. N.; Chem. Soc. Rev. 2014, 43, 8178.

4. Pulses Sequences to Measure Longitudinal (T1) and Transverse (T2) Relaxation Times Constants

4.1. Pulse sequences to measure T1

T1 is the time constant related to the time taken by a collection of spins to exponentially recover their magnetization along Mz after B1 excitation. Several pulse sequences have been developed to measure T1, such as inversion-recovery (IR), saturation-recovery (SR), progressive saturation (PS), among others.2828 Zhang, Y.; Yeung, H. N.; O’Donnell, M.; Carson, P. L.; J. Magn. Reson. Imaging 1998, 8, 675.

29 Look, D. C.; Locker, D. R.; Rev. Sci. Instrum. 1970, 41, 250.

30 Haase, A.; Frahm, J.; J. Magn. Reson. 1985, 65, 481.
-3131 Datta, A.; Raymond, K. N.; Acc. Chem. Res. 2009, 42, 938. IR is the standard pulse sequence to measure T1 and uses a π pulse to invert magnetization, followed by time (τ), π/2 pulse, and a recycle delay ≥ 5T1, which is the time to restore at least 99.33% of M0.

The IR curve is obtained by measuring the free induction decay (FID) intensity, after the π/2 pulse, as function of several delay times τ. Figure 1 shows FID intensity variation for a 0.25 mM aqueous solution of MnSO4, as function of logarithmically space τ values. For τ equals to zero or much shorter than T1, FID intensity is negative. FID intensity is zero (null point) when τ = ln2 T1. For longer τ values, FID intensity is positive and reaches a maximum for τ values ≥ 5T1. The null point is used as a fast estimation of T1 value; however, a precise or multiple relaxation time measurements requires fitting the data with an exponential function or using inverse Laplace transformation.3232 Lamanna, R.; Concepts Magn. Reson., Part A: Bridging Educ. Res. 2005, 26, 78.,3333 Berman, P.; Levi, O.; Parmet, Y.; Saunders, M.; Wiesman, Z.; Concepts Magn. Reson., Part A 2013, 42, 72. One of the drawbacks of the IR sequence is the long time to perform the measurements, as it requires at least a time ≥ 5T1 between repetitions and a single data point is collected in each scan.

Figure 1
IR curve for a 0.25 mM aqueous solution of [Mn(H2O)6]2+ complex. The value of T1 = 418 ms was obtained by fitting the experimental data using a mono exponential function.

The SR and PS pulse sequences can reduce the experimental time to measure T1, as these sequences do not require to wait for 5T1 recycle delay. Recently, fast methods to measure T1 using single shot sequences based on the continuous wave free precession regime (CWFP-T1) and driven-equilibrium principles, named small-angle flip-flop (SAFF) pulse sequences have been proposed.3434 Cucinelli Neto, R. P.; Rodrigues, E. J. R.; Tavares, M. I. B.; Magn. Reson. Chem. 2019, 57, 395.,3535 Moraes, T. B.; Monaretto, T.; Colnago, L. A.; J. Magn. Reson. 2016, 270, 1.

4.2. Pulse sequences to measure T2

T2 is an exponential process related to the time taken by a collection of nuclei to lose their phase coherence after rf excitation and return to a random distribution in the xy-(transverse) plane. T2 is the time constant of this process (equation 2) and is only observed in FID acquired in perfectly homogeneous magnet. In existent magnets, especially in the inhomogeneous magnets used in TD-NMR equipment, the FID time constant is far from the sample T2 value. The effective transverse relaxation time of FID (T2*) depends on T2 and magnetic field inhomogeneity (∆B0), according to equation 10.2121 Claridge, T. D. W.; High-Resolution NMR Techniques in Organic Chemistry: Third Edition; Elsevier Ltd.: Oxford, 2016.

(10)1/T2=1/T2+1/T2(AB0)

To obtain the value of sample T2, regardless of the magnetic field inhomogeneity, Hahn3636 Hahn, E. L.; Phys. Rev. 1950, 80, 580. proposed a spin-echo sequence consisting of two π/2 pulses separated by time τ. This sequence refocuses a spin echo signal and its amplitude at 2τ, from the first pulse, is maximum, restoring the phase coherence lost, due to the magnetic field inhomogeneity. To obtain the full T2 relaxation curve, it is necessary to perform several spin echo measurements as a function of the time (τ) similarly to IR.

Carr and Purcell3737 Carr, H. Y.; Purcell, E. M.; Phys. Rev. 1954, 94, 630. proposed two more efficient pulse sequences, similar to those proposed by Hahn,3636 Hahn, E. L.; Phys. Rev. 1950, 80, 580. replacing the second pulse by π pulse. However, both sequences cannot be used to measure T2 of liquid or solution in inhomogeneous magnets due to interference of molecular self-diffusion in the spin echo intensity for long τ values. To overcome this limitation, Carr and Purcell3737 Carr, H. Y.; Purcell, E. M.; Phys. Rev. 1954, 94, 630. proposed a single shot sequence to measure the full echoes decay in one experiment using constant and short τ values, known as CP (Carr-Purcell) sequence. This single shot sequence uses a π/2 pulse separated by a constant τ value and a train of π pulses separated by a constant 2τ value. One of the main drawbacks of the single shot CP sequence is its strong dependence on accurate π pulses. To solve this problem, Meiboom and Gill3838 Meiboom, S.; Gill, D.; Rev. Sci. Instrum. 1958, 29, 688. introduced a 90° phase shift between the first π/2 (x axis) and the π pulses (y axis). This phase shift makes the sequence very robust and a refocusing pulse as short as π/2 can be used to obtain accurate T2 values.3939 de Andrade, F. D.; Netto, A. M.; Colnago, L. A.; Talanta 2011, 84, 84.,4040 de Andrade, F. D.; Marchi Netto, A.; Colnago, L. A.; J. Magn. Reson. 2012, 214, 184. Therefore, the CP sequence improved by Meiboom-Gill, known as CPMG, is the standard method to measure T2. The maximum amplitude of the echoes in function of time (Figure 2) is used to obtain the T2 values by mono or multi-exponential fitting or by inverse Laplace transform methods.3838 Meiboom, S.; Gill, D.; Rev. Sci. Instrum. 1958, 29, 688.

Figure 2
CPMG decay curve for the aqueous solution of [Cu(H2O)6]2+ complex (9.1 × 10-4 mol L-1). The value for T2 = 624 ms was obtained by a mono exponential fitting.

4.3. Single shot pulse sequences to measure T1 and T2 in single experiment

Longitudinal and transverse relaxation times constants are governed by different mechanisms and their ratio (T1/T2) can be as low as 1 for liquid or non-viscous diamagnetic solutions for more than one order of magnitude, even in non-viscous solutions, containing paramagnetic ions complexes.4141 Kock, F. V. C.; Colnago, L. A.; Microchem. J. 2015, 122, 144.

Three single shot pulse sequences have been proposed to measure T1 and T2 in single experiment, based on the continuous wave free precession (CWFP) regime. The CWFP is a special condition of the steady state free precession (SSFP) regime.4242 Azeredo, R. B. V.; Colnago, L. A.; Engelsberg, M.; Anal. Chem. 2000, 72, 2401.,4343 Azeredo, R. B. V.; Colnago, L. A.; Souza, A. A.; Engelsberg, M.; Anal. Chim. Acta 2003, 478, 313. Ernst and Anderson4444 Ernst, R. R.; Anderson, W. A.; Rev. Sci. Instrum. 1966, 37, 93. described quantitatively the SSFP regime by using the Bloch equation.4242 Azeredo, R. B. V.; Colnago, L. A.; Engelsberg, M.; Anal. Chem. 2000, 72, 2401.

43 Azeredo, R. B. V.; Colnago, L. A.; Souza, A. A.; Engelsberg, M.; Anal. Chim. Acta 2003, 478, 313.

44 Ernst, R. R.; Anderson, W. A.; Rev. Sci. Instrum. 1966, 37, 93.
-4545 Azeredo, R. B. V.; Engelsberg, M.; Colnago, L. A.; Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2001, 64, 4. The SSFP regime is obtained when the sample is irradiated with a train of rf pulse with constant repetition time (Tp) shorter than T2 (Tp ca. T2). In this sequence, an FID and a spin echo signal are observed, before and after each rf pulse. These two signals usually do not overlap and are used to obtain fast magnetic resonance imaging as well as fast high resolution NMR spectrum.4242 Azeredo, R. B. V.; Colnago, L. A.; Engelsberg, M.; Anal. Chem. 2000, 72, 2401.,4646 dos Santos, P. M.; de Souza, A. A.; Colnago, L. A.; Appl. Magn. Reson. 2011, 40, 331.

47 dos Santos, P. M.; de Souza, A. A.; Colnago, L. A.; Quim. Nova 2010, 33, 954.
-4848 Nunes, L. M. S.; Moraes, T. B.; Barbosa, L. L.; Mazo, L. H.; Colnago, L. A.; Anal. Chim. Acta 2014, 850, 1.

Conversely, the CWFP regime is observed when the pulse is repeated with time Tp shorter than the effective transverse relaxation time T2* (Tp < T2*).4242 Azeredo, R. B. V.; Colnago, L. A.; Engelsberg, M.; Anal. Chem. 2000, 72, 2401.,4343 Azeredo, R. B. V.; Colnago, L. A.; Souza, A. A.; Engelsberg, M.; Anal. Chim. Acta 2003, 478, 313.,4545 Azeredo, R. B. V.; Engelsberg, M.; Colnago, L. A.; Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2001, 64, 4. In this regime, a strong interaction between FID and spin echo signal is observed, forming a signal with constant amplitude (CWFP). When the FID-echo interaction is constructive, a maximum signal is observed; conversely, when the FID-eco interaction is destructive, a signal with minimal amplitude is observed. The theory for the CWFP regime has been discussed elsewhere4242 Azeredo, R. B. V.; Colnago, L. A.; Engelsberg, M.; Anal. Chem. 2000, 72, 2401.,4949 Moraes, T. B.; Monaretto, T.; Colnago, L. A.; Appl. Sci. 2019, 9, 1312.,5050 Venâncio, T.; Colnago, L. A.; Magn. Reson. Chem. 2012, 50, 534. and will not be discussed in detail here.

Venâncio et al.5151 Venâncio, T.; Engelsberg, M.; Azeredo, R. B. V.; Colnago, L. A.; J. Magn. Reson. 2006, 181, 29. shows for the first time that the CWFP sequence can be used to measure T1 and T2 in a single shot experiment. Figure 3 shows the time evolution CWFP signal from the first pulse to the CWFP regime, using π/2 pulse, Tp < 1/2 T2*, and an odd precession angle (ψ) for a constructive interference. After the first pulse, the amplitude of the NMR signal is maximum and proportional to the initial magnetization (M0). After the following pulses, the signal shows strong oscillation and decays to a quasi-stationary state (QSS). The QSS state is observed when the strong oscillations stop and the signal decays exponentially with a time constant T* to reach the CWFP signal with constant amplitude (MSS).

Figure 3
NMR magnitude signal obtained with the CWFP pulse sequences, highlighting the parameters M0, MSS, and T* used to determine T1 and T2 (reproduced from reference 41 with copyright permission from Elsevier B.V.).

The MSS amplitude and T* values obtained with the CWFP sequences are dependent on both relaxation times constants (T1 and T2) and M0, according to equations 11 and 12:4040 de Andrade, F. D.; Marchi Netto, A.; Colnago, L. A.; J. Magn. Reson. 2012, 214, 184.,4242 Azeredo, R. B. V.; Colnago, L. A.; Engelsberg, M.; Anal. Chem. 2000, 72, 2401.,4545 Azeredo, R. B. V.; Engelsberg, M.; Colnago, L. A.; Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2001, 64, 4.

(11)MSS=M0×T2( T1+T2)
(12)T=2×T1×T2 T1+T2

Rearranging these equations to equations 13 and 14 allows calculating T1 and T2 using the experimental values of M0, MSS, and T*.4040 de Andrade, F. D.; Marchi Netto, A.; Colnago, L. A.; J. Magn. Reson. 2012, 214, 184.,4242 Azeredo, R. B. V.; Colnago, L. A.; Engelsberg, M.; Anal. Chem. 2000, 72, 2401.

(13)T1=T/2MSS/M0
(14)T2=T/21-(MSS/M0)

One of the limitations of the CWFP sequence is the low dynamic range (DR) of the T* decay for an adequate exponential fitting, when T1/T2 ca. 1 (Figure 4a). A second pulse sequence was developed to overcome this limitation, introducing a time delay of τ/2 between the first and second pulses, named the Carr-Purcell CWFP (CP-CWFP) sequence.4040 de Andrade, F. D.; Marchi Netto, A.; Colnago, L. A.; J. Magn. Reson. 2012, 214, 184. This sequence allows obtaining a maximum DR for time T* for samples with T1/T2 ca. 1, Figure 4b. However, the sequence has low DR for sample T1 >> T2 (Figure 4b).

Figure 4
Experimental (a) CWFP; (b) CP-CWFP and (c) CP-CWFPx-x signals for solutions of 10 mM CuSO4 (T1 = T2) and 1 mM MnSO4 (T1 >> T2), demonstrating clearly the long dynamic range obtained for the sequence CP-CWFPx-x, which allows a more reliable fitting for experimental data for any T1/T2 ratio (figure from reference 49 with CC-BY attribution).

Therefore, a third CWFP pulse sequence was developed to obtain high DR, independence at the T1/T2 ratio (Figure 4c) and use a precession angle (ψ) equals to zero, that is, the experiment can be performed on resonance and independently of Tp.5252 Monaretto, T.; Andrade, F. D.; Moraes, T. B.; Souza, A. A.; deAzevedo, E. R.; Colnago, L. A.; J. Magn. Reson. 2015, 259, 174. This new sequence with 180° phase shift alternation, was named CP-CWFPx-x.4949 Moraes, T. B.; Monaretto, T.; Colnago, L. A.; Appl. Sci. 2019, 9, 1312.,5252 Monaretto, T.; Andrade, F. D.; Moraes, T. B.; Souza, A. A.; deAzevedo, E. R.; Colnago, L. A.; J. Magn. Reson. 2015, 259, 174.

53 Kock, F. V. C.; Colnago, L. A.; Carbohydr. Polym. 2016, 150, 1.
-5454 Kock, F. V. C.; Monaretto, T.; Colnago, L. A.; Int. J. Biol. Macromol. 2017, 98, 228.

4.4. Two-dimension pulse sequences for measuring T1 and T2 correlation

When the relaxation curve shows a multiexponential behavior (multiples T1 or T2), it is not possible to know how T1 correlates with each T2. Multiple relaxation times constants are normally observed in compartmentalized, porous, or emulsion samples. To obtain the correlation between T1 and T2, it is necessary to use 2D pulses sequences composed by a T1 and T2 pulse sequences, such as IR-CPMG, SR-CPMG, or CPMG-CWFP-T1.4949 Moraes, T. B.; Monaretto, T.; Colnago, L. A.; Appl. Sci. 2019, 9, 1312.,5555 Rondeau-Mouro, C.; Kovrlija, R.; Van Steenberge, E.; Moussaoui, S.; J. Magn. Reson. 2016, 265, 16.,5656 Guo, J.; Xie, R.; Appl. Magn. Reson. 2019, 50, 479.

Figure 5 shows the T1-T2 correlation maps of three compartmentalized aqueous solutions of paramagnetic ions (Figure 5a). The 2D correlation map (Figure 5b) shows the three T1 and T2 values and the correlation between them. These 2D relaxometric studies can be a valuable tool for research on paramagnetic ions in heterogeneous environments, such as porous inorganic media or biological tissues.5757 Monaretto, T.; Montrazi, E. T.; Moraes, T. B.; Souza, A. A.; Rondeau-Mouro, C.; Colnago, L. A.; J. Magn. Reson. 2020, 311, 106666.

Figure 5
(a) Phantom sample composed by three 3 mm NMR tubes inserted in a 10 mm NMR tube. The gray tone in the circle/tubes represents a different aqueous solution: 10 mM CuSO4, 0.1 mM MnSO4, and 0.02 mM MnSO4; (b) 2D T1-T2 correlation map obtained with the sample of Figure 5a (adapted from reference 57).

5. Applications of TD-NMR Relaxometry in Systems Containing Paramagnetic Ions

This section describes how it is possible to extract quantitative, structural, and dynamical information about PMC and PMC complexes and coordination compounds in solution, using low-field bench-top TD-NMR relaxometry. The applications of PMC in MRI contrast agents are outside the scope of this review and can be found elsewhere.11 Aime, S.; Botta, M.; Fasano, M.; Terreno, E.; Chem. Soc. Rev. 1998, 27, 19.,22 Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F.; Acc. Chem. Res. 2011, 44, 1029.,5858 Gianolio, E.; Stefania, R.; Di Gregorio, E.; Aime, S.; Eur. J. Inorg. Chem. 2012, 1934.,5959 Terreno, E.; Castelli, D. D.; Viale, A.; Aime, S.; Chem. Rev. 2010, 110, 3019.

5.1. Applications in analytical chemistry

The longitudinal relaxation rate (R1 = 1/T1) of the solvent is influenced by the paramagnetic ions concentration (mol L-1) and its effective electronic magnetic moment (μeff), the nucleus gyromagnetic ratio γ, Boltzmann constant k, sample temperature (T) and sample viscosity (η), and is calculated according to equation 15.2222 Bloch, F.; Hansen, W. W.; Packard, M.; Phys. Rev. 1946, 70, 474.,2323 Bloembergen, N.; Purcell, E. M.; Pound, R. V.; Phys. Rev. 1948, 73, 679.

(15)1 T1=12π2γP2η[M]μeff25kT

Therefore, R1 has a linear correlation to paramagnetic ion concentration for the sample with the same temperature and viscosity.2222 Bloch, F.; Hansen, W. W.; Packard, M.; Phys. Rev. 1946, 70, 474.,2323 Bloembergen, N.; Purcell, E. M.; Pound, R. V.; Phys. Rev. 1948, 73, 679.

The use of NMR relaxometry for quantitative analyses of PMC in solution was first demonstrated in 1970’s. Nothnagel and Weiss6060 Nothnagel, K. H.; Weiss, A.; Ber. Bunsenges. Phys. Chem. 1970, 74, 609. and Schluter and Weiss6161 Schlüter, A.; Weiss, A.; Fresenius’ Z. Anal. Chem. 1973, 266, 177.

62 Schlüter, A.; Weiss, A.; Anal. Chim. Acta 1978, 99, 157.
-6363 Schlüter, A.; Weiss, A.; Anal. Chim. Acta 1978, 97, 93. demonstrated the use of T1, measured with IR pulse sequence, to monitor precipitation and complexation of paramagnetic ions by NMR titration in aqueous solutions. The authors also observed that the transverse relaxation rate (R2 = 1/T2) has similar linear correlation with the PMC concentration in solution.

Currently, T2 are frequently used in relaxation analyses because its measurement using CPMG pulse sequence is much faster than T1 measurement using IR sequence.6464 Aime, S.; Cabella, C.; Colombatto, S.; Crich, S. G.; Gianolio, E.; Maggioni, F.; J. Magn. Reson. Imaging 2002, 16, 394.,6565 Kock, F. V. C.; Machado, M. P.; Athayde, G. P. B.; Colnago, L. A.; Barbosa, L. L.; Microchem. J. 2018, 137, 204.Figure 6 shows the linear correlation of R2 and the concentration of several PMC in aqueous solution. The curve slope corresponds to molar relaxivity (equation 4) that depends on μeff and it is maximum for the MnII and minimal for CuII (Figure 6). These differences can be attributed to the number of unpaired electrons on the d-orbitals, 5 unpaired electrons (d55 Luchinat, C.; Magn. Reson. Chem. 1993, 31, S145.), and 1 unpaired electron (d99 Bertini, I.; Kowalewski, J.; Luchinat, C.; Nilsson, T.; Parigi, G.; J. Chem. Phys. 1999, 111, 5795.) for MnII and CuII ions, respectively, and the ability of the metal to energetically split the d-orbitals.6666 Que, E. L.; Gianolio, E.; Baker, S. L.; Wong, A. P.; Aime, S.; Chang, C. J.; J. Am. Chem. Soc. 2009, 131, 8527.,6767 Fanali, G.; Cao, Y.; Ascenzi, P.; Fasano, M.; J. Inorg. Biochem. 2012, 117, 198.

Figure 6
Variation of the transverse relaxation rate (T2-1) of water versus the concentrations of CoII, CrIII, CuII, FeIII and MnII in the solutions (reproduced from reference 65 with copyright permission of Elsevier B.V.).

The R2 determination is fast (seconds) and CPMG is a non-destructive method that can be a useful alternative analytical approach to measure PMC concentrations in solution, as demonstrated by Gomes et al.,6868 Gomes, B. F.; Burato, J. S. D. S.; Lobo, C. M. S.; Colnago, L. A.; Int. J. Anal. Chem. 2016, 2016, 8256437. with low limits of detection (LOD ca. 10-6 mol L-1) and quantification (LOQ ca. 10-5 mol L-1). Furthermore, the highest sensitivity was observed for MnII ions (LOQ ca. 10-6 mol L-1), which can be associated to a larger number of unpaired electrons, a positive feature, enhancing the relaxation effect.6868 Gomes, B. F.; Burato, J. S. D. S.; Lobo, C. M. S.; Colnago, L. A.; Int. J. Anal. Chem. 2016, 2016, 8256437.

In 2018, Kock et al.6565 Kock, F. V. C.; Machado, M. P.; Athayde, G. P. B.; Colnago, L. A.; Barbosa, L. L.; Microchem. J. 2018, 137, 204. and Gomes et al.,6868 Gomes, B. F.; Burato, J. S. D. S.; Lobo, C. M. S.; Colnago, L. A.; Int. J. Anal. Chem. 2016, 2016, 8256437. using 2 and 9 MHz (for 1H nucleus) relaxometers, respectively, demonstrated that TD-NMR T2 relaxometry was a simple, rapid, and efficient method to determine PMC concentrations in aqueous solution. The high correlation observed with inductively coupled plasma optical emission spectrometry (ICP OES) (Figure 7) shows that T2 relaxometry even at 2 MHz is a cost-effective alternative to quantify PMC at small enterprises and universities.6565 Kock, F. V. C.; Machado, M. P.; Athayde, G. P. B.; Colnago, L. A.; Barbosa, L. L.; Microchem. J. 2018, 137, 204.

Figure 7
Correlation between transverse relaxation rates (T2-1) obtained from TD-NMR relaxometry versus optical emission intensity obtained from ICP OES: CoII, CrIII, FeIII, CuII, and MnII (reproduced from reference 65 with copyright permission of Elsevier B.V.).

In 2015, Cobra et al.6969 Cobra, P. F.; Gomes, B. F.; Mitre, C. I. N.; Barbosa, L. L.; Marconcini, L. V.; Colnago, L. A.; Microchem. J. 2015, 121, 14. used the TD-NMR T2 relaxometry to determine the solubility product constant (Ksp) for several salts containing paramagnetic ions in aqueous solution. In these experiments, R2 was measured as function of pH and the PMC concentrations were determined to calculate Ksp. The authors also showed that it is possible to separate different paramagnetic ions by precipitation (Figure 8) as a function of pH. The three steps sigmoidal curves are related to FeIII precipitation at pH 3.04, CuII at pH 7.70, and MnII at pH 9.40.6969 Cobra, P. F.; Gomes, B. F.; Mitre, C. I. N.; Barbosa, L. L.; Marconcini, L. V.; Colnago, L. A.; Microchem. J. 2015, 121, 14.

Figure 8
Experimental relaxometric titration curves showing the variation of T2 with the pH for an aqueous solution containing FeCl3, CuSO4, and MnSO4 (reproduced from reference 69 with copyright permission of Elsevier B.V.).

TD-NMR relaxometry have also been used to determine Mn2+ ions in wine samples,7070 Bodart, P. R.; Rachocki, A.; Tritt-Goc, J.; Michalke, B.; Schmitt-Kopplin, P.; Karbowiak, T.; Gougeon, R. D.; Talanta 2020, 209, 120561. characterization of polymer materials doped with paramagnetic ions for the development of the product and the process in several industries, namely rubber, plastics, composites, adhesives.7171 Besghini, D.; Mauri, M.; Simonutti, R.; Appl. Sci. 2019, 9, 1801. TD-NMR relaxometry has also been used as an indicator of black heart problem in pomegranate fruits, diseases caused by the high amount of PMC, such as Mn2+ ions.7272 Zhang, L.; McCarthy, M. J.; Postharvest Biol. Technol. 2012, 67, 96.

5.2. Applications in electrochemistry

T2 measurements with the CPMG pulse sequence have been successfully used to monitor Cu electrodeposition reactions in situ or in operando. The first electrodeposition experiment measured with T2 relaxometry was performed in the CuII-sorbitol complex [Cu(Sorbitol)2]22 Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F.; Acc. Chem. Res. 2011, 44, 1029..7373 Barbosa, L. L.; Colnago, L. A.; Carlos, I.; Nunes, L. M. S.; ECS Trans. 2010, 25, 215. CuII electrodeposition has been monitored using different TD NMR apparatus, probes with inductively coupled coils.7474 Lobo, C. M. S.; Gomes, B. F.; Bouzouma, H.; Danieli, E.; Blümich, B.; Colnago, L. A.; Electrochim. Acta 2019, 298, 844.

Figure 9a shows the setup for the CuII electrodeposition experiment. The working (WE), reference (RE) and counter (CE) electrodes were inserted into the NMR probe and the measurements were performed in operando. Figure 9b shows the variation of CuII concentration as a function of electrodeposition reaction time and the respective electric density current (j) variation.

Figure 9
(a) Representation for the in situ electrochemistry system coupled to TD-NMR benchtop spectrometer; (b) variation of CuII concentration (□) and potentiostat current (■) during the electrodeposition reaction (reproduced from Nunes et al.,7575 Nunes, L. M. S.; Cobra, P. F.; Cabeça, L. F.; Barbosa, L. L.; Colnago, L. A.; Anal. Chem. 2012, 84, 6351. with copyright permission 2022 from American Chemical Society).

When the same CuII electrodeposition reaction was performed ex situ (in the absence of a magnetic field) and in situ (in the presence of NMR magnetic field), the in situ reaction was faster than the ex situ reaction (Figure 10a).1313 Gomes, B. F.; Nunes, L. M. S.; Lobo, C. M. S.; Cabeça, L. F.; Colnago, L. A.; Anal. Chem. 2014, 86, 9391.,7474 Lobo, C. M. S.; Gomes, B. F.; Bouzouma, H.; Danieli, E.; Blümich, B.; Colnago, L. A.; Electrochim. Acta 2019, 298, 844.,7676 Gomes, B. F.; Nunes, L. M. S.; Lobo, C. M. S.; Carvalho, A. S.; Cabeça, L. F.; Colnago, L. A.; J. Magn. Reson. 2015, 261, 83. In the ex situ experiments, the electrochemical system was placed in the NMR relaxometer for a few seconds only to measure the CuII concentration using the CPMG sequence. In the in situ experiments, the electrochemical cell stays in the magnetic field during the entire reaction time.

Figure 10
(a) Variation of CuII concentration as a function of electrolysis time performed in the electrochemical cell recorded at 23 °C under different configurations: (■) Bj, (●) Bj, and (▲) B = 0. Solution: 0.1 M Na2SO4 electrolyte containing 0.01 M CuSO4. Conditions: Eapplied = -0.4 V vs. Ag/AgCl (3 mol L-1 KCl) (figure from reference 14 with CC-BY attribution); (b) illustration of the electrochemical cell inserted in the NMR relaxometer (0.23 T). FB is the magnetohydrodynamic force (integral force density acting on all species in solution) that is the cross product between the current density (j) and the magnetic induction (B), which produces a force perpendicular to both vectors (FB = j × B). Therefore, the resultant force generates a flow in the solution, increasing mass transport (figure from reference 13 with CC-BY attribution).

The increase in the reaction rate (Figure 10a) was attributed to the magnetohydrodynamic effect (MHD)7777 Homsy, A.; Linder, V.; Lucklum, F.; de Rooij, N. F.; Sens. Actuators, B 2007, 123, 636. that was observed when the electrochemical reaction was performed in the presence of a magnetic field. The main MHD force is the Lorentz force (FL) that is equal to the cross product to magnetic field strength (B) and ionic density current (j). This force acts on the solution medium stirring it. FL is maximum when B and j are perpendicular (Bj) and minimal for B and j parallel (Bj). However, no difference between both orientations were observed (Figure 10a) due to distortions in the electric and magnetic fields.1313 Gomes, B. F.; Nunes, L. M. S.; Lobo, C. M. S.; Cabeça, L. F.; Colnago, L. A.; Anal. Chem. 2014, 86, 9391.,7474 Lobo, C. M. S.; Gomes, B. F.; Bouzouma, H.; Danieli, E.; Blümich, B.; Colnago, L. A.; Electrochim. Acta 2019, 298, 844.,7676 Gomes, B. F.; Nunes, L. M. S.; Lobo, C. M. S.; Carvalho, A. S.; Cabeça, L. F.; Colnago, L. A.; J. Magn. Reson. 2015, 261, 83. This mass transport phenomenon observed during CuII electrodeposition in NMR magnetic field was measured in situ by magnetic resonance imaging velocimetry.7878 Benders, S.; Gomes, B. F.; Carmo, M.; Colnago, L. A.; Blümich, B.; J. Magn. Reson. 2020, 312, 3.

5.3. Applications in inorganic chemistry

TD-NMR relaxation measurements have also been used to study PMC complexes and coordination compounds. In 2015, Kock and Colnago4141 Kock, F. V. C.; Colnago, L. A.; Microchem. J. 2015, 122, 144. studied the CuII-EDTA (ethylenediamine tetra acetic acid) complex as a function of the pH (Figure 11a) measuring T1 and T2, simultaneously, using the CWFP and CP-CWFP pulses sequences. Figure 11a (solid lines) shows relaxation times constants and visible absorption profiles of the CuII-EDTA complex, as a function of the pH. The solid lines are the polynomials fit of T1 (✩), T2 (◯), and absorption at 730 nm (■) (visible spectroscopy) data. The dashed line is the sigmoidal fit to T2 values (□) of the CuII solution without EDTA. These results clearly show the strong influence of the EDTA complex on relaxation profile of CuII solution, when compared with the solution without CuII. These results also show how similar are the absorbance and the relaxation times constants profiles for the CuII-EDTA complex, as a function of the pH (Figure 11a). These similar profiles have been explained through the progressive ligand replacing the inner coordination sphere from aqua [Cu(H2O)6]2+ to [CuY]22 Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F.; Acc. Chem. Res. 2011, 44, 1029.- (Figure 11b). The authors suggested that the EDTA ligand influences the paramagnetic effect on the solvent relaxation time, demonstrated by 1H-relaxometry, and that the chemical equilibrium is shifted for the formation of the chelate species in solution.4141 Kock, F. V. C.; Colnago, L. A.; Microchem. J. 2015, 122, 144.,7979 Oakes, J.; Smith, E. G.; J. Chem. Soc., Faraday Trans. 2 1981, 77, 299.

Figure 11
(a) Variation of maximum absorbance at 730 nm (■), T1 (✩), and T2 (◯) measured simultaneously with the CP-CWFP pulse sequence for the aqueous solution of complex [CuY]22 Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F.; Acc. Chem. Res. 2011, 44, 1029.- and T2 measured with CPMG (□) for the aqueous solution of CuII, as a function of the pH; (b) proposed complex species as a function of the pH obtained from the aquocomplex [Cu(H2O)6]2+ to hydroxo complex species, [Cu(Y)OH]33 Castelli, D. D.; Gianolio, E.; Crich, S. G.; Terreno, E.; Aime, S.; Coord. Chem. Rev. 2008, 252, 2424.- (adapted from reference 41).

However, a much different profile between T1 and T2 relaxation and absorption at 730 nm is observed when the Cu2+-EDTA complex is in the presence of NH4OH (Figure 12). The relaxation profiles show two peaks while the absorption profile shows only one broad peak.4141 Kock, F. V. C.; Colnago, L. A.; Microchem. J. 2015, 122, 144. The chemical structures differences between the CuII-EDTA and CuII-EDTA plus NH4OH, as a function of the pH, are shown in Figure 12b. Therefore, both relaxation times constants obtained using rapid and simultaneous CWFP and CP-CWFP pulses sequences can be efficient to study metal complexes containing paramagnetic ions, as an alternative to traditional UV-Vis spectrophotometry. Besides, TD-NMR relaxometry can be used to study colorless complexes, such as MnII-EDTA,4141 Kock, F. V. C.; Colnago, L. A.; Microchem. J. 2015, 122, 144. which is not possible with the use of visible spectrophotometry.

Figure 12
(a) Variation of maximum absorbance at 730 nm (■), T1 (✩) and T2 (◯) measured simultaneously by CP-CWFP pulse sequence for the aqueous solution in the presence of (NH4)2SO4 (1.0 mol L-1) of complex CuII-EDTA in function of pH. In all experiments the CuII concentration was 3.3 × 10-3 mol L-1; (b) proposed complex species as a function of the pH obtained from the aquocomplex [Cu(H2O)6]2+ to amino hydroxo complex [Cu(Y)(NH3)OH]33 Castelli, D. D.; Gianolio, E.; Crich, S. G.; Terreno, E.; Aime, S.; Coord. Chem. Rev. 2008, 252, 2424.- species (adapted from reference 41).

The CWFP pulse sequences were also used to study the interaction between the biopolymer chitosan and paramagnetic ions.5454 Kock, F. V. C.; Monaretto, T.; Colnago, L. A.; Int. J. Biol. Macromol. 2017, 98, 228.Figures 13a and 13b show the relaxometric profiles of an aqueous solution of chitosan (CHI), in the presence and absence of the paramagnetic FeIII, as a function of the pH, respectively.5353 Kock, F. V. C.; Colnago, L. A.; Carbohydr. Polym. 2016, 150, 1.,5454 Kock, F. V. C.; Monaretto, T.; Colnago, L. A.; Int. J. Biol. Macromol. 2017, 98, 228. These results highlighted that the relaxation profiles of both solutions are remarkably different, especially under alkaline conditions, suggesting a strong interference of this biopolymer and its respective chelate [CHI-Fe]3+ (Figure 13c)8080 Hernández, R. B.; Franco, A. P.; Yola, O. R.; López-Delgado, A.; Felcman, J.; Recio, M. A. L.; Mercê, A. L. R.; J. Mol. Struct. 2008, 877, 89. on water mobility due to the coagulation process, which, in practical terms, concerns the removal of these heavy metals from solution.5353 Kock, F. V. C.; Colnago, L. A.; Carbohydr. Polym. 2016, 150, 1.

Figure 13
T1 (■) and T2 (◯) relaxometric profiles obtained for a chitosan aqueous solution (a) and for [CHI-Fe]3+ (b) using the CP-CWFPx-x pulse sequence; (c) proposed chemical arrangements for the [CHI-Fe]3+ species5454 Kock, F. V. C.; Monaretto, T.; Colnago, L. A.; Int. J. Biol. Macromol. 2017, 98, 228.,8080 Hernández, R. B.; Franco, A. P.; Yola, O. R.; López-Delgado, A.; Felcman, J.; Recio, M. A. L.; Mercê, A. L. R.; J. Mol. Struct. 2008, 877, 89. (figures adapted from references 53, 54 and 80).

These results demonstrate that the CWFP pulse sequences could be used to study the interactions of paramagnetic ions and other CHI molecules with different molecular weights, acetylation degrees, and derivatives, as well as between other water-soluble polysaccharides and paramagnetic ions, providing a distinct perspective on the CHI-metal binding properties and stability in solution, commonly studied by other expensive and laborious analytical approaches, such as atomic absorption spectrometry (AAS)8181 Azarova, Y. A.; Pestov, A. V.; Ustinov, A. Y.; Bratskaya, S. Y.; Carbohydr. Polym. 2015, 134, 680.,8282 Borsagli, F. G. L. M.; Mansur, A. A. P.; Chagas, P.; Oliveira, L. C. A.; Mansur, H. S.; React. Funct. Polym. 2015, 97, 37. and ICP OES.8383 Webster, A.; Halling, M. D.; Grant, D. M.; Carbohydr. Res. 2007, 342, 1189. Therefore, TD-NMR is an interesting alternative for the studies on the interaction between macromolecules and metals ions, with significant impact on bioinorganic,55 Luchinat, C.; Magn. Reson. Chem. 1993, 31, S145. environmental chemistry,8484 Conte, P.; Magn. Reson. Chem. 2015, 53, 711. as well as for the development of novel functionalized materials.8585 Pinho, S. L. C.; Pereira, G. A.; Voisin, P.; Kassem, J.; Bouchaud, V.; Etienne, L.; Peters, J. A.; Carlos, L.; Mornet, S.; Geraldes, C. F. G. C.; Rocha, J.; Delville, M. H.; ACS Nano 2010, 4, 5339.

Another interesting result was obtained for the CuII-sorbitol complex, [Cu(Sorbitol)2]22 Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F.; Acc. Chem. Res. 2011, 44, 1029.-, used in numerous technological applications.7373 Barbosa, L. L.; Colnago, L. A.; Carlos, I.; Nunes, L. M. S.; ECS Trans. 2010, 25, 215.,8686 Klüfers, P.; Schuhmacher, J.; Angew. Chem., Int. Ed. Engl. 1995, 34, 2119.Figure 14a shows the T1 and T2 relaxometric profiles obtained with the CP‐CWFPx‐x pulse sequence. This figure shows that the relaxation times constants for this complex are remarkably distinct for a pH above 6. The T1 curve shows that the CuII has no influence on bulk water, similar to what is observed in pure water. On the other hand, the T2 profile shows that the [Cu(Sorbitol)2]22 Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F.; Acc. Chem. Res. 2011, 44, 1029.- species is totally formed at pH ca. 12 (blue arrow), where neither paramagnetic nor viscosity effect influences the relaxation mechanisms.8787 Kock, F. V. C.; Higuera-Padilla, A. R.; Vigatto, M. D. S. S.; Martin Neto, L.; Colnago, L. A.; Magn. Reson. Chem. 2019, 57, 404. At other pH values above 6, the T2 values indicate that the complex alters the solution viscosity. Therefore, the absence of a paramagnetic effect on both T1 and T2 at pH ca. 12 indicates that water molecules do not have access to CuII ions and consequently that the CuII ions are wrapped in the soluble complex toroidal structure (Figure 14b),8686 Klüfers, P.; Schuhmacher, J.; Angew. Chem., Int. Ed. Engl. 1995, 34, 2119. in a supramolecular arrangement, as suggested by X-ray diffraction composed by 8 sorbitol molecules and 16 CuII ions, and now confirmed by TD NMR relaxometry that they occur in solution.8787 Kock, F. V. C.; Higuera-Padilla, A. R.; Vigatto, M. D. S. S.; Martin Neto, L.; Colnago, L. A.; Magn. Reson. Chem. 2019, 57, 404.

Figure 14
(a) T1 (■) and T2 (●) relaxometric profiles determined simultaneously with the CP‐CWFPx‐x pulse sequence for the aqueous solutions of 1:1 [CuII‐Sorb] complex, as a function of the pH; (b) proposed macromolecular arrangement for the [CuII‐Sorb] complex (reproduced from reference 87 with copyright permission of John Wiley & Sons, Ltd.).

Furthermore, TD-NMR relaxometry has been used in inorganic chemistry to monitor the CrVI photocatalytic reduction performance by quantifying the concentration of paramagnetic CrIII ions in solution,8888 Niu, X.; Dong, J.; Wang, X. L.; Yao, Y. F.; Environ. Sci. Nano 2020, 7, 2823. the removal of CuII and CrIII ions from water by amberlite IR120 resin,8989 Gossuin, Y.; Hantson, A. L.; Vuong, Q. L.; J. Water Process Eng. 2020, 33, 101024. and adsorption research of CuII on activated alumina.9090 Gossuin, Y.; Vuong, Q. L.; Sep. Purif. Technol. 2018, 202, 138.Table 1 presents additional applications of TD-NMR relaxometry to PMC, concerning the analytical and inorganic chemistry.

Table 1
Potential uses of TD-NMR applied to PMC in solution

6. Final Remarks

This review demonstrated the potential use of NMR relaxometry to study paramagnetic metal cation (PMC) in solution, using a low-field benchtop TD-NMR relaxometer, focusing on analytical, electrochemical, and inorganic chemistry applications. Basic information on NMR and paramagnetic relaxation mechanism to understand data analysis, as well as of modern CWFP pulses sequences to measure both T1 and T2 relaxation times constants have been addressed. The use of bench top TD-NMR relaxometer is a viable cost-effective alternative to traditional, laborious, and expensive analytical approaches, such as ICP OES, and illustrates its contribution to analytical chemistry. Studies on copper electrodeposition reactions and magnetohydrodynamic effect (MHD) demonstrated the potential of TD-NMR relaxometry to research on electrochemistry. Furthermore, the monitoring of PMC complexes and the coordination of compounds formation even for colorless ions and supramolecular arrangements for metal complexes confirm the remarkable contribution from the TD-NMR for inorganic chemistry. It also opens a new research path concerning these purposes with deep impact on the development of novel materials, environmental responses, and on the comprehension about interactions of metal-ligand chemical mechanisms in solution. Finally, we hope that the concepts and applications presented in this review pave the path for new applications of TD-NMR relaxometry using paramagnetic ion complexes in solution for all scientists.

Acknowledgments

The authors would like to thank the financial support of FAPESP (grants 2012/23169-8, 2015/16624-9, 2018/16040-5, 2019/13656-8 and 2021/12694-3) and CNPq (grant 302866/2017-5).

References

  • 1
    Aime, S.; Botta, M.; Fasano, M.; Terreno, E.; Chem. Soc. Rev. 1998, 27, 19.
  • 2
    Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F.; Acc. Chem. Res. 2011, 44, 1029.
  • 3
    Castelli, D. D.; Gianolio, E.; Crich, S. G.; Terreno, E.; Aime, S.; Coord. Chem. Rev. 2008, 252, 2424.
  • 4
    Terreno, E.; Uggeri, F.; Aime, S.; J. Controlled Release 2012, 161, 328.
  • 5
    Luchinat, C.; Magn. Reson. Chem. 1993, 31, S145.
  • 6
    Telser, J.; J. Braz. Chem. Soc. 2006, 17, 1501.
  • 7
    Helm, L.; Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 45.
  • 8
    Pell, A. J.; Pintacuda, G.; Grey, C. P.; Prog. Nucl. Magn. Reson. Spectrosc. 2019, 111, 1.
  • 9
    Bertini, I.; Kowalewski, J.; Luchinat, C.; Nilsson, T.; Parigi, G.; J. Chem. Phys. 1999, 111, 5795.
  • 10
    Kellar, K. E.; Foster, N.; Inorg. Chem. 1992, 31, 1353.
  • 11
    Aime, S.; Baroni, S.; Castelli, D. D.; Brücher, E.; Fábián, I.; Serra, S. C.; Mingo, A. F.; Napolitano, R.; Lattuada, L.; Tedoldi, F.; Baranyai, Z.; Inorg. Chem. 2018, 57, 5567.
  • 12
    Helm, L.; Merbach, A. E.; Chem. Rev. 2005, 105, 1923.
  • 13
    Gomes, B. F.; Nunes, L. M. S.; Lobo, C. M. S.; Cabeça, L. F.; Colnago, L. A.; Anal. Chem. 2014, 86, 9391.
  • 14
    Gomes, B. F.; Lobo, C. M. S.; Colnago, L. A.; Appl. Sci. 2019, 9, 498.
  • 15
    Helm, L.; Merbach, A. E.; Coord. Chem. Rev. 1999, 187, 151.
  • 16
    Caravan, P.; Acc. Chem. Res. 2009, 42, 851.
  • 17
    Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B.; Chem. Rev. 1999, 99, 2293.
  • 18
    Caravan, P.; Chem. Soc. Rev. 2006, 35, 512.
  • 19
    Blümich, B.; Casanova, F.; Appelt, S.; Chem. Phys. Lett. 2009, 477, 231.
  • 20
    Softley, C. A.; Bostock, M. J.; Popowicz, G. M.; Sattler, M.; J. Biomol. NMR 2020, 74, 287.
  • 21
    Claridge, T. D. W.; High-Resolution NMR Techniques in Organic Chemistry: Third Edition; Elsevier Ltd.: Oxford, 2016.
  • 22
    Bloch, F.; Hansen, W. W.; Packard, M.; Phys. Rev. 1946, 70, 474.
  • 23
    Bloembergen, N.; Purcell, E. M.; Pound, R. V.; Phys. Rev. 1948, 73, 679.
  • 24
    Solomon, I.; Phys. Rev. 1955, 99, 559.
  • 25
    Bloembergen, N.; J. Chem. Phys. 1957, 27, 572.
  • 26
    Bloembergen, N.; Morgan, L. O.; J. Chem. Phys. 1961, 34, 842.
  • 27
    Debroye, E.; Parac-Vogt, T. N.; Chem. Soc. Rev. 2014, 43, 8178.
  • 28
    Zhang, Y.; Yeung, H. N.; O’Donnell, M.; Carson, P. L.; J. Magn. Reson. Imaging 1998, 8, 675.
  • 29
    Look, D. C.; Locker, D. R.; Rev. Sci. Instrum. 1970, 41, 250.
  • 30
    Haase, A.; Frahm, J.; J. Magn. Reson. 1985, 65, 481.
  • 31
    Datta, A.; Raymond, K. N.; Acc. Chem. Res. 2009, 42, 938.
  • 32
    Lamanna, R.; Concepts Magn. Reson., Part A: Bridging Educ. Res. 2005, 26, 78.
  • 33
    Berman, P.; Levi, O.; Parmet, Y.; Saunders, M.; Wiesman, Z.; Concepts Magn. Reson., Part A 2013, 42, 72.
  • 34
    Cucinelli Neto, R. P.; Rodrigues, E. J. R.; Tavares, M. I. B.; Magn. Reson. Chem. 2019, 57, 395.
  • 35
    Moraes, T. B.; Monaretto, T.; Colnago, L. A.; J. Magn. Reson. 2016, 270, 1.
  • 36
    Hahn, E. L.; Phys. Rev. 1950, 80, 580.
  • 37
    Carr, H. Y.; Purcell, E. M.; Phys. Rev. 1954, 94, 630.
  • 38
    Meiboom, S.; Gill, D.; Rev. Sci. Instrum. 1958, 29, 688.
  • 39
    de Andrade, F. D.; Netto, A. M.; Colnago, L. A.; Talanta 2011, 84, 84.
  • 40
    de Andrade, F. D.; Marchi Netto, A.; Colnago, L. A.; J. Magn. Reson. 2012, 214, 184.
  • 41
    Kock, F. V. C.; Colnago, L. A.; Microchem. J. 2015, 122, 144.
  • 42
    Azeredo, R. B. V.; Colnago, L. A.; Engelsberg, M.; Anal. Chem. 2000, 72, 2401.
  • 43
    Azeredo, R. B. V.; Colnago, L. A.; Souza, A. A.; Engelsberg, M.; Anal. Chim. Acta 2003, 478, 313.
  • 44
    Ernst, R. R.; Anderson, W. A.; Rev. Sci. Instrum. 1966, 37, 93.
  • 45
    Azeredo, R. B. V.; Engelsberg, M.; Colnago, L. A.; Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2001, 64, 4.
  • 46
    dos Santos, P. M.; de Souza, A. A.; Colnago, L. A.; Appl. Magn. Reson. 2011, 40, 331.
  • 47
    dos Santos, P. M.; de Souza, A. A.; Colnago, L. A.; Quim. Nova 2010, 33, 954.
  • 48
    Nunes, L. M. S.; Moraes, T. B.; Barbosa, L. L.; Mazo, L. H.; Colnago, L. A.; Anal. Chim. Acta 2014, 850, 1.
  • 49
    Moraes, T. B.; Monaretto, T.; Colnago, L. A.; Appl. Sci. 2019, 9, 1312.
  • 50
    Venâncio, T.; Colnago, L. A.; Magn. Reson. Chem. 2012, 50, 534.
  • 51
    Venâncio, T.; Engelsberg, M.; Azeredo, R. B. V.; Colnago, L. A.; J. Magn. Reson. 2006, 181, 29.
  • 52
    Monaretto, T.; Andrade, F. D.; Moraes, T. B.; Souza, A. A.; deAzevedo, E. R.; Colnago, L. A.; J. Magn. Reson. 2015, 259, 174.
  • 53
    Kock, F. V. C.; Colnago, L. A.; Carbohydr. Polym. 2016, 150, 1.
  • 54
    Kock, F. V. C.; Monaretto, T.; Colnago, L. A.; Int. J. Biol. Macromol. 2017, 98, 228.
  • 55
    Rondeau-Mouro, C.; Kovrlija, R.; Van Steenberge, E.; Moussaoui, S.; J. Magn. Reson. 2016, 265, 16.
  • 56
    Guo, J.; Xie, R.; Appl. Magn. Reson. 2019, 50, 479.
  • 57
    Monaretto, T.; Montrazi, E. T.; Moraes, T. B.; Souza, A. A.; Rondeau-Mouro, C.; Colnago, L. A.; J. Magn. Reson. 2020, 311, 106666.
  • 58
    Gianolio, E.; Stefania, R.; Di Gregorio, E.; Aime, S.; Eur. J. Inorg. Chem. 2012, 1934.
  • 59
    Terreno, E.; Castelli, D. D.; Viale, A.; Aime, S.; Chem. Rev. 2010, 110, 3019.
  • 60
    Nothnagel, K. H.; Weiss, A.; Ber. Bunsenges. Phys. Chem. 1970, 74, 609.
  • 61
    Schlüter, A.; Weiss, A.; Fresenius’ Z. Anal. Chem. 1973, 266, 177.
  • 62
    Schlüter, A.; Weiss, A.; Anal. Chim. Acta 1978, 99, 157.
  • 63
    Schlüter, A.; Weiss, A.; Anal. Chim. Acta 1978, 97, 93.
  • 64
    Aime, S.; Cabella, C.; Colombatto, S.; Crich, S. G.; Gianolio, E.; Maggioni, F.; J. Magn. Reson. Imaging 2002, 16, 394.
  • 65
    Kock, F. V. C.; Machado, M. P.; Athayde, G. P. B.; Colnago, L. A.; Barbosa, L. L.; Microchem. J. 2018, 137, 204.
  • 66
    Que, E. L.; Gianolio, E.; Baker, S. L.; Wong, A. P.; Aime, S.; Chang, C. J.; J. Am. Chem. Soc. 2009, 131, 8527.
  • 67
    Fanali, G.; Cao, Y.; Ascenzi, P.; Fasano, M.; J. Inorg. Biochem. 2012, 117, 198.
  • 68
    Gomes, B. F.; Burato, J. S. D. S.; Lobo, C. M. S.; Colnago, L. A.; Int. J. Anal. Chem. 2016, 2016, 8256437.
  • 69
    Cobra, P. F.; Gomes, B. F.; Mitre, C. I. N.; Barbosa, L. L.; Marconcini, L. V.; Colnago, L. A.; Microchem. J. 2015, 121, 14.
  • 70
    Bodart, P. R.; Rachocki, A.; Tritt-Goc, J.; Michalke, B.; Schmitt-Kopplin, P.; Karbowiak, T.; Gougeon, R. D.; Talanta 2020, 209, 120561.
  • 71
    Besghini, D.; Mauri, M.; Simonutti, R.; Appl. Sci. 2019, 9, 1801.
  • 72
    Zhang, L.; McCarthy, M. J.; Postharvest Biol. Technol. 2012, 67, 96.
  • 73
    Barbosa, L. L.; Colnago, L. A.; Carlos, I.; Nunes, L. M. S.; ECS Trans. 2010, 25, 215.
  • 74
    Lobo, C. M. S.; Gomes, B. F.; Bouzouma, H.; Danieli, E.; Blümich, B.; Colnago, L. A.; Electrochim. Acta 2019, 298, 844.
  • 75
    Nunes, L. M. S.; Cobra, P. F.; Cabeça, L. F.; Barbosa, L. L.; Colnago, L. A.; Anal. Chem. 2012, 84, 6351.
  • 76
    Gomes, B. F.; Nunes, L. M. S.; Lobo, C. M. S.; Carvalho, A. S.; Cabeça, L. F.; Colnago, L. A.; J. Magn. Reson. 2015, 261, 83.
  • 77
    Homsy, A.; Linder, V.; Lucklum, F.; de Rooij, N. F.; Sens. Actuators, B 2007, 123, 636.
  • 78
    Benders, S.; Gomes, B. F.; Carmo, M.; Colnago, L. A.; Blümich, B.; J. Magn. Reson. 2020, 312, 3.
  • 79
    Oakes, J.; Smith, E. G.; J. Chem. Soc., Faraday Trans. 2 1981, 77, 299.
  • 80
    Hernández, R. B.; Franco, A. P.; Yola, O. R.; López-Delgado, A.; Felcman, J.; Recio, M. A. L.; Mercê, A. L. R.; J. Mol. Struct. 2008, 877, 89.
  • 81
    Azarova, Y. A.; Pestov, A. V.; Ustinov, A. Y.; Bratskaya, S. Y.; Carbohydr. Polym. 2015, 134, 680.
  • 82
    Borsagli, F. G. L. M.; Mansur, A. A. P.; Chagas, P.; Oliveira, L. C. A.; Mansur, H. S.; React. Funct. Polym. 2015, 97, 37.
  • 83
    Webster, A.; Halling, M. D.; Grant, D. M.; Carbohydr. Res. 2007, 342, 1189.
  • 84
    Conte, P.; Magn. Reson. Chem. 2015, 53, 711.
  • 85
    Pinho, S. L. C.; Pereira, G. A.; Voisin, P.; Kassem, J.; Bouchaud, V.; Etienne, L.; Peters, J. A.; Carlos, L.; Mornet, S.; Geraldes, C. F. G. C.; Rocha, J.; Delville, M. H.; ACS Nano 2010, 4, 5339.
  • 86
    Klüfers, P.; Schuhmacher, J.; Angew. Chem., Int. Ed. Engl. 1995, 34, 2119.
  • 87
    Kock, F. V. C.; Higuera-Padilla, A. R.; Vigatto, M. D. S. S.; Martin Neto, L.; Colnago, L. A.; Magn. Reson. Chem. 2019, 57, 404.
  • 88
    Niu, X.; Dong, J.; Wang, X. L.; Yao, Y. F.; Environ. Sci. Nano 2020, 7, 2823.
  • 89
    Gossuin, Y.; Hantson, A. L.; Vuong, Q. L.; J. Water Process Eng. 2020, 33, 101024.
  • 90
    Gossuin, Y.; Vuong, Q. L.; Sep. Purif. Technol. 2018, 202, 138.
  • 91
    Lalli, D.; Marchesi, S.; Carniato, F.; Bisio, C.; Tei, L.; Marchese, L.; Botta, M.; Dalton Trans. 2020, 49, 6566.
  • 92
    Bubici, S.; Korb, J. P.; Kučerik, J.; Conte, P.; Magn. Reson. Chem. 2016, 54, 365.
  • 93
    Ersus, S.; Oztop, M. H.; McCarthy, M. J.; Barrett, D. M.; J. Food Sci. 2010, 75, E444.
  • 94
    Melton, J. R.; Kantzas, A.; Langford, C. H.; Anal. Chim. Acta 2007, 605, 46.
  • 95
    Korb, J. P.; Monteilhet, L.; McDonald, P. J.; Mitchell, J.; Cem. Concr. Res. 2007, 37, 295.

Edited by

Editor handled this article: Humberto O. Stumpf (Associate)

Publication Dates

  • Publication in this collection
    30 May 2022
  • Date of issue
    2022

History

  • Received
    27 Oct 2021
  • Published
    11 Mar 2022
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br