Acessibilidade / Reportar erro

Reciclagem e a Engenharia de Superfícies

1. INTRODUÇÃO

A reciclagem é a ação de se aplicar um processamento a um dado material transformando-o em um novo produto ou matéria prima de forma a reutilizá-lo. O destino de resíduos sólidos urbanos tem sido tema de inúmeras pesquisas recentes [11 SANTOS, R.E., SANTOS, I.F.S., BARROS, R.M., et al., “Generating electrical energy through urban solid waste in Brazil: An economic and energy comparative analysis”, Journal of Environmental Management, v. 231, n. 1, pp. 198-206, 2019.] e a incineração de resíduos ainda é um processo eficiente em termos de aproveitamento energético. Mas nos últimos anos, tem havido um esforço em se pesquisar novas aplicações para resíduos sólidos urbanos e, neste número 4 do volume 24 da revista Matéria, temos exemplos destas pesquisas como a produção de cerâmica vítrea com vidro reciclado [22 HANNING, E., GUALBERTO, H.R., SIMÕES, K.M.A., et al., “Glass-ceramic produced with recycled glass”, revista Matéria, v.24, n.4, 2019.] e a adição de resíduo de vidro em massa de cerâmica de alvenaria [33 ZACCARON, A., FRIZZO, R.G., ZANONI, E.T., et al., “Efeito da adição de resíduo de vidro em massa de cerâmica de alvenaria”, revista Matéria, v.24, n.4, 2019.]. Nesta edição, é descrito o emprego de cenosferas, sub-produto da combustão do carvão, na substituição parcial à areia para a produção de materiais cimentícios de baixo peso [44 SOUZA, F.B., MONTEDO, O.R.K.., GRASSI, R.L., et al., “Lightweight high strength concrete with the use of waste cenosphere as fine aggregate”, revista Matéria, v.24, n.4, 2019.]. A presente número da Matéria apresenta ainda o estudo da viabilidade econômica de mantas térmicas produzidas a partir de resíduos de asfalto para revestimento em telhados [55 MEDEIROS, M.F., FRANCO, M.A.C., KLEPA, R.B., et al., “Viabilidade econômica de mantas térmicas, produzidas a partir de resíduos de asfalto, para revestimento de telhados”, revista Matéria, v.24, n.4, 2019.] e análises de dosagens de concreto asfáltico utilizando resíduos da construção e demolição de obras [66 SENA NETO, P.G., AMORIM, E.F., INGUNZA, M.P.G., et al., “Análises de dosagens de concreto asfáltico do tipo Pré Misturado a Frio” utilizando Resíduos da Construção e Demolição de obras (RCD)”, revista Matéria, v.24, n.4, 2019.].

O grupo de pesquisa do Laboratório de Corrosão e Engenharia de Superfícies da UFMG vem desenvolvendo pesquisas para reciclagem de garrafas de poli (tereftalato de etileno) -PET pós consumo para uso como recobrimento em aços carbono com propriedades de resistência à corrosão e ao desgaste [77 SILVA, E. A., FEDEL, M., DEFLORIAN, F., et al., “Post-consumer polyethylene terephthalate coating mechanically deposited on mild steels”, Coatings, v. 9, pp. 28-39, 2019.]. A pesquisa para desenvolver novas aplicações para as garrafas de PET pós-consumo se iniciou a partir de 1997, quando o percentual de PET reciclado era em torno de 13% de acordo com a Associação brasileira da Indústria do PET e, atualmente, segundo a Revista Exame 57,1% do PET é reciclado. E uma pesquisa que tem alcançado repercussão acadêmica, tecnológica e na sociedade foi a utilização de lignina como filtro solar em asfaltos. Foi publicado um artigo apresentando as vantagens da adição de lignina ao ligante asfáltico, abordando a resistência ao envelhecimento, a estabilidade térmica e o estudo reológico [88 Batista, K.B., PADILHA, R. P., CASTRO, T. O., et al., “High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders”, Industrial Crops and Products, v. 111, pp. 107-116, 2018.]. Foi desenvolvido um novo produto: asfalto modificado com lignina. A pesquisa adquiriu maior importância tecnológica com o início da produção de lignina em escala industrial no Brasil a partir de 2019. Os ligantes modificados com lignina apresentaram valores de penetração mais baixos do que o ligante convencional, resistindo mais ao risco e deformando menos. A lignina melhorou significativamente a resistência do asfalto ao trincamento térmico a temperaturas até -12 °C. Neste editorial, serão avaliadas as propriedades mecânicas das misturas asfálticas com ligante modificado com lignina por meio de ensaio Marshall.

2. METODOLOGIA

Foi utilizado o cimento asfáltico de petróleo, CAP50/70, fornecido pela Refinaria Gabriel Passos (REGAP). A lignina foi fornecida pela empresa Suzano Papel e Celulose situada na cidade de Suzano - SP. As propriedades da lignina utilizada são apresentadas na Tabela 1. Foram feitas adições em massa de 1%, 4% e 6% de lignina ao ligante asfáltico. Para a confecção dos corpos de prova de concreto asfáltico, e posterior determinação do teor ótimo de ligante a ser adicionado, o ligante asfáltico foi aquecido a 140 °C, já os agregados foram aquecidos a 150 °C. Atingidas as temperaturas, o ligante foi misturado ao agregado por 20 minutos e, em seguida, colocado no molde de aço A compactação dos corpos de prova foi feita com energia de 75 golpes por face [99 BATISTA, K.B. “Desenvolvimento de ligantes asfálticos modificados com lignina como aditivo antienvelhecimento”, Tese de Doutorado, Universidade Federal de Minas Gerais, 2017.].

Tabela 1
Parâmetros da Lignina

Através do ensaio Marshall, determina-se a estabilidade, que é a resistência máxima a compressão radial, a deformação total apresentada pelo corpo de prova desde a aplicação da carga inicial nula, até a aplicação da carga máxima, de misturas betuminosas usinadas a quente [1010 Bernucci, L.B, Motta, L.M.G., Ceratti, J.A.P., et al., 2008. Pavimentação asfáltica: formação básica para engenheiros. Rio de Janeiro: PETROBRAS, ABEDA.]. O ensaio consiste da aplicação de uma carga de compressão sobre o corpo de prova cilíndrico regular, denominado corpo de prova Marshall, de 100 mm de diâmetro e 63,5 mm de altura. Essa carga é aplicada no corpo de prova por meio de cabeçotes curvos padronizados. A temperatura do ensaio é de 60 oC e a taxa de carregamento de 5 cm/minuto. Em geral, a parte superior da prensa é fixa e o prato inferior se desloca para cima conforme a taxa citada. Devido à resistência do material, é necessária uma força crescente para manter o prato inferior movendo-se na taxa especificada. Esta força cresce até determinado ponto em que ocorre uma perda de estabilidade do material, causada por deslocamento ou quebra de agregados A carga máxima é denominada estabilidade Marshall e é expressa em unidade de força (no Brasil, tipicamente em kgf, ou ainda N nas normas recentes). O ensaio seguiu a norma NBR 15785:2010.

3. RESULTADOS E DISCUSSÃO

A Figura 1 (a) mostra os valores encontrados para a estabilidade Marshall para as amostras de mistura asfáltica com ligante convencional e ligante modificado com diversos teores de lignina. As amostras modificadas com teor 1% e 6% de lignina apresentaram redução no valor da estabilidade em 6,1% e 0,5% respectivamente. Já a amostra modificada com teor 4 % apresentou um aumento no valor da estabilidade em 13 %, sendo, portanto, a amostra que apresentou melhor resultado.

Figura
Estabilidade Marshall do ligante convencional e do ligante modificado com lignina.

Porém todos os valores encontrados então dentro dos requisitos de dosagem de concreto asfáltico do NBR 15785:2010, que estabelece um valor mínimo para a estabilidade de 500 kgf/cm2 [99 BATISTA, K.B. “Desenvolvimento de ligantes asfálticos modificados com lignina como aditivo antienvelhecimento”, Tese de Doutorado, Universidade Federal de Minas Gerais, 2017.]. Segundo Chen et al. [1111 Chen, H., Xu, Q., Chen, S., Zhang, Z., “Evaluation and design of fiber-reinforced asphalt mixtures”, Materials and Design, v.30, pp. 2595–2603, 2009.], a adição de fibras de lignina à mistura asfáltica aumenta a estabilidade Marshall indicando sua maior resistência a trilha de roda. Este resultado pode ser atribuído a efeitos de adesão. Ainda segundo Chen et al. [1111 Chen, H., Xu, Q., Chen, S., Zhang, Z., “Evaluation and design of fiber-reinforced asphalt mixtures”, Materials and Design, v.30, pp. 2595–2603, 2009.], quando a mistura asfáltica começa a apresentar trincas, a fibra de lignina serve como uma "ponte" que resiste à propagação de trincas, é o chamado "bridging cracking effect". No entanto, a mistura asfáltica é um material inconsistente, composto não uniforme e multifásico constituído de agregados e ligante asfáltico. Portanto, lignina em excesso, tal como 10%, pode não se dispersar uniformemente, podendo coagular e formar pontos fracos dentro da mistura. Segundo Arabani e Tahami [1212 Arabani, M., Tahami, A. S., “Assessment of mechanical properties of rice husk ash modified asphalt mixture”, Construction and Building Materials, v. 149, pp. 350–358, 2017.], a estabilidade indica a resistência da mistura asfáltica à pressão, tensão horizontal e ao cisalhamento induzido pela carga de compressão.

4. CONCLUSÕES

Foi produzido um concreto asfáltico com ligante asfáltico modificado com 1%, 4% e 6% de lignina proveniente de indústria de papel e celulose. O ligante asfáltico com 4% de lignina apresentou maior estabilidade Marshall, indicando maior resistência a trilha de roda.

BIBLIOGRAFIA

  • 1
    SANTOS, R.E., SANTOS, I.F.S., BARROS, R.M., et al, “Generating electrical energy through urban solid waste in Brazil: An economic and energy comparative analysis”, Journal of Environmental Management, v. 231, n. 1, pp. 198-206, 2019.
  • 2
    HANNING, E., GUALBERTO, H.R., SIMÕES, K.M.A., et al, “Glass-ceramic produced with recycled glass”, revista Matéria, v.24, n.4, 2019.
  • 3
    ZACCARON, A., FRIZZO, R.G., ZANONI, E.T., et al, “Efeito da adição de resíduo de vidro em massa de cerâmica de alvenaria”, revista Matéria, v.24, n.4, 2019.
  • 4
    SOUZA, F.B., MONTEDO, O.R.K.., GRASSI, R.L., et al, “Lightweight high strength concrete with the use of waste cenosphere as fine aggregate”, revista Matéria, v.24, n.4, 2019.
  • 5
    MEDEIROS, M.F., FRANCO, M.A.C., KLEPA, R.B., et al, “Viabilidade econômica de mantas térmicas, produzidas a partir de resíduos de asfalto, para revestimento de telhados”, revista Matéria, v.24, n.4, 2019.
  • 6
    SENA NETO, P.G., AMORIM, E.F., INGUNZA, M.P.G., et al, “Análises de dosagens de concreto asfáltico do tipo Pré Misturado a Frio” utilizando Resíduos da Construção e Demolição de obras (RCD)”, revista Matéria, v.24, n.4, 2019.
  • 7
    SILVA, E. A., FEDEL, M., DEFLORIAN, F., et al, “Post-consumer polyethylene terephthalate coating mechanically deposited on mild steels”, Coatings, v. 9, pp. 28-39, 2019.
  • 8
    Batista, K.B., PADILHA, R. P., CASTRO, T. O., et al, “High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders”, Industrial Crops and Products, v. 111, pp. 107-116, 2018.
  • 9
    BATISTA, K.B. “Desenvolvimento de ligantes asfálticos modificados com lignina como aditivo antienvelhecimento”, Tese de Doutorado, Universidade Federal de Minas Gerais, 2017.
  • 10
    Bernucci, L.B, Motta, L.M.G., Ceratti, J.A.P., et al, 2008. Pavimentação asfáltica: formação básica para engenheiros Rio de Janeiro: PETROBRAS, ABEDA.
  • 11
    Chen, H., Xu, Q., Chen, S., Zhang, Z., “Evaluation and design of fiber-reinforced asphalt mixtures”, Materials and Design, v.30, pp. 2595–2603, 2009.
  • 12
    Arabani, M., Tahami, A. S., “Assessment of mechanical properties of rice husk ash modified asphalt mixture”, Construction and Building Materials, v. 149, pp. 350–358, 2017.

Datas de Publicação

  • Publicação nesta coleção
    2 Dez 2019
  • Data do Fascículo
    2019
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro, em cooperação com a Associação Brasileira do Hidrogênio, ABH2 Av. Moniz Aragão, 207, 21941-594, Rio de Janeiro, RJ, Brasil, Tel: +55 (21) 3938-8791 - Rio de Janeiro - RJ - Brazil
E-mail: revmateria@gmail.com