Acessibilidade / Reportar erro
This document comments:

Comments on “Relationship between body composition and PBRM1 mutations in clear cell renal cell carcinoma: a propensity score matching analysis”

Kidney cancer is one of the leading causes of cancer-related death worldwide and mainly comprises renal cell carcinoma, with an estimated 0.4 million new cases worldwide in 201811. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. https://doi.org/10.3322/caac.21551
https://doi.org/10.3322/caac.21551...
. In 2020, Hu et al.22. Hu X, Liao DW, Yang ZQ, Yang WX, Xiong SC, Li X. Sarcopenia predicts prognosis of patients with renal cell carcinoma: a systematic review and meta-analysis. Int Braz J Urol. 2020;46(5):705-15. https://doi.org/10.1590/S1677-5538.IBJU.2019.0636
https://doi.org/10.1590/S1677-5538.IBJU....
carried out a meta-analysis to evaluate the prognostic value of sarcopenia in patients with renal cell carcinoma and observed that patients with sarcopenia had worse overall survival compared with those without sarcopenia in renal cell carcinoma. They22. Hu X, Liao DW, Yang ZQ, Yang WX, Xiong SC, Li X. Sarcopenia predicts prognosis of patients with renal cell carcinoma: a systematic review and meta-analysis. Int Braz J Urol. 2020;46(5):705-15. https://doi.org/10.1590/S1677-5538.IBJU.2019.0636
https://doi.org/10.1590/S1677-5538.IBJU....
concluded that larger, preferably prospective, studies were needed to confirm and update their findings. Recently, in 2023, Demirel and Dilek33. Demirel E, Dilek O. Relationship between body composition and PBRM1 mutations in clear cell renal cell carcinoma: a propensity score matching analysis. Rev Assoc Med Bras (1992). 2023;69(5):e20220415. https://doi.org/10.1590/1806-9282.20220415
https://doi.org/10.1590/1806-9282.202204...
published, a study entitled “Relationship between body composition and PBRM1 mutations in clear cell renal cell carcinoma: a propensity score matching analysis” in the Journal of the Brazilian Medical Association33. Demirel E, Dilek O. Relationship between body composition and PBRM1 mutations in clear cell renal cell carcinoma: a propensity score matching analysis. Rev Assoc Med Bras (1992). 2023;69(5):e20220415. https://doi.org/10.1590/1806-9282.20220415
https://doi.org/10.1590/1806-9282.202204...
, in which they retrospectively examined the relationship between body muscle and adipose tissue composition in clear cell renal cell carcinoma patients with polybromo-1 protein (PBRM1)44. Hopson SE, Thompson MJ. Heterologous expression of the human polybromo-1 protein in the methylotrophic yeast Pichia pastoris. Protein Expr Purif. 2018;152:23-30. https://doi.org/10.1016/j.pep.2018.07.002
https://doi.org/10.1016/j.pep.2018.07.00...
gene mutation33. Demirel E, Dilek O. Relationship between body composition and PBRM1 mutations in clear cell renal cell carcinoma: a propensity score matching analysis. Rev Assoc Med Bras (1992). 2023;69(5):e20220415. https://doi.org/10.1590/1806-9282.20220415
https://doi.org/10.1590/1806-9282.202204...
. The study33. Demirel E, Dilek O. Relationship between body composition and PBRM1 mutations in clear cell renal cell carcinoma: a propensity score matching analysis. Rev Assoc Med Bras (1992). 2023;69(5):e20220415. https://doi.org/10.1590/1806-9282.20220415
https://doi.org/10.1590/1806-9282.202204...
concluded that normal attenuation muscle area is greater in patients with PBMR1 mutation, even after propensity score matching33. Demirel E, Dilek O. Relationship between body composition and PBRM1 mutations in clear cell renal cell carcinoma: a propensity score matching analysis. Rev Assoc Med Bras (1992). 2023;69(5):e20220415. https://doi.org/10.1590/1806-9282.20220415
https://doi.org/10.1590/1806-9282.202204...
. According to the authors, body composition plays a critical role in understanding the complex effect of PBRM133. Demirel E, Dilek O. Relationship between body composition and PBRM1 mutations in clear cell renal cell carcinoma: a propensity score matching analysis. Rev Assoc Med Bras (1992). 2023;69(5):e20220415. https://doi.org/10.1590/1806-9282.20220415
https://doi.org/10.1590/1806-9282.202204...
.

This article33. Demirel E, Dilek O. Relationship between body composition and PBRM1 mutations in clear cell renal cell carcinoma: a propensity score matching analysis. Rev Assoc Med Bras (1992). 2023;69(5):e20220415. https://doi.org/10.1590/1806-9282.20220415
https://doi.org/10.1590/1806-9282.202204...
has the potential to generate new systematic reviews22. Hu X, Liao DW, Yang ZQ, Yang WX, Xiong SC, Li X. Sarcopenia predicts prognosis of patients with renal cell carcinoma: a systematic review and meta-analysis. Int Braz J Urol. 2020;46(5):705-15. https://doi.org/10.1590/S1677-5538.IBJU.2019.0636
https://doi.org/10.1590/S1677-5538.IBJU....
with retrospective designs33. Demirel E, Dilek O. Relationship between body composition and PBRM1 mutations in clear cell renal cell carcinoma: a propensity score matching analysis. Rev Assoc Med Bras (1992). 2023;69(5):e20220415. https://doi.org/10.1590/1806-9282.20220415
https://doi.org/10.1590/1806-9282.202204...
. As such, to contribute to the authors and journal, we outline a suggestion for novel studies, on body composition and PBRM1 mutations, and calculated the effect sizes for values significant55. Pontes-Silva A. Statistical significance does not show clinical relevance: we need to go beyond the p-value. J Clin Exp Hepatol. 2022;12(5):1402. https://doi.org/10.1016/j.jceh.2022.04.017
https://doi.org/10.1016/j.jceh.2022.04.0...
in the outcomes assessment before and after propensity score matching in patients with PBRM1 (Table 1). Our suggestion to researchers and physicians is that thetissues that make up the human body center66. Pontes-Silva A, Zharikov Y. Comments on “Overweight status, abdominal circumference, physical activity, and functional constipation in children”. Rev Assoc Med Bras (1992). 2023;69(6):e20230284. https://doi.org/10.1590/1806-9282.20230284
https://doi.org/10.1590/1806-9282.202302...
, namely, the abdominal region—subcutaneous adipose tissue (SAT)77. Porchia LM, Vazquez-Marroquin G, Ochoa-Précoma R, Pérez-Fuentes R, Gonzalez-Mejia ME. Probiotics’ effect on visceral and subcutaneous adipose tissue: a systematic review of randomized controlled trials. Eur J Clin Nutr. 2022;76(12):1646-56. https://doi.org/10.1038/s41430-022-01135-0
https://doi.org/10.1038/s41430-022-01135...
, visceral adipose tissue (VAT)88. Saad RK, Ghezzawi M, Horanieh R, Khamis AM, Saunders KH, Batsis JA, Chakhtoura M. Abdominal visceral adipose tissue and all-cause mortality: a systematic review. Front Endocrinol (Lausanne). 2022;13:922931. https://doi.org/10.3389/fendo.2022.922931
https://doi.org/10.3389/fendo.2022.92293...
; total adipose tissue (TAT)99. Barone I, Giordano C. Leptin and beyond: actors in cancer. Biomolecules. 2021;11(12):1836. https://doi.org/10.3390/biom11121836
https://doi.org/10.3390/biom11121836...
,1010. Zeng Q, Wang L, Dong S, Zha X, Ran L, Li Y, et al. CT-derived abdominal adiposity: distributions and better predictive ability than BMI in a nationwide study of 59,429 adults in China. Metabolism. 2021;115:154456. https://doi.org/10.1016/j.metabol.2020.154456
https://doi.org/10.1016/j.metabol.2020.1...
,1111. Caan BJ, Cespedes Feliciano EM, Prado CM, Alexeeff S, Kroenke CH, Bradshaw P, et al. Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. JAMA Oncol. 2018;4(6):798-804. https://doi.org/10.1001/jamaoncol.2018.0137
https://doi.org/10.1001/jamaoncol.2018.0...
, intramuscular adipose tissue (IMAT)1212. Xu Z, You W, Chen W, Zhou Y, Nong Q, Valencak TG, et al. Single-cell RNA sequencing and lipidomics reveal cell and lipid dynamics of fat infiltration in skeletal muscle. J Cachexia Sarcopenia Muscle. 2021;12(1):109-29. https://doi.org/10.1002/jcsm.12643
https://doi.org/10.1002/jcsm.12643...
,1313. Sparks LM, Goodpaster BH, Bergman BC. The metabolic significance of intermuscular adipose tissue: is IMAT a friend or a foe to metabolic health?. Diabetes. 2021;70(11):2457-67. https://doi.org/10.2337/dbi19-0006
https://doi.org/10.2337/dbi19-0006...
,1414. Yu F, Fan Y, Sun H, Li T, Dong Y, Pan S. Intermuscular adipose tissue in type 2 diabetes mellitus: non-invasive quantitative imaging and clinical implications. Diabetes Res Clin Pract. 2022;187:109881. https://doi.org/10.1016/j.diabres.2022.109881
https://doi.org/10.1016/j.diabres.2022.1...
, low attenuation muscle area (LAMA)1515. Suissa S, Dell’Aniello S, Ernst P. Triple inhaler versus dual bronchodilator therapy in COPD: real-world effectiveness on mortality. COPD. 2022;19(1):1-9. https://doi.org/10.1080/15412555.2021.1977789
https://doi.org/10.1080/15412555.2021.19...
, normal attenuation muscle area (NAMA)16,16. Kim HK, Lee MJ, Kim EH, Bae SJ, Kim KW, Kim CH. Comparison of muscle mass and quality between metabolically healthy and unhealthy phenotypes. Obesity (Silver Spring). 2021;29(8):1375-86. https://doi.org/10.1002/oby.23190
https://doi.org/10.1002/oby.23190...
1717. Kim HK, Kim KW, Kim EH, Lee MJ, Bae SJ, Ko Y, et al. Age-related changes in muscle quality and development of diagnostic cutoff points for myosteatosis in lumbar skeletal muscles measured by CT scan. Clin Nutr. 2021;40(6):4022-8. https://doi.org/10.1016/j.clnu.2021.04.017
https://doi.org/10.1016/j.clnu.2021.04.0...
, and total abdominal muscle area (TAMA)18,18. Lee MJ, Kim HK, Kim EH, Bae SJ, Kim KW, Kim MJ, et al. Association between muscle quality measured by abdominal computed tomography and subclinical coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2021;41(2):e128-40. https://doi.org/10.1161/ATVBAHA.120.315054
https://doi.org/10.1161/ATVBAHA.120.3150...
1919. Vella CA, Miljkovic I, Price CA, Allison M. Physical activity type and intensity are associated with abdominal muscle area and density: the multiethnic study of atherosclerosis. J Phys Act Health. 2022;19(4):256-66. https://doi.org/10.1123/jpah.2021-0409
https://doi.org/10.1123/jpah.2021-0409...
—should be analyzed based on the patients’ stature (mean±SD). This is necessary because it is possible to observe patients with the same stature2020. Pontes-Silva A. Comments on “Comparison of the outcomes of flexible ureteroscopy and mini-percutaneous nephrolithotomy for the treatment of kidney stones: a matched-pair analysis”. Rev Assoc Med Bras (1992). 2023;69(2):215. https://doi.org/10.1590/1806-9282.20221429
https://doi.org/10.1590/1806-9282.202214...
, however, with different areas (cm2) in the abdomen (Figure 1)2121. Pontes-Silva A, Lopes AL, Maciel ES, Quaresma FRP, Dibai-Filho AV. Human metabolism and body composition: prospects for novel studies. Nutr Rev. Published online April 17, 2023:nuad040. https://doi.org/10.1093/nutrit/nuad040
https://doi.org/10.1093/nutrit/nuad040...
.

Table 1.
Evaluation of age and body composition parameters before and after propensity score matching in patients with PBRM1 mutated and not mutated-unknown mutation status.
Figure 1.
Patients with the same stature but with different areas in the abdomen.

ACKNOWLEDGMENTS

I would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq), the São Paulo Research Foundation (FAPESP), the Federal University of Maranhão (UFMA), the Federal University of São Carlos (UFSCar), the Almir Vieira Dibai-Filho, and Maria de Fátima Pontes-Silva.

REFERENCES

  • 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. https://doi.org/10.3322/caac.21551
    » https://doi.org/10.3322/caac.21551
  • 2.
    Hu X, Liao DW, Yang ZQ, Yang WX, Xiong SC, Li X. Sarcopenia predicts prognosis of patients with renal cell carcinoma: a systematic review and meta-analysis. Int Braz J Urol. 2020;46(5):705-15. https://doi.org/10.1590/S1677-5538.IBJU.2019.0636
    » https://doi.org/10.1590/S1677-5538.IBJU.2019.0636
  • 3.
    Demirel E, Dilek O. Relationship between body composition and PBRM1 mutations in clear cell renal cell carcinoma: a propensity score matching analysis. Rev Assoc Med Bras (1992). 2023;69(5):e20220415. https://doi.org/10.1590/1806-9282.20220415
    » https://doi.org/10.1590/1806-9282.20220415
  • 4.
    Hopson SE, Thompson MJ. Heterologous expression of the human polybromo-1 protein in the methylotrophic yeast Pichia pastoris. Protein Expr Purif. 2018;152:23-30. https://doi.org/10.1016/j.pep.2018.07.002
    » https://doi.org/10.1016/j.pep.2018.07.002
  • 5.
    Pontes-Silva A. Statistical significance does not show clinical relevance: we need to go beyond the p-value. J Clin Exp Hepatol. 2022;12(5):1402. https://doi.org/10.1016/j.jceh.2022.04.017
    » https://doi.org/10.1016/j.jceh.2022.04.017
  • 6.
    Pontes-Silva A, Zharikov Y. Comments on “Overweight status, abdominal circumference, physical activity, and functional constipation in children”. Rev Assoc Med Bras (1992). 2023;69(6):e20230284. https://doi.org/10.1590/1806-9282.20230284
    » https://doi.org/10.1590/1806-9282.20230284
  • 7.
    Porchia LM, Vazquez-Marroquin G, Ochoa-Précoma R, Pérez-Fuentes R, Gonzalez-Mejia ME. Probiotics’ effect on visceral and subcutaneous adipose tissue: a systematic review of randomized controlled trials. Eur J Clin Nutr. 2022;76(12):1646-56. https://doi.org/10.1038/s41430-022-01135-0
    » https://doi.org/10.1038/s41430-022-01135-0
  • 8.
    Saad RK, Ghezzawi M, Horanieh R, Khamis AM, Saunders KH, Batsis JA, Chakhtoura M. Abdominal visceral adipose tissue and all-cause mortality: a systematic review. Front Endocrinol (Lausanne). 2022;13:922931. https://doi.org/10.3389/fendo.2022.922931
    » https://doi.org/10.3389/fendo.2022.922931
  • 9.
    Barone I, Giordano C. Leptin and beyond: actors in cancer. Biomolecules. 2021;11(12):1836. https://doi.org/10.3390/biom11121836
    » https://doi.org/10.3390/biom11121836
  • 10.
    Zeng Q, Wang L, Dong S, Zha X, Ran L, Li Y, et al. CT-derived abdominal adiposity: distributions and better predictive ability than BMI in a nationwide study of 59,429 adults in China. Metabolism. 2021;115:154456. https://doi.org/10.1016/j.metabol.2020.154456
    » https://doi.org/10.1016/j.metabol.2020.154456
  • 11.
    Caan BJ, Cespedes Feliciano EM, Prado CM, Alexeeff S, Kroenke CH, Bradshaw P, et al. Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. JAMA Oncol. 2018;4(6):798-804. https://doi.org/10.1001/jamaoncol.2018.0137
    » https://doi.org/10.1001/jamaoncol.2018.0137
  • 12.
    Xu Z, You W, Chen W, Zhou Y, Nong Q, Valencak TG, et al. Single-cell RNA sequencing and lipidomics reveal cell and lipid dynamics of fat infiltration in skeletal muscle. J Cachexia Sarcopenia Muscle. 2021;12(1):109-29. https://doi.org/10.1002/jcsm.12643
    » https://doi.org/10.1002/jcsm.12643
  • 13.
    Sparks LM, Goodpaster BH, Bergman BC. The metabolic significance of intermuscular adipose tissue: is IMAT a friend or a foe to metabolic health?. Diabetes. 2021;70(11):2457-67. https://doi.org/10.2337/dbi19-0006
    » https://doi.org/10.2337/dbi19-0006
  • 14.
    Yu F, Fan Y, Sun H, Li T, Dong Y, Pan S. Intermuscular adipose tissue in type 2 diabetes mellitus: non-invasive quantitative imaging and clinical implications. Diabetes Res Clin Pract. 2022;187:109881. https://doi.org/10.1016/j.diabres.2022.109881
    » https://doi.org/10.1016/j.diabres.2022.109881
  • 15.
    Suissa S, Dell’Aniello S, Ernst P. Triple inhaler versus dual bronchodilator therapy in COPD: real-world effectiveness on mortality. COPD. 2022;19(1):1-9. https://doi.org/10.1080/15412555.2021.1977789
    » https://doi.org/10.1080/15412555.2021.1977789
  • 16.
    Kim HK, Lee MJ, Kim EH, Bae SJ, Kim KW, Kim CH. Comparison of muscle mass and quality between metabolically healthy and unhealthy phenotypes. Obesity (Silver Spring). 2021;29(8):1375-86. https://doi.org/10.1002/oby.23190
    » https://doi.org/10.1002/oby.23190
  • 17.
    Kim HK, Kim KW, Kim EH, Lee MJ, Bae SJ, Ko Y, et al. Age-related changes in muscle quality and development of diagnostic cutoff points for myosteatosis in lumbar skeletal muscles measured by CT scan. Clin Nutr. 2021;40(6):4022-8. https://doi.org/10.1016/j.clnu.2021.04.017
    » https://doi.org/10.1016/j.clnu.2021.04.017
  • 18.
    Lee MJ, Kim HK, Kim EH, Bae SJ, Kim KW, Kim MJ, et al. Association between muscle quality measured by abdominal computed tomography and subclinical coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2021;41(2):e128-40. https://doi.org/10.1161/ATVBAHA.120.315054
    » https://doi.org/10.1161/ATVBAHA.120.315054
  • 19.
    Vella CA, Miljkovic I, Price CA, Allison M. Physical activity type and intensity are associated with abdominal muscle area and density: the multiethnic study of atherosclerosis. J Phys Act Health. 2022;19(4):256-66. https://doi.org/10.1123/jpah.2021-0409
    » https://doi.org/10.1123/jpah.2021-0409
  • 20.
    Pontes-Silva A. Comments on “Comparison of the outcomes of flexible ureteroscopy and mini-percutaneous nephrolithotomy for the treatment of kidney stones: a matched-pair analysis”. Rev Assoc Med Bras (1992). 2023;69(2):215. https://doi.org/10.1590/1806-9282.20221429
    » https://doi.org/10.1590/1806-9282.20221429
  • 21.
    Pontes-Silva A, Lopes AL, Maciel ES, Quaresma FRP, Dibai-Filho AV. Human metabolism and body composition: prospects for novel studies. Nutr Rev. Published online April 17, 2023:nuad040. https://doi.org/10.1093/nutrit/nuad040
    » https://doi.org/10.1093/nutrit/nuad040

Publication Dates

  • Publication in this collection
    18 Sept 2023
  • Date of issue
    2023

History

  • Received
    10 June 2023
  • Accepted
    12 June 2023
Associação Médica Brasileira R. São Carlos do Pinhal, 324, 01333-903 São Paulo SP - Brazil, Tel: +55 11 3178-6800, Fax: +55 11 3178-6816 - São Paulo - SP - Brazil
E-mail: ramb@amb.org.br