Acessibilidade / Reportar erro

Histological and immunohistochemical findings of the action of botulinum toxin in salivary gland: systematic review

Achados histológicos e imunohistoquímicos da ação da toxina botulínica em glândula salivar: revisão sistemática

Abstract

The treatment of sialorrhea is necessary for the constant risks posed by hypersalivation. A new therapeutic option comes up with the application of botulinum toxin in salivary glands. However, little is known about its mechanism of action in glandular tissue. Based on the above, this work had the objective to systematically review the literature about the action of botulinum toxin on submandibular and parotid salivary glands tissues. Electronic search was performed in databases of great relevance for this study (PubMed, SciELO, HighWire, Crossref, Scopus, Science Direct, MEDLINE, OLDMEDLINE, Serials Database, NLM Catalog, LILACS and IBECS). Inclusion and exclusion criteria for articles were established, and a total number of 14 articles were selected and used. There are few publications that clarify how the salivary gland acini behave with application of botulinum toxin. Although, the immunohistochemical findings were consistent among authors, showing weak immunoreactivity in glands treated with botulinum toxin. Histometric data are divergent, requiring more detailed studies to answer the questions about the efficacy and safety of botulinum toxin in salivary glands.

Keywords:
botulinum toxins; salivary glands; sialorrhea; botulinum toxin type A

Resumo

O tratamento da sialorreia se faz necessário pelos constantes riscos trazidos por este estado de hipersalivação. Uma nova opção terapêutica surge com a aplicação da toxina botulínica em glândulas salivares. Entretanto, pouco se sabe sobre o seu mecanismo de ação no tecido glandular. Com base no exposto, este trabalho teve o objetivo de revisar sistematicamente na literatura a ação da toxina botulínica sobre o tecido das glândulas salivares submandibular e parótida. Foi realizada uma busca eletrônica em bases de dados de grande relevância para este estudo (PubMed, SciELO, HighWire, Crossref, Scopus, Science Direct, MEDLINE, OLDMEDLINE, Serials Database, NLM Catalog, LILACS e IBECS). Foram estabelecidos critérios de inclusão e exclusão para os artigos, e um “n” de 14 trabalhos foram selecionados e utilizados. São poucas as publicações que esclarecem como os ácinos das glândulas salivares se comportam mediante aplicação da toxina botulínica. Apesar de os achados imunohistoquímicos entre os autores serem concordantes, com imunorreatividade mais fracas nas glândulas tratadas com a toxina botulínica, os dados histométricos são divergentes e há questionamentos metodológicos, necessitando de mais estudos pormenorizados para responder as questões sobre a eficácia e segurança da toxina botulínica nas glândulas salivares.

Palavras-chave:
toxinas botulínicas; glândulas salivares; sialorreia; toxinas botulínicas tipo A

1 Introduction

Sialorrhea or hypersalivation is a common phenomenon in children during the development of oral neuromuscular control, ranging from 18 to 24 months of life. However, after 4 years of age this condition is considered abnormal and hence, pathological (Augusto and Perez, 2006Augusto, A.G. and Perez, A.C., 2006. Drooling. Investigation over the best therapeutic approach. Acta ORL/Técnicas em Otorrinolaringologia, vol. 24, no. 1, p. 1-6.).

Hypersalivation is the result of hypersecretion of salivary glands, but it is commonly associated with the loss of neuromuscular control with impaired oral motor activity and increased saliva flow (Yang et al., 2006Yang, P.-Y., Han, T.-I., Chou, L.-W., Jou, H.-J., Chou, Y.-C. and Meng, N.-H., 2006. Botulinum toxin A in the treatment of sialorrhea in children with cerebral palsy. Mid-Taiwan Journal of Medicine, vol. 11, pp. 261-266.). It can also occur as a side effect of drugs that act by increasing the activity of specific receptors in the secretomor pathway, resulting in hypersecretion. However, most patients suffering from sialorrhea show poor oral neuromuscular control (Jongerius et al., 2001Jongerius, P.H., Rotteveel, J.J., Van Den Hoogen, F., Joosten, F., Van Hulst, K. and Gabreëls, F.J.M., 2001. Botulinum toxin A: a new option for treatment of drooling in children with cerebral palsy. Presentation of a case serie. European Journal of Pediatrics, vol. 160, no. 8, pp. 509-512. http://dx.doi.org/10.1007/s004310100784. PMid:11548191.
http://dx.doi.org/10.1007/s004310100784...
).

The consequences of hypersalivation include facial and perioral dermatitis (Yang et al., 2006Yang, P.-Y., Han, T.-I., Chou, L.-W., Jou, H.-J., Chou, Y.-C. and Meng, N.-H., 2006. Botulinum toxin A in the treatment of sialorrhea in children with cerebral palsy. Mid-Taiwan Journal of Medicine, vol. 11, pp. 261-266.; Bloem et al., 2009Bloem, B.R., Kalf, J.G., van de Kerkhof, P.C. and Zwarts, M.J., 2009. Debilitating consequences of drooling. Journal of Neurology, vol. 256, no. 8, pp. 1382-1383. http://dx.doi.org/10.1007/s00415-009-5144-0. PMid:19412723.
http://dx.doi.org/10.1007/s00415-009-514...
); increased perioral and oral infections, halitosis, hygiene difficulties, social isolation, aspiration risk and loss of fluids and electrolytes (Yang et al., 2006Yang, P.-Y., Han, T.-I., Chou, L.-W., Jou, H.-J., Chou, Y.-C. and Meng, N.-H., 2006. Botulinum toxin A in the treatment of sialorrhea in children with cerebral palsy. Mid-Taiwan Journal of Medicine, vol. 11, pp. 261-266.; Jankovic, 2009Jankovic, J., 2009. Disease-oriented approach to botulinum toxin use. Toxicon, vol. 54, no. 5, pp. 614-623. http://dx.doi.org/10.1016/j.toxicon.2008.11.013. PMid:19073203.
http://dx.doi.org/10.1016/j.toxicon.2008...
); difficulties to speak and pneumonia (Alter, 2010Alter, K.E., 2010. High-frequency ultrasound guidance for neurotoxin injections. Physical Medicine and Rehabilitation Clinics of North America, vol. 21, no. 3, pp. 607-630. http://dx.doi.org/10.1016/j.pmr.2010.05.001. PMid:20797552.
http://dx.doi.org/10.1016/j.pmr.2010.05....
); and risk of lung infections (Ellies et al., 2002Ellies, M., Rohrbach-Volland, S., Arglebe, C., Wilken, B., Laskawi, R. and Hanefeld, F., 2002. Successful managenment of drooling with botulinum toxin A in neurologically disbled children. Neuropediatrics, vol. 33, no. 6, pp. 327-330. http://dx.doi.org/10.1055/s-2002-37084. PMid:12571790.
http://dx.doi.org/10.1055/s-2002-37084...
), which generate great impact on the patient’s life. On the other hand, the decrease in salivary flow and xerostomia, the person may develop severe weakness in oral health, difficulty with speech, chewing, swallowing, changes in the mucous membrane, tooth loss (Sanioto et al., 2013Sanioto, S.M., Amorim, J.B.O., Mancini, M.N.G. and Baldo, M.V.C., 2013. Regulação neurovegetativa do aparelho estomatognático: fisiologia da secreção salivar. In: M.V.C. BALDO and M.C. REGATÃO. Fundamentos de odontologia: fisiologia oral. São Paulo: Santos. 192 p.), among others as microbial infections such as candidiasis caused by pathogenic species of Candida (Rodrigues et al., 2004Rodrigues, J.A.O., Höfling, J.F., Tavares, F.C.A., Duarte, K.M.R., Gonçalves, R.B. and Azevedo, R.A., 2004. Evaluation of biochemical and serological methods to identify and clustering yeast cells of oral Candida species by CHROMagar test, SDS-PAGE and ELISA. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 64, no. 2, pp. 317-326. http://dx.doi.org/10.1590/S1519-69842004000200018. PMid:15462306.
http://dx.doi.org/10.1590/S1519-69842004...
).

As this is a multifactorial disease, there are several therapeutic approaches. Anticholinergic drug substances such as Atropine, Benztropine, Glycopyrrolate, and Benzhexol Hydrochloride are some options, which reduce the volume of saliva in the oral cavity by blocking the action of parasympathetic autonomic nervous system on acetylcholine receptors on the salivary glands (Ellies et al., 2006aEllies, M., Schütz, S., Quondamatteo, F. and Laskawi, R., 2006a. The effect of local injection of botulinum toxin A on the immunoreactivity of nNOS in the rat submandibular gland: An immunohistochemical study. International Journal of Pediatric Otorhinolaryngology, vol. 70, no. 1, pp. 59-63. http://dx.doi.org/10.1016/j.ijporl.2005.05.015. PMid:16002154.
http://dx.doi.org/10.1016/j.ijporl.2005....
; Coskun et al., 2007Coskun, B.U., Savk, H., Cicek, E.D., Basak, T., Basak, M. and Dadas, B., 2007. Histopathological and radiological investigations of the influence of botulinum toxin on the submandibular gland of the rat. European Archives of Oto-Rhino-Laryngology, vol. 264, no. 7, pp. 783-787. http://dx.doi.org/10.1007/s00405-007-0254-8. PMid:17285331.
http://dx.doi.org/10.1007/s00405-007-025...
; Bavikatte et al., 2012Bavikatte, G., Sit, P.L. and Hassoon, A., 2012. Management of drooling of saliva. British Journal of Medical Practioners, vol. 5, no. 1, pp. 502-507.). Other ways include antihistaminic drugs (Alter, 2010Alter, K.E., 2010. High-frequency ultrasound guidance for neurotoxin injections. Physical Medicine and Rehabilitation Clinics of North America, vol. 21, no. 3, pp. 607-630. http://dx.doi.org/10.1016/j.pmr.2010.05.001. PMid:20797552.
http://dx.doi.org/10.1016/j.pmr.2010.05....
); surgery such as ablation of salivary glands, tympanic neurectomy, transposition or retropositioning of excretory ducts or ligation of excretory ducts (Ellies et al., 2002Ellies, M., Rohrbach-Volland, S., Arglebe, C., Wilken, B., Laskawi, R. and Hanefeld, F., 2002. Successful managenment of drooling with botulinum toxin A in neurologically disbled children. Neuropediatrics, vol. 33, no. 6, pp. 327-330. http://dx.doi.org/10.1055/s-2002-37084. PMid:12571790.
http://dx.doi.org/10.1055/s-2002-37084...
; Savarese et al., 2004Savarese, R., Diamond, M., Elovic, E. and Millis, R.S., 2004. Intraparotid injection of botulinum toxin A as a treatment to control sialorrhea in children with cerebral palsy. American Journal of Physical Medicine & Rehabilitation, vol. 83, no. 4, pp. 304-311, quiz 312-314, 336. http://dx.doi.org/10.1097/01.PHM.0000104680.28335.B9. PMid:15024333.
http://dx.doi.org/10.1097/01.PHM.0000104...
; Manrique et al., 2007Manrique, D., do Brasil, O.O. and Ramos, H., 2007. Drooling: analysis and evaluation of 31 children who underwent bilateral submandibular gland excision and parotid duct ligation. Revista Brasileira de Otorrinolaringologia, vol. 73, no. 1, pp. 41-45. http://dx.doi.org/10.1590/S0034-72992007000100007. PMid:17505597.
http://dx.doi.org/10.1590/S0034-72992007...
); radiotherapy (Bavikatte et al., 2012Bavikatte, G., Sit, P.L. and Hassoon, A., 2012. Management of drooling of saliva. British Journal of Medical Practioners, vol. 5, no. 1, pp. 502-507.; Kasarskis et al., 2011Kasarskis, E.J., Hodskins, J. and Clair, W.H.S., 2011. Unilateral parotid electron beam radiotherapy as palliative treatment for sialorrhea in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, vol. 308, no. 1-2, pp. 155-157. http://dx.doi.org/10.1016/j.jns.2011.06.016. PMid:21726879.
http://dx.doi.org/10.1016/j.jns.2011.06....
; Corso et al., 2011Corso, B.L., Silveira, V.C., BINHA, A M.P. and CHAMLIAN, T.R., 2011. Therapeutic approach in drooling on cerebral palsy: systematic review. Revista Medicina de Reabilitação, vol. 30, no. 1, pp. 9-13.); speech therapy (Crysdale, 1980Crysdale, W.S., 1980. The drooling patient: evaluation and current surgical options. The Laryngoscope, vol. 90, no. 5 Pt 1, pp. 775-783. http://dx.doi.org/10.1288/00005537-198005000-00006. PMid:7374307.
http://dx.doi.org/10.1288/00005537-19800...
); techniques of body position, and the “biofeedback” (Tscheng, 2002Tscheng, D.Z., 2002. Sialorrhea – therapeutic drug options. The Annals of Pharmacotherapy, vol. 36, no. 11, pp. 1785-1790. http://dx.doi.org/10.1345/aph.1C019. PMid:12398577.
http://dx.doi.org/10.1345/aph.1C019...
; Savarese et al., 2004Savarese, R., Diamond, M., Elovic, E. and Millis, R.S., 2004. Intraparotid injection of botulinum toxin A as a treatment to control sialorrhea in children with cerebral palsy. American Journal of Physical Medicine & Rehabilitation, vol. 83, no. 4, pp. 304-311, quiz 312-314, 336. http://dx.doi.org/10.1097/01.PHM.0000104680.28335.B9. PMid:15024333.
http://dx.doi.org/10.1097/01.PHM.0000104...
; Bloem et al., 2009Bloem, B.R., Kalf, J.G., van de Kerkhof, P.C. and Zwarts, M.J., 2009. Debilitating consequences of drooling. Journal of Neurology, vol. 256, no. 8, pp. 1382-1383. http://dx.doi.org/10.1007/s00415-009-5144-0. PMid:19412723.
http://dx.doi.org/10.1007/s00415-009-514...
; Valencia and Mendoza, 2011Valencia, D.V. and Mendoza, A., 2011. Toxina botulínica tipo A, una nueva opción en el tratamiento de la sialorrea en niños con parálisis cerebral. Revista Colombiana de Medicina Física y Rehabilitación, vol. 21, no. 1, pp. 23-31.).

Currently, botulinum toxin has been used in the treatment of sialorrhea (Savarese et al., 2004Savarese, R., Diamond, M., Elovic, E. and Millis, R.S., 2004. Intraparotid injection of botulinum toxin A as a treatment to control sialorrhea in children with cerebral palsy. American Journal of Physical Medicine & Rehabilitation, vol. 83, no. 4, pp. 304-311, quiz 312-314, 336. http://dx.doi.org/10.1097/01.PHM.0000104680.28335.B9. PMid:15024333.
http://dx.doi.org/10.1097/01.PHM.0000104...
; Lagalla et al., 2009Lagalla, G., Millevolte, M., Capecci, M., Provinciali, L. and Ceravolo, M.G., 2009. Long-lasting benefits of botulinum toxin type B in Parkinson’s disea.se-related drooling. Journal of Neurology, vol. 256, no. 4, pp. 563-567. http://dx.doi.org/10.1007/s00415-009-0085-1. PMid:19401804.
http://dx.doi.org/10.1007/s00415-009-008...
; Intiso, 2012Intiso, D., 2012. Therapeutic Use of Botulinum Toxin in Neurorehabilitation. Journal of Toxicology, vol. 2012, pp. 1-12. http://dx.doi.org/10.1155/2012/802893. PMid:21941544.
http://dx.doi.org/10.1155/2012/802893...
) because it is able to depress the secretory activity of salivary glands (Ellies et al., 2004Ellies, M., Gottstein, U., Rohrbach-Volland, S., Arglebe, C. and Laskawi, R., 2004. Reduction of salivary flow with botulinum toxin: extended report on 33 patients with drooling, salivary fistulas, and sialadenitis. The Laryngoscope, vol. 114, no. 10, pp. 1856-1860. http://dx.doi.org/10.1097/00005537-200410000-00033. PMid:15454785.
http://dx.doi.org/10.1097/00005537-20041...
). These are neurotoxins produced by Clostridium botulinum (Prevot, 1953), an anaerobic bacterium (Sposito, 2009Sposito, M.M.M., 2009. Botulinic toxin type A: action mechanism. Acta Fisiátrica, vol. 16, no. 1, pp. 25-37.). The bacterium Clostridium botulinum produces many serological types of toxins (A, B, C1, D, E, F and G) (Tsui, 1996Tsui, J.K.C., 1996. Botulinum Toxin as a Therapeutic Agent. Pharmacology & Therapeutics, vol. 72, no. 1, pp. 13-24. http://dx.doi.org/10.1016/S0163-7258(96)00091-5. PMid:8981568.
http://dx.doi.org/10.1016/S0163-7258(96)...
; Sposito, 2004Sposito, M.M.M., 2004. Toxina botulínica tipo A – propriedades farmacológicas e uso clínico. Acta Fisiátrica, suppl. 01, pp. S7-S44., 2009Sposito, M.M.M., 2009. Botulinic toxin type A: action mechanism. Acta Fisiátrica, vol. 16, no. 1, pp. 25-37.; Poulain et al., 2008Poulain, B., Popoff, M.R. and Molgo, J., 2008. How do the botulinum neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action. The Botulinum Journal, vol. 1, no. 1, pp. 14-87. http://dx.doi.org/10.1504/TBJ.2008.018951.
http://dx.doi.org/10.1504/TBJ.2008.01895...
; WHO, 2013WORLD HEALTH ORGANIZATION – WHO, 2013 [viewed 21 June 2014]. Governments to agree increased focus on people with disabilities in development strategies [online]. Geneva: WHO. Available from: http://www.who.int/mediacentre/news/notes/2013/disability_and_development_20130920/en/.
http://www.who.int/mediacentre/news/note...
) as a complex mixture of neurotoxic polypeptides and nontoxic protein components, and type A and B are commercialized and available for medical use (Sposito, 2004Sposito, M.M.M., 2004. Toxina botulínica tipo A – propriedades farmacológicas e uso clínico. Acta Fisiátrica, suppl. 01, pp. S7-S44., 2009Sposito, M.M.M., 2009. Botulinic toxin type A: action mechanism. Acta Fisiátrica, vol. 16, no. 1, pp. 25-37.; Poulain et al., 2008Poulain, B., Popoff, M.R. and Molgo, J., 2008. How do the botulinum neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action. The Botulinum Journal, vol. 1, no. 1, pp. 14-87. http://dx.doi.org/10.1504/TBJ.2008.018951.
http://dx.doi.org/10.1504/TBJ.2008.01895...
). There are still some authors mentioning an eighth serotype of botulinum toxin, the C2 (Bhayani and Suskind, 2008Bhayani, M.K. and Suskind, D.L., 2008. The use of botulinum toxin in patients with sialorrhea. Operative Techniques in Otolaryngology, vol. 19, no. 4, pp. 243-247. http://dx.doi.org/10.1016/j.otot.2008.10.008.
http://dx.doi.org/10.1016/j.otot.2008.10...
).

The application of botulinum toxin type A as a treatment for sialorrhea was first proposed in 1997 through intraglandular injection (Bushara, 1997Bushara, K.O., 1997. Sialorrhea in amyotrophic lateral sclerosis: a hypothesis of a new treatment – botulinum toxin A injections of the parotid glands. Medical Hypotheses, vol. 48, no. 4, pp. 337-339. http://dx.doi.org/10.1016/S0306-9877(97)90103-1. PMid:9160288.
http://dx.doi.org/10.1016/S0306-9877(97)...
). The intraglandular application of botulinum toxin type A or B has been used to treat hypersalivation (Lagalla et al., 2009Lagalla, G., Millevolte, M., Capecci, M., Provinciali, L. and Ceravolo, M.G., 2009. Long-lasting benefits of botulinum toxin type B in Parkinson’s disea.se-related drooling. Journal of Neurology, vol. 256, no. 4, pp. 563-567. http://dx.doi.org/10.1007/s00415-009-0085-1. PMid:19401804.
http://dx.doi.org/10.1007/s00415-009-008...
; Intiso, 2012Intiso, D., 2012. Therapeutic Use of Botulinum Toxin in Neurorehabilitation. Journal of Toxicology, vol. 2012, pp. 1-12. http://dx.doi.org/10.1155/2012/802893. PMid:21941544.
http://dx.doi.org/10.1155/2012/802893...
) because it is able to depress secretory activity of the salivary glands (Ellies et al., 2004Ellies, M., Gottstein, U., Rohrbach-Volland, S., Arglebe, C. and Laskawi, R., 2004. Reduction of salivary flow with botulinum toxin: extended report on 33 patients with drooling, salivary fistulas, and sialadenitis. The Laryngoscope, vol. 114, no. 10, pp. 1856-1860. http://dx.doi.org/10.1097/00005537-200410000-00033. PMid:15454785.
http://dx.doi.org/10.1097/00005537-20041...
) and saliva production can be effectively reduced by botulinum toxin (Turk-Gonzales and Odderson, 2005Turk-Gonzales, M. and Odderson, I.R., 2005. Quantitative reduction of saliva production with botulinum toxin type B injection into the salivary glands. Neurorehabilitation and Neural Repair, vol. 19, no. 1, pp. 58-61. http://dx.doi.org/10.1177/1545968304273201. PMid:15673844.
http://dx.doi.org/10.1177/15459683042732...
). Its action is based on the inhibition of acetylcholine (ACh) release at the presynaptic level, by acting on the cholinergic nerve terminals (parasympathetic nerve terminals), causing local chemical blocking and the loss of neuronal activity in the target organ (Bushara, 1997Bushara, K.O., 1997. Sialorrhea in amyotrophic lateral sclerosis: a hypothesis of a new treatment – botulinum toxin A injections of the parotid glands. Medical Hypotheses, vol. 48, no. 4, pp. 337-339. http://dx.doi.org/10.1016/S0306-9877(97)90103-1. PMid:9160288.
http://dx.doi.org/10.1016/S0306-9877(97)...
). All serotypes of botulinum neurotoxin interfere with acetylcholine exocytosis, but act in different intracellular targets. Botulinum toxin type A has targeted the SNAP-25 protein, while the type B cleaves VAMP/synaptobrevin, protein comprising a complex called SNARE, responsible for the fusion of synaptic acetylcholine vesicles at the synaptic membrane (Schiavo et al., 2000Schiavo, G., Matteoli, M. and Montecucco, C., 2000. Neurotoxins affecting neuroexocytosis. Physiological Reviews, vol. 80, no. 2, pp. 717-766. http://dx.doi.org/10.1.1.326.2327. PMid:10747206.
http://dx.doi.org/10.1.1.326.2327...
; Aoki and Guyer, 2001Aoki, K.R. and Guyer, B., 2001. Botulinum toxin type A and other botulinum toxin serotypes: a comparative review of biochemical and pharmacological actions. European Journal of Neurology, vol. 8, suppl. 5, pp. 21-29. http://dx.doi.org/10.1046/j.1468-1331.2001.00035.x. PMid:11851731.
http://dx.doi.org/10.1046/j.1468-1331.20...
).

Salivary glands produce two distinct types of saliva, a more serous (secreted by acinar serous, it is a fluid secretion rich in electrolytes and enzymes, but containing low glycoprotein content as the saliva produced by the parotid glands) and a more mucosal (more viscous and has, beyond the components already described above, highly glycosylated proteins called mucin, as that produced by sublingual glands) (Nakamura et al., 2004Nakamura, T., Mastsui, M., Uchidak, K., Futatsugi, A., Kusakawa, S., Matsumoto, N., Nakamura, K., Manabe, T., Taketo, M.M. and Mikoshiba, K., 2004. M3 muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. The Journal of Physiology, vol. 558, no. 2, pp. 561-575. http://dx.doi.org/10.1113/jphysiol.2004.064626. PMid:15146045.
http://dx.doi.org/10.1113/jphysiol.2004....
; Proctor, 2006Proctor, G.B., 2006. Muscarinic receptors and salivary secretion. Journal of Applied Physiology, vol. 100, no. 4, pp. 1103-1104. http://dx.doi.org/10.1152/japplphysiol.01546.2005. PMid:16540706.
http://dx.doi.org/10.1152/japplphysiol.0...
; Sanioto et al., 2013Sanioto, S.M., Amorim, J.B.O., Mancini, M.N.G. and Baldo, M.V.C., 2013. Regulação neurovegetativa do aparelho estomatognático: fisiologia da secreção salivar. In: M.V.C. BALDO and M.C. REGATÃO. Fundamentos de odontologia: fisiologia oral. São Paulo: Santos. 192 p.). The fluid secretion rich in electrolytes (glandular fluid and ion secretion) is secreted mainly by stimulation of M3 muscarinic receptors for acetylcholine (Nakamura et al., 2004Nakamura, T., Mastsui, M., Uchidak, K., Futatsugi, A., Kusakawa, S., Matsumoto, N., Nakamura, K., Manabe, T., Taketo, M.M. and Mikoshiba, K., 2004. M3 muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. The Journal of Physiology, vol. 558, no. 2, pp. 561-575. http://dx.doi.org/10.1113/jphysiol.2004.064626. PMid:15146045.
http://dx.doi.org/10.1113/jphysiol.2004....
; Proctor, 2006Proctor, G.B., 2006. Muscarinic receptors and salivary secretion. Journal of Applied Physiology, vol. 100, no. 4, pp. 1103-1104. http://dx.doi.org/10.1152/japplphysiol.01546.2005. PMid:16540706.
http://dx.doi.org/10.1152/japplphysiol.0...
).

Even though there are many clinical trials in the literature showing the efficacy of the drug, experimental studies are scarce. There is the need for detailed studies on its safety and effect on glandular tissue. Thus, this study aims to review the existing literature of experimental studies in animals, verifying data on the action of botulinum toxin in the major salivary glands tissues and the efficiency and safety of this drug for sialorrhea treatment.

2 Material and Methods

An electronic search was performed in the Portal de Periódicos da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) which brings together highly relevant databases for this study (SciELO, HighWire, CrossRef, Scopus and Science Direct); no PubMed®, a search system for information on Health of the U.S. National Library of Medicine (NLM) which included the MEDLINE, OLDMEDLINE, Serials Database and NLM Catalog ; and the Biblioteca Virtual em Saúde (BVS), also known as Biblioteca Regional de Medicina (BIREME), which includes the databases LILACS, IBECS, MEDLINE, Cochrane Library, and SciELO. In addition, a manual search in reference lists was performed in the period from February 2013 to November 2015.

To perform this research, the descriptors “Botulinum Toxins” AND “Salivary Glands” AND “Drooling OR Sialorrhea OR Hypersalivation” were used, all included in the Medical Subject Headings (MeSH) and Descritores em Ciências da Saúde (DeCS). The research was conducted by two reviewers, checking the intersection of these descriptors and their correspondents in English. This research did not count on language restriction and a filter of time was not used. The additional papers were selected for inclusion and exclusion criteria.

Literature review articles, case reports, conference abstracts, non-experimental studies and experiments not performed in laboratory animals were excluded from this search. The selection had as inclusion criteria the application of intraglandular botulinum toxin type A or type B, or type A and type B associated, in salivary glands (parotid or submandibular) of animals, and which have had subsequent histopathological, immunohistochemical and/or ultrastructural analysis.

3 Results

A total of 216 peer-reviewed journals were found during the search in CAPES; in PubMed® the search resulted in 277 works, using a filter which limits the species in “other animals” excluding “humans”; and in BVS/BIREME a number of 106 articles were found. In the manual search, based on the list of references in the articles, a number of 184 articles were obtained, totalizing 783 scientific articles. In the first analysis, 82 articles were discarded by being repeated and 406 by the title. The remaining 295 articles have gone through a critical analysis of the evaluators, and after application of exclusion and inclusion criteria, 14 articles were selected and used in this work.

All articles were evaluated independently by three reviewers, resulting in the elaboration of Table 1. Selected articles were organized by author and the year of publication; type and dose of applied botulinum toxin (A or B); animal and gland used in the study; type of processing methods used to evaluate drug action; and main results.

Table 1
Studies on the action of botulinum toxin in the salivary gland of rats, identified by author, year, type and dose of toxin, salivary gland and study methodology used and main results.

4 Discussion

There are few studies in literature reporting the action of botulinum toxin in parotid or submandibular salivary glands tissues. However, Emmelin (1961)Emmelin, N., 1961. Supersensitivity of salivary gland caused by botulinum toxin. The Journal of Physiology, vol. 156, no. 1, pp. 121-127. http://dx.doi.org/10.1113/jphysiol.1961.sp006662. PMid:13726643.
http://dx.doi.org/10.1113/jphysiol.1961....
investigated the effect of botulinum toxin in parotid and submandibular glands of cats, in which noticed a decrease in acetylcholine release and an increase in sensitivity of the glandular tissue by other stimulating agents of salivary secretion.

The use of the toxin in sialorrhea treatment was based on a publication in 1923, when Dickson and Shevsky observed that the tympanic nerve, which induces salivation, was blocked in cats infected by Clostridium botulinum (Savarese et al., 2004Savarese, R., Diamond, M., Elovic, E. and Millis, R.S., 2004. Intraparotid injection of botulinum toxin A as a treatment to control sialorrhea in children with cerebral palsy. American Journal of Physical Medicine & Rehabilitation, vol. 83, no. 4, pp. 304-311, quiz 312-314, 336. http://dx.doi.org/10.1097/01.PHM.0000104680.28335.B9. PMid:15024333.
http://dx.doi.org/10.1097/01.PHM.0000104...
; Ellies et al., 1999Ellies, M., Laskawi, R., Götz, W., Arglebe, C. and Tormählen, G., 1999. Immunohitochemical and morphometric investigations of the influence of botulinum toxin on the submandibular gland of the rat. European Archives of Oto-Rhino-Laryngology, vol. 256, no. 3, pp. 148-152. http://dx.doi.org/10.1007/s004050050129. PMid:10234485.
http://dx.doi.org/10.1007/s004050050129...
). As a therapeutic resource, the toxin was released to patient administration just in 1989, when the FDA (Food and Drugs Administration) classified it as safe and effective drug for the treatment of movement disorders. In 1990, the consent of the National Institutes of Health included botulinum toxin type A in the list of safe and efficient medications (Sposito, 2004Sposito, M.M.M., 2004. Toxina botulínica tipo A – propriedades farmacológicas e uso clínico. Acta Fisiátrica, suppl. 01, pp. S7-S44.).

There are few studies involving histological processing with histometric and histopathological data. Currently, experimental studies of the action of botulinum toxin in salivary glands follow a pattern, in rats, and the majority refers to immunohistochemical studies. Immunohistochemical investigations were made mainly for the enzyme acetylcholinesterase (AChE) and neuronal nitric oxide synthase (nNOS) in submandibular and/or parotid glands of female rats, such as publications of Ellies et al. (1999Ellies, M., Laskawi, R., Götz, W., Arglebe, C. and Tormählen, G., 1999. Immunohitochemical and morphometric investigations of the influence of botulinum toxin on the submandibular gland of the rat. European Archives of Oto-Rhino-Laryngology, vol. 256, no. 3, pp. 148-152. http://dx.doi.org/10.1007/s004050050129. PMid:10234485.
http://dx.doi.org/10.1007/s004050050129...
, 2000Ellies, M., Laskawi, R., Tormählen, G. and Götz, W., 2000. The effect of local injection of botulinum toxin A on the parotid gland of the rat: an immunohistochemical and morphometric study. Journal of Oral and Maxillofacial Surgery, vol. 58, no. 11, pp. 1251-1256. http://dx.doi.org/10.1053/joms.2000.16625. PMid:11078136.
http://dx.doi.org/10.1053/joms.2000.1662...
, 2003Ellies, M., Laskawi, R., Schütz, S. and Quondamatteo, F., 2003. Immunohistochemical evidence of nNOS and changes after intraglandular application of botulinum toxin A in cephalic salivary glands of adult rats. Journal for Otorhinolaryngology. Head & Neck Surgery, vol. 65, no. 3, pp. 140-143. http://dx.doi.org/10.1159/000072251. PMid:12925814.
http://dx.doi.org/10.1159/000072251...
, 2006aEllies, M., Schütz, S., Quondamatteo, F. and Laskawi, R., 2006a. The effect of local injection of botulinum toxin A on the immunoreactivity of nNOS in the rat submandibular gland: An immunohistochemical study. International Journal of Pediatric Otorhinolaryngology, vol. 70, no. 1, pp. 59-63. http://dx.doi.org/10.1016/j.ijporl.2005.05.015. PMid:16002154.
http://dx.doi.org/10.1016/j.ijporl.2005....
, bEllies, M., Schütz, S., Quondamatteo, F. and Laskawi, R., 2006b. Immunohistochemical Investigations of the Influence of Botulinum Toxin A on the Immunoreactivity of nNOS in the Parotid Gland of the Rat. Journal of Oral and Maxillofacial Surgery, vol. 64, no. 3, pp. 397-401. http://dx.doi.org/10.1016/j.joms.2005.11.029. PMid:16487800.
http://dx.doi.org/10.1016/j.joms.2005.11...
) and Ellies (2003)Ellies, M., 2003. Tierexperimentelle und klinische untersuchungen zur sekretionshemmung der kopfspeicheldrüsen durch botulinum Toxin A. Laryngo- Rhino- Otologie, vol. 82, no. 10, pp. 713-714. http://dx.doi.org/10.1055/s-2003-43237. PMid:14593570.
http://dx.doi.org/10.1055/s-2003-43237...
.

The choice of acetylcholinesterase is justified by the fact that intraglandular treatment with botulinum toxin is a pharmacological “denervation” of salivary glands, which causes inhibition of acetylcholine release (ACh) in the neuroglandular junction (chemical parasympathectomy) and produces a reduction in saliva flow, since botulinum toxin selectively inhibit cholinergic componentes (Intiso, 2012Intiso, D., 2012. Therapeutic Use of Botulinum Toxin in Neurorehabilitation. Journal of Toxicology, vol. 2012, pp. 1-12. http://dx.doi.org/10.1155/2012/802893. PMid:21941544.
http://dx.doi.org/10.1155/2012/802893...
; Teymoortash et al., 2007Teymoortash, A., Sommer, F., Mandic, R., Schulz, S., Bette, M., Aumüller, G. and Werner, J.A., 2007. Intraglandular application of botulinum toxin leads to structural and functional changes in rat acinar cells. British Journal of Pharmacology, vol. 152, no. 1, pp. 161-167. http://dx.doi.org/10.1038/sj.bjp.0707375. PMid:17618309.
http://dx.doi.org/10.1038/sj.bjp.0707375...
). The AChE activity depends on the concentration and availability of its substrate, acetylcholine, and they both vary according to the degree of cholinergic innervation of exocrine glands (Ellies et al., 1999Ellies, M., Laskawi, R., Götz, W., Arglebe, C. and Tormählen, G., 1999. Immunohitochemical and morphometric investigations of the influence of botulinum toxin on the submandibular gland of the rat. European Archives of Oto-Rhino-Laryngology, vol. 256, no. 3, pp. 148-152. http://dx.doi.org/10.1007/s004050050129. PMid:10234485.
http://dx.doi.org/10.1007/s004050050129...
).

Nitric oxide (NO) is a small simple molecule, intercellular messenger in higher mammals, an important neurotransmitter, with potentiating capacity, endocrine, autocrine and paracrine actions (Flora-Filho and Zilberstein, 2000Flora-Filho, R. and Zilberstein, B., 2000. Óxido nítrico: o simples mensageiro percorrendo a complexidade. Metabolismo, síntese e funções. Revista da Associação Médica Brasileira, vol. 46, no. 3, pp. 265-271. http://dx.doi.org/10.1590/S0104-42302000000300012. PMid:11070518.
http://dx.doi.org/10.1590/S0104-42302000...
). Nitric oxide acts as a possible vascular neuromodulator in the regulation of specific secretory processes in the upper aerodigestive tract (Ellies et al., 2006aEllies, M., Schütz, S., Quondamatteo, F. and Laskawi, R., 2006a. The effect of local injection of botulinum toxin A on the immunoreactivity of nNOS in the rat submandibular gland: An immunohistochemical study. International Journal of Pediatric Otorhinolaryngology, vol. 70, no. 1, pp. 59-63. http://dx.doi.org/10.1016/j.ijporl.2005.05.015. PMid:16002154.
http://dx.doi.org/10.1016/j.ijporl.2005....
). The enzyme neuronal nitric oxide synthase is an important marker of nerve terminals in salivary glands (Chiba and Tanaka, 1998Chiba, T. and Tanaka, K., 1998. A target specific pathway from nitric oxide synthase immunoreactive preganglionic sympathetic to superior cervical ganglion neurons innervating the submandibular salivary gland. Journal of the Autonomic Nervous System, vol. 71, no. 2-3, pp. 139-147. http://dx.doi.org/10.1016/S0165-1838(98)00068-X. PMid:9760050.
http://dx.doi.org/10.1016/S0165-1838(98)...
; Takai et al., 1999Takai, N., Uchihashi, K., Higuchi, K., Yoshida, Y. and Yamaguchi, M.M., 1999. Localization of neuronal-constitutive nitric oxide synthase and secretory regulation by nitric oxide in the rat submandibular and sublingual glands. Archives of Oral Biology, vol. 44, no. 9, pp. 745-750. http://dx.doi.org/10.1016/S0003-9969(99)00064-3. PMid:10471158.
http://dx.doi.org/10.1016/S0003-9969(99)...
). Thus, besides acetylcholine transmitters, other neurotransmitters, such as NO neuromodulator may also be involved in regulating the function of the salivary gland (Ellies et al., 2003Ellies, M., Laskawi, R., Schütz, S. and Quondamatteo, F., 2003. Immunohistochemical evidence of nNOS and changes after intraglandular application of botulinum toxin A in cephalic salivary glands of adult rats. Journal for Otorhinolaryngology. Head & Neck Surgery, vol. 65, no. 3, pp. 140-143. http://dx.doi.org/10.1159/000072251. PMid:12925814.
http://dx.doi.org/10.1159/000072251...
, 2006aEllies, M., Schütz, S., Quondamatteo, F. and Laskawi, R., 2006a. The effect of local injection of botulinum toxin A on the immunoreactivity of nNOS in the rat submandibular gland: An immunohistochemical study. International Journal of Pediatric Otorhinolaryngology, vol. 70, no. 1, pp. 59-63. http://dx.doi.org/10.1016/j.ijporl.2005.05.015. PMid:16002154.
http://dx.doi.org/10.1016/j.ijporl.2005....
, bEllies, M., Schütz, S., Quondamatteo, F. and Laskawi, R., 2006b. Immunohistochemical Investigations of the Influence of Botulinum Toxin A on the Immunoreactivity of nNOS in the Parotid Gland of the Rat. Journal of Oral and Maxillofacial Surgery, vol. 64, no. 3, pp. 397-401. http://dx.doi.org/10.1016/j.joms.2005.11.029. PMid:16487800.
http://dx.doi.org/10.1016/j.joms.2005.11...
).

Ellies et al. (1999Ellies, M., Laskawi, R., Götz, W., Arglebe, C. and Tormählen, G., 1999. Immunohitochemical and morphometric investigations of the influence of botulinum toxin on the submandibular gland of the rat. European Archives of Oto-Rhino-Laryngology, vol. 256, no. 3, pp. 148-152. http://dx.doi.org/10.1007/s004050050129. PMid:10234485.
http://dx.doi.org/10.1007/s004050050129...
, 2000Ellies, M., Laskawi, R., Tormählen, G. and Götz, W., 2000. The effect of local injection of botulinum toxin A on the parotid gland of the rat: an immunohistochemical and morphometric study. Journal of Oral and Maxillofacial Surgery, vol. 58, no. 11, pp. 1251-1256. http://dx.doi.org/10.1053/joms.2000.16625. PMid:11078136.
http://dx.doi.org/10.1053/joms.2000.1662...
, 2003Ellies, M., Laskawi, R., Schütz, S. and Quondamatteo, F., 2003. Immunohistochemical evidence of nNOS and changes after intraglandular application of botulinum toxin A in cephalic salivary glands of adult rats. Journal for Otorhinolaryngology. Head & Neck Surgery, vol. 65, no. 3, pp. 140-143. http://dx.doi.org/10.1159/000072251. PMid:12925814.
http://dx.doi.org/10.1159/000072251...
, 2006aEllies, M., Schütz, S., Quondamatteo, F. and Laskawi, R., 2006a. The effect of local injection of botulinum toxin A on the immunoreactivity of nNOS in the rat submandibular gland: An immunohistochemical study. International Journal of Pediatric Otorhinolaryngology, vol. 70, no. 1, pp. 59-63. http://dx.doi.org/10.1016/j.ijporl.2005.05.015. PMid:16002154.
http://dx.doi.org/10.1016/j.ijporl.2005....
, bEllies, M., Schütz, S., Quondamatteo, F. and Laskawi, R., 2006b. Immunohistochemical Investigations of the Influence of Botulinum Toxin A on the Immunoreactivity of nNOS in the Parotid Gland of the Rat. Journal of Oral and Maxillofacial Surgery, vol. 64, no. 3, pp. 397-401. http://dx.doi.org/10.1016/j.joms.2005.11.029. PMid:16487800.
http://dx.doi.org/10.1016/j.joms.2005.11...
) and Ellies (2003)Ellies, M., 2003. Tierexperimentelle und klinische untersuchungen zur sekretionshemmung der kopfspeicheldrüsen durch botulinum Toxin A. Laryngo- Rhino- Otologie, vol. 82, no. 10, pp. 713-714. http://dx.doi.org/10.1055/s-2003-43237. PMid:14593570.
http://dx.doi.org/10.1055/s-2003-43237...
, tested the immunoreactivity for acetylcholinesterase and neuronal nitric oxide synthase in parotid and submandibular glands of female rats and demonstrated weak immunoreactivity for these enzymes in the groups treated with botulinum toxin, becoming proportional with the increase of the time exposure to the toxin.

According to histological studies in submandibular glands of female rats made by Ellies et al. (1999)Ellies, M., Laskawi, R., Götz, W., Arglebe, C. and Tormählen, G., 1999. Immunohitochemical and morphometric investigations of the influence of botulinum toxin on the submandibular gland of the rat. European Archives of Oto-Rhino-Laryngology, vol. 256, no. 3, pp. 148-152. http://dx.doi.org/10.1007/s004050050129. PMid:10234485.
http://dx.doi.org/10.1007/s004050050129...
, there is no clear difference of serous acini of glands injected with the toxin and saline in their histometric measurements, although both had a slightly higher nuclear counting than in the acini control group. They did not find apoptosis and morphometric measurements revealed no acinar volume.

Parotid glands of rats on the 7th day after drug application showed nuclear number a little lower than in the control group. Histometric measurements found a greater volume in the acinar cells, especially on day seven, resulting in a smaller number of nuclei per cross-sectional area. This finding has been described as a result of parasympathectomy and can refer to the retention of the cell body waste products. Important side effects, such as apoptosis due to a toxic reaction, was not observed (Ellies et al., 2000Ellies, M., Laskawi, R., Tormählen, G. and Götz, W., 2000. The effect of local injection of botulinum toxin A on the parotid gland of the rat: an immunohistochemical and morphometric study. Journal of Oral and Maxillofacial Surgery, vol. 58, no. 11, pp. 1251-1256. http://dx.doi.org/10.1053/joms.2000.16625. PMid:11078136.
http://dx.doi.org/10.1053/joms.2000.1662...
). Ellies (2003)Ellies, M., 2003. Tierexperimentelle und klinische untersuchungen zur sekretionshemmung der kopfspeicheldrüsen durch botulinum Toxin A. Laryngo- Rhino- Otologie, vol. 82, no. 10, pp. 713-714. http://dx.doi.org/10.1055/s-2003-43237. PMid:14593570.
http://dx.doi.org/10.1055/s-2003-43237...
, says that after injecting the toxin into the parotid glands of rats, the integrity of glandular parenchyma remained unchanged, with just a slight increase in cell volume explained by the temporary retention of excretory material.

Yuan et al. (2004)Yuan, F., Hou, Y.-P. and Wen, W.-D., 2004. Immunohistochemical and morphological investigations of the influence of botulinum toxin type A on the submandibular gland of the rats. Lin chuang er bi yan hou ke za zhi = Journal of Clinical Otorhinolaryngology, vol. 18, no. 9, p. 558-560. PMID: 15696959., in addition to conventional histological processing, the authors also performed immunohistochemistry for substance P, a bioactive peptide that modulates the secretion on salivary glands. They concluded in their work that there was no cellular infiltration, no inflammatory process and nor necrosis around acinar cells and ducts of submandibular glands of rats, although it temporarily induces atrophy of acinar and ductal cells. They also observed decreased immunoreactivity to substance P.

Teymoortash et al. (2007)Teymoortash, A., Sommer, F., Mandic, R., Schulz, S., Bette, M., Aumüller, G. and Werner, J.A., 2007. Intraglandular application of botulinum toxin leads to structural and functional changes in rat acinar cells. British Journal of Pharmacology, vol. 152, no. 1, pp. 161-167. http://dx.doi.org/10.1038/sj.bjp.0707375. PMid:17618309.
http://dx.doi.org/10.1038/sj.bjp.0707375...
, treated submandibular glands of rats with botulinum toxin type A, B and A/B, performed conventional histological studies, immunohistochemical and ultrastructural analysis, and tested the immunoreactivity for amylase. They showed a reduction in weight of the submandibular gland. Structural changes were observed in all treated groups. More significant changes were observed in glands removed from animals that received simultaneous administration of botulinum toxin type A and B, showing the most densely compressed acini, with slightly elongated shape and the basophilic basal area containing the most pronounced core, in which the morphometric analysis indicated that the area of acinar cells were lower in rats treated with botulinum toxin than in controls with an increase in intersticial tissue, and ultrastructural changes were also observed, such as fewer secretory material, increased rough endoplasmic reticulum, change in size of the secretory vacuoles with occurrence of coalescenses. They also showed that the preparations for immunoreactivity of salivary amylase were strongly stained in the control group, decreasing in the treated groups.

Thus, it is clear that the results found by Teymoortash et al. (2007)Teymoortash, A., Sommer, F., Mandic, R., Schulz, S., Bette, M., Aumüller, G. and Werner, J.A., 2007. Intraglandular application of botulinum toxin leads to structural and functional changes in rat acinar cells. British Journal of Pharmacology, vol. 152, no. 1, pp. 161-167. http://dx.doi.org/10.1038/sj.bjp.0707375. PMid:17618309.
http://dx.doi.org/10.1038/sj.bjp.0707375...
, are different from those found by Ellies et al. (1999)Ellies, M., Laskawi, R., Götz, W., Arglebe, C. and Tormählen, G., 1999. Immunohitochemical and morphometric investigations of the influence of botulinum toxin on the submandibular gland of the rat. European Archives of Oto-Rhino-Laryngology, vol. 256, no. 3, pp. 148-152. http://dx.doi.org/10.1007/s004050050129. PMid:10234485.
http://dx.doi.org/10.1007/s004050050129...
, since these last authors claim to be no clear difference between the serous acini of treated and untreated groups. Teymoortash et al. (2007)Teymoortash, A., Sommer, F., Mandic, R., Schulz, S., Bette, M., Aumüller, G. and Werner, J.A., 2007. Intraglandular application of botulinum toxin leads to structural and functional changes in rat acinar cells. British Journal of Pharmacology, vol. 152, no. 1, pp. 161-167. http://dx.doi.org/10.1038/sj.bjp.0707375. PMid:17618309.
http://dx.doi.org/10.1038/sj.bjp.0707375...
, affirm that in the first study performed by Ellies et al. (1999)Ellies, M., Laskawi, R., Götz, W., Arglebe, C. and Tormählen, G., 1999. Immunohitochemical and morphometric investigations of the influence of botulinum toxin on the submandibular gland of the rat. European Archives of Oto-Rhino-Laryngology, vol. 256, no. 3, pp. 148-152. http://dx.doi.org/10.1007/s004050050129. PMid:10234485.
http://dx.doi.org/10.1007/s004050050129...
, morphometric evaluations were limited to the description of serous acinar cell nuclei and did not use a standard method of fixation to minimize differences in shrinkage of the tissue samples.

Coskun et al. (2007)Coskun, B.U., Savk, H., Cicek, E.D., Basak, T., Basak, M. and Dadas, B., 2007. Histopathological and radiological investigations of the influence of botulinum toxin on the submandibular gland of the rat. European Archives of Oto-Rhino-Laryngology, vol. 264, no. 7, pp. 783-787. http://dx.doi.org/10.1007/s00405-007-0254-8. PMid:17285331.
http://dx.doi.org/10.1007/s00405-007-025...
, in addition to histological processing, used radiological studies before and after application of the toxin in submandibular gland of rats, observed reduction in size of the glands, but with no permanent histological changes in the cells. There was no change in the vascularization. It is believed that changes in the size of the submandibular gland may have occurred as a result of functional effect due to a decrease in secretion. Furthermore, the experiments showed lymphocytic infiltration and apoptosis was not observed. Gerlinger et al. (2007)Gerlinger, I., Szalai, G., Hollódy, K. and Németh, A., 2007. Ultrasound-guided, intraglandular injection of botulinum toxin A in children suffering from excessive salivation. The Journal of Laryngology and Otology, vol. 121, no. 10, pp. 947-951. http://dx.doi.org/10.1017/S0022215107006949. PMid:17391573.
http://dx.doi.org/10.1017/S0022215107006...
, found no remarkable histological changes in submandibular glands of rabbits, however, the authors only analyzed the gland after two months of drug injection, suggesting the completion of the same action on the glandular tissue.

Wen et al. (2009)Wen, W.-D., Yuan, F. and Hou, Y.P., 2009. The mechanism of inhibitory effect on parotid gland secretion with local injection of botulinum toxin type A in the rat. Zhonghua Kou Qiang Yi Xue Za Zhi, vol. 44, no. 1, pp. 38-40. http://dx.doi.org/10.3760/cama.j.issn.1002-0098.2009.01.011. PMid:19489258.
http://dx.doi.org/10.3760/cama.j.issn.10...
, also performed immunohistochemistry for vasoactive intestinal polypeptide (VIP) in parotid gland of rats and showed a decrease in immunoreactivity to VIP, which would act as a possible modulator of secretion in parotid glands.

Thus, these authors Yuan, Hou and Wen (2004)Yuan, F., Hou, Y.-P. and Wen, W.-D., 2004. Immunohistochemical and morphological investigations of the influence of botulinum toxin type A on the submandibular gland of the rats. Lin chuang er bi yan hou ke za zhi = Journal of Clinical Otorhinolaryngology, vol. 18, no. 9, p. 558-560. PMID: 15696959. and Coskun et al. (2007)Coskun, B.U., Savk, H., Cicek, E.D., Basak, T., Basak, M. and Dadas, B., 2007. Histopathological and radiological investigations of the influence of botulinum toxin on the submandibular gland of the rat. European Archives of Oto-Rhino-Laryngology, vol. 264, no. 7, pp. 783-787. http://dx.doi.org/10.1007/s00405-007-0254-8. PMid:17285331.
http://dx.doi.org/10.1007/s00405-007-025...
, agree in saying that botulinum toxin type A temporarily induces atrophy of acinar cells. However, disagree on the point regarding on whether or not there is leukocyte infiltration. Wen et al. (2009)Wen, W.-D., Yuan, F. and Hou, Y.P., 2009. The mechanism of inhibitory effect on parotid gland secretion with local injection of botulinum toxin type A in the rat. Zhonghua Kou Qiang Yi Xue Za Zhi, vol. 44, no. 1, pp. 38-40. http://dx.doi.org/10.3760/cama.j.issn.1002-0098.2009.01.011. PMid:19489258.
http://dx.doi.org/10.3760/cama.j.issn.10...
, using botulinum toxin type A in parotid glands of rats, reached the same conclusions, claiming to exist a temporary cell atrophy, disagreeing with the findings of Ellies et al. (2000)Ellies, M., Laskawi, R., Tormählen, G. and Götz, W., 2000. The effect of local injection of botulinum toxin A on the parotid gland of the rat: an immunohistochemical and morphometric study. Journal of Oral and Maxillofacial Surgery, vol. 58, no. 11, pp. 1251-1256. http://dx.doi.org/10.1053/joms.2000.16625. PMid:11078136.
http://dx.doi.org/10.1053/joms.2000.1662...
, who also used the parotid gland and observed an increase in acinar volume.

Shan et al. (2013)Shan, X.-F., Xu, H., Cai, Z.-G., Wu, L.-L. and Yu, G.-Y., 2013. Botulinum toxin A inhibits salivary secretion of rabbit submandibular gland. International Journal of Oral Science, vol. 5, no. 4, pp. 217-223. http://dx.doi.org/10.1038/ijos.2013.82. PMid:24158141.
http://dx.doi.org/10.1038/ijos.2013.82...
, injected 10 U and 5 U of botulinum toxin type A in submandibular glands of rabbits and showed a reduction in size of acinar cells, fibrosis, ultrastructural changes in the treated group with coalescence of secretory granules, decreased salivary flow, apoptosis in acinar and ductal cells in the groups treated with the toxin. The morphology of the gland returned to normality as the botulinum toxin was losing its effect. Younis et al. (2013)Younis, R.E., Abou Elkhier, M.T., Mourad, M.I. and Elnahas, W., 2013. The ultrastructural changes of the parotid gland of rats after intraglandular injection of botulinum toxin A. Annals of Oral & Maxillofacial Surgery, vol. 1, no. 4, pp. 38. http://dx.doi.org/10.13172/2052-7837-1-4-1095.
http://dx.doi.org/10.13172/2052-7837-1-4...
, which applied 2 U of botulinum toxin type A in the parotid gland of rats and observed a reduction in the size of the acini and wide variations in secretory granules with extensive and coarse intracellular vacuole, increased endoplasmic reticulum and increased number of degenerate mitochondria and interlobular wider spaces.

The ultra-structural findings of Teymoortash et al. (2007)Teymoortash, A., Sommer, F., Mandic, R., Schulz, S., Bette, M., Aumüller, G. and Werner, J.A., 2007. Intraglandular application of botulinum toxin leads to structural and functional changes in rat acinar cells. British Journal of Pharmacology, vol. 152, no. 1, pp. 161-167. http://dx.doi.org/10.1038/sj.bjp.0707375. PMid:17618309.
http://dx.doi.org/10.1038/sj.bjp.0707375...
, Shan et al. (2013)Shan, X.-F., Xu, H., Cai, Z.-G., Wu, L.-L. and Yu, G.-Y., 2013. Botulinum toxin A inhibits salivary secretion of rabbit submandibular gland. International Journal of Oral Science, vol. 5, no. 4, pp. 217-223. http://dx.doi.org/10.1038/ijos.2013.82. PMid:24158141.
http://dx.doi.org/10.1038/ijos.2013.82...
and Younis et al. (2013)Younis, R.E., Abou Elkhier, M.T., Mourad, M.I. and Elnahas, W., 2013. The ultrastructural changes of the parotid gland of rats after intraglandular injection of botulinum toxin A. Annals of Oral & Maxillofacial Surgery, vol. 1, no. 4, pp. 38. http://dx.doi.org/10.13172/2052-7837-1-4-1095.
http://dx.doi.org/10.13172/2052-7837-1-4...
, were similar regarding the changes in secretory granules. Teymoortash et al. (2007)Teymoortash, A., Sommer, F., Mandic, R., Schulz, S., Bette, M., Aumüller, G. and Werner, J.A., 2007. Intraglandular application of botulinum toxin leads to structural and functional changes in rat acinar cells. British Journal of Pharmacology, vol. 152, no. 1, pp. 161-167. http://dx.doi.org/10.1038/sj.bjp.0707375. PMid:17618309.
http://dx.doi.org/10.1038/sj.bjp.0707375...
and Younis et al. (2013)Younis, R.E., Abou Elkhier, M.T., Mourad, M.I. and Elnahas, W., 2013. The ultrastructural changes of the parotid gland of rats after intraglandular injection of botulinum toxin A. Annals of Oral & Maxillofacial Surgery, vol. 1, no. 4, pp. 38. http://dx.doi.org/10.13172/2052-7837-1-4-1095.
http://dx.doi.org/10.13172/2052-7837-1-4...
, also agree with the changes of the rough endoplasmic reticulum. The increase in interstitial tissue described by Teymoortash et al. (2007)Teymoortash, A., Sommer, F., Mandic, R., Schulz, S., Bette, M., Aumüller, G. and Werner, J.A., 2007. Intraglandular application of botulinum toxin leads to structural and functional changes in rat acinar cells. British Journal of Pharmacology, vol. 152, no. 1, pp. 161-167. http://dx.doi.org/10.1038/sj.bjp.0707375. PMid:17618309.
http://dx.doi.org/10.1038/sj.bjp.0707375...
, the interlobular space observed by and Younis et al. (2013)Younis, R.E., Abou Elkhier, M.T., Mourad, M.I. and Elnahas, W., 2013. The ultrastructural changes of the parotid gland of rats after intraglandular injection of botulinum toxin A. Annals of Oral & Maxillofacial Surgery, vol. 1, no. 4, pp. 38. http://dx.doi.org/10.13172/2052-7837-1-4-1095.
http://dx.doi.org/10.13172/2052-7837-1-4...
, and stromal fibrosis reported by Shan et al. (2013)Shan, X.-F., Xu, H., Cai, Z.-G., Wu, L.-L. and Yu, G.-Y., 2013. Botulinum toxin A inhibits salivary secretion of rabbit submandibular gland. International Journal of Oral Science, vol. 5, no. 4, pp. 217-223. http://dx.doi.org/10.1038/ijos.2013.82. PMid:24158141.
http://dx.doi.org/10.1038/ijos.2013.82...
, can be explained by the decrease of acini, and the resulting reduction in this space volume occupied by the parenchymal stromal tissue, or by the tissue reaction that occurs by application of the toxin in the gland. However, no author suggests this mechanism and further studies should occur to clarify such events.

Moreover, Shan et al. (2013)Shan, X.-F., Xu, H., Cai, Z.-G., Wu, L.-L. and Yu, G.-Y., 2013. Botulinum toxin A inhibits salivary secretion of rabbit submandibular gland. International Journal of Oral Science, vol. 5, no. 4, pp. 217-223. http://dx.doi.org/10.1038/ijos.2013.82. PMid:24158141.
http://dx.doi.org/10.1038/ijos.2013.82...
, applying botulinum toxin type A in submandibular glands of rabbits and performing immunofluorescence to aquaporin 5 (AQP5) and PCR for M3, suggested that the molecular mechanism of action of botulinum toxin type A is achieved by inhibiting the muscarinic receptor (M3), blocking the expression of AQP5 protein (an aquoporine) involved in secretion of water. Xu et al. (2015)Xu, H., Shan, X.F., Cong, X., Yang, N.Y., Wu, L.L., Yu, G.Y., Zhang, Y. and Cai, Z.G., 2015. Pre- and post-synaptic effects of botulinum toxin A on submandibular glands. Journal of Dental Research, vol. 94, no. 10, pp. 1454-1462. http://dx.doi.org/10.1177/0022034515590087.
http://dx.doi.org/10.1177/00220345155900...
, performed immunofluorescence for AQP5 in the submandibular glands of mice and showed decreased AQP5 immunofluorescence in the apical portion of the acinar cells of the groups treated with the toxin, but being reversed over time. These authors also conducted culture of acinar cells of submandibular glands. In these cultured and treated with the toxin cells, AQP5 appeared present in the cytoplasm rather than being located on its apical plasma membrane, indicating a postsynaptic effect of the drug.

The increase in cytosolic intracellular free calcium caused by acetylcholine stimulates the transport of aquaporin (AQP) to the apical plasma membrane and the rapid movement of water. In salivary glands of rats was identified aquaporin 5 (Cheidde and Schor, 1999Cheidde, L. and Schor, N., 1999. Revisão: transportadores de água. Revista da Associação Médica Brasileira, vol. 4, no. 1, pp. 71-78. http://dx.doi.org/10.1590/S0104-42301999000100013. PMid:10436597.
http://dx.doi.org/10.1590/S0104-42301999...
; Melvin et al., 2005Melvin, J.E., Yule, D., Shuttleworth, T. and Begenisich, T., 2005. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annual Review of Physiology, vol. 67, no. 1, pp. 445-469. http://dx.doi.org/10.1146/annurev.physiol.67.041703.084745. PMid:15709965.
http://dx.doi.org/10.1146/annurev.physio...
; Catalan et al., 2009Catalán, M.A., Nakamoto, T. and Melvin, J.E., 2009. The salivary gland fluid secretion mechanism. The Journal of Medical Investigation, vol. 56, suppl., pp. 192-196. http://dx.doi.org/10.2152/jmi.56.192. PMid:20224180.
http://dx.doi.org/10.2152/jmi.56.192...
).

Xu et al. (2015)Xu, H., Shan, X.F., Cong, X., Yang, N.Y., Wu, L.L., Yu, G.Y., Zhang, Y. and Cai, Z.G., 2015. Pre- and post-synaptic effects of botulinum toxin A on submandibular glands. Journal of Dental Research, vol. 94, no. 10, pp. 1454-1462. http://dx.doi.org/10.1177/0022034515590087.
http://dx.doi.org/10.1177/00220345155900...
also verified clinically the salivary flow of animals and concluded that salivary flow is reduced depending on the dose applied, agreeing with Shan et al. (2013)Shan, X.-F., Xu, H., Cai, Z.-G., Wu, L.-L. and Yu, G.-Y., 2013. Botulinum toxin A inhibits salivary secretion of rabbit submandibular gland. International Journal of Oral Science, vol. 5, no. 4, pp. 217-223. http://dx.doi.org/10.1038/ijos.2013.82. PMid:24158141.
http://dx.doi.org/10.1038/ijos.2013.82...
. Regarding the immunohistochemistry for SNAP-25, Xu et al. (2015)Xu, H., Shan, X.F., Cong, X., Yang, N.Y., Wu, L.L., Yu, G.Y., Zhang, Y. and Cai, Z.G., 2015. Pre- and post-synaptic effects of botulinum toxin A on submandibular glands. Journal of Dental Research, vol. 94, no. 10, pp. 1454-1462. http://dx.doi.org/10.1177/0022034515590087.
http://dx.doi.org/10.1177/00220345155900...
observed reduced immunoreactivity and proteolysis of SNAP-25 protein in the treated groups and that it is recovered over time. These results support what is described in the literature about the mechanism of action of botulinum toxin type A, which has as something with SNAP-25 anchoring protein, and that after a certain period, the toxin begins to lose its effect and there is the regeneration of SNAP-25 proteins. According Pérez-Legaspi et al. (2015)Pérez-Legaspi, L.A., Rico-Martínez, R. and Quintanar, J.L., 2015. Reduced expression of exocytotic proteins caused by anti-cholinesterase pesticides in Brachionus calyciflorus (Rotifera: Monogononta). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 75, no. 3, pp. 759-765. http://dx.doi.org/10.1590/1519-6984.01614. PMid:26465735.
http://dx.doi.org/10.1590/1519-6984.0161...
, SNAP-25 protein plays a crucial role in neuroexocytosis and transmitting of nerve impulses.

5 Conclusion

Based on the findings in literature, it is possible to conclude that there are few publications of experimental studies to determine the mechanism of action of botulinum toxin inside the salivary gland tissue. Despite the immunohistochemical findings among authors are similar, with weaker immunoreactivity in the glands treated with botulinum toxin, histometric data are different and there are methodological questions, requiring more detailed studies to answer possible questions about the effectiveness and safety of botulinum toxin in salivary gland and to explain the mechanisms behind the observed changes in transmission electron microscopy.

A better understanding of morphological, histological and immunohistochemical mechanisms of salivary glands under the influence of botulinum toxin is directly related to the understanding of professionals who could use it as a resource in the treatment of sialorrhea. Therefore, it is necessary to encourage new experimental and clinical studies about the effect of botulinum toxin, in order to the make use of this substance more frequent and accessible, decreasing the use of more invasive techniques.

Acknowledgements

The authors thank CAPES/CNPq for financial support.

References

  • Alter, K.E., 2010. High-frequency ultrasound guidance for neurotoxin injections. Physical Medicine and Rehabilitation Clinics of North America, vol. 21, no. 3, pp. 607-630. http://dx.doi.org/10.1016/j.pmr.2010.05.001 PMid:20797552.
    » http://dx.doi.org/10.1016/j.pmr.2010.05.001
  • Aoki, K.R. and Guyer, B., 2001. Botulinum toxin type A and other botulinum toxin serotypes: a comparative review of biochemical and pharmacological actions. European Journal of Neurology, vol. 8, suppl. 5, pp. 21-29. http://dx.doi.org/10.1046/j.1468-1331.2001.00035.x PMid:11851731.
    » http://dx.doi.org/10.1046/j.1468-1331.2001.00035.x
  • Augusto, A.G. and Perez, A.C., 2006. Drooling. Investigation over the best therapeutic approach. Acta ORL/Técnicas em Otorrinolaringologia, vol. 24, no. 1, p. 1-6.
  • Bavikatte, G., Sit, P.L. and Hassoon, A., 2012. Management of drooling of saliva. British Journal of Medical Practioners, vol. 5, no. 1, pp. 502-507.
  • Bhayani, M.K. and Suskind, D.L., 2008. The use of botulinum toxin in patients with sialorrhea. Operative Techniques in Otolaryngology, vol. 19, no. 4, pp. 243-247. http://dx.doi.org/10.1016/j.otot.2008.10.008
    » http://dx.doi.org/10.1016/j.otot.2008.10.008
  • Bloem, B.R., Kalf, J.G., van de Kerkhof, P.C. and Zwarts, M.J., 2009. Debilitating consequences of drooling. Journal of Neurology, vol. 256, no. 8, pp. 1382-1383. http://dx.doi.org/10.1007/s00415-009-5144-0 PMid:19412723.
    » http://dx.doi.org/10.1007/s00415-009-5144-0
  • Bushara, K.O., 1997. Sialorrhea in amyotrophic lateral sclerosis: a hypothesis of a new treatment – botulinum toxin A injections of the parotid glands. Medical Hypotheses, vol. 48, no. 4, pp. 337-339. http://dx.doi.org/10.1016/S0306-9877(97)90103-1 PMid:9160288.
    » http://dx.doi.org/10.1016/S0306-9877(97)90103-1
  • Catalán, M.A., Nakamoto, T. and Melvin, J.E., 2009. The salivary gland fluid secretion mechanism. The Journal of Medical Investigation, vol. 56, suppl., pp. 192-196. http://dx.doi.org/10.2152/jmi.56.192 PMid:20224180.
    » http://dx.doi.org/10.2152/jmi.56.192
  • Cheidde, L. and Schor, N., 1999. Revisão: transportadores de água. Revista da Associação Médica Brasileira, vol. 4, no. 1, pp. 71-78. http://dx.doi.org/10.1590/S0104-42301999000100013 PMid:10436597.
    » http://dx.doi.org/10.1590/S0104-42301999000100013
  • Chiba, T. and Tanaka, K., 1998. A target specific pathway from nitric oxide synthase immunoreactive preganglionic sympathetic to superior cervical ganglion neurons innervating the submandibular salivary gland. Journal of the Autonomic Nervous System, vol. 71, no. 2-3, pp. 139-147. http://dx.doi.org/10.1016/S0165-1838(98)00068-X PMid:9760050.
    » http://dx.doi.org/10.1016/S0165-1838(98)00068-X
  • Corso, B.L., Silveira, V.C., BINHA, A M.P. and CHAMLIAN, T.R., 2011. Therapeutic approach in drooling on cerebral palsy: systematic review. Revista Medicina de Reabilitação, vol. 30, no. 1, pp. 9-13.
  • Coskun, B.U., Savk, H., Cicek, E.D., Basak, T., Basak, M. and Dadas, B., 2007. Histopathological and radiological investigations of the influence of botulinum toxin on the submandibular gland of the rat. European Archives of Oto-Rhino-Laryngology, vol. 264, no. 7, pp. 783-787. http://dx.doi.org/10.1007/s00405-007-0254-8 PMid:17285331.
    » http://dx.doi.org/10.1007/s00405-007-0254-8
  • Crysdale, W.S., 1980. The drooling patient: evaluation and current surgical options. The Laryngoscope, vol. 90, no. 5 Pt 1, pp. 775-783. http://dx.doi.org/10.1288/00005537-198005000-00006 PMid:7374307.
    » http://dx.doi.org/10.1288/00005537-198005000-00006
  • Ellies, M., 2003. Tierexperimentelle und klinische untersuchungen zur sekretionshemmung der kopfspeicheldrüsen durch botulinum Toxin A. Laryngo- Rhino- Otologie, vol. 82, no. 10, pp. 713-714. http://dx.doi.org/10.1055/s-2003-43237 PMid:14593570.
    » http://dx.doi.org/10.1055/s-2003-43237
  • Ellies, M., Gottstein, U., Rohrbach-Volland, S., Arglebe, C. and Laskawi, R., 2004. Reduction of salivary flow with botulinum toxin: extended report on 33 patients with drooling, salivary fistulas, and sialadenitis. The Laryngoscope, vol. 114, no. 10, pp. 1856-1860. http://dx.doi.org/10.1097/00005537-200410000-00033 PMid:15454785.
    » http://dx.doi.org/10.1097/00005537-200410000-00033
  • Ellies, M., Laskawi, R., Götz, W., Arglebe, C. and Tormählen, G., 1999. Immunohitochemical and morphometric investigations of the influence of botulinum toxin on the submandibular gland of the rat. European Archives of Oto-Rhino-Laryngology, vol. 256, no. 3, pp. 148-152. http://dx.doi.org/10.1007/s004050050129 PMid:10234485.
    » http://dx.doi.org/10.1007/s004050050129
  • Ellies, M., Laskawi, R., Schütz, S. and Quondamatteo, F., 2003. Immunohistochemical evidence of nNOS and changes after intraglandular application of botulinum toxin A in cephalic salivary glands of adult rats. Journal for Otorhinolaryngology. Head & Neck Surgery, vol. 65, no. 3, pp. 140-143. http://dx.doi.org/10.1159/000072251 PMid:12925814.
    » http://dx.doi.org/10.1159/000072251
  • Ellies, M., Laskawi, R., Tormählen, G. and Götz, W., 2000. The effect of local injection of botulinum toxin A on the parotid gland of the rat: an immunohistochemical and morphometric study. Journal of Oral and Maxillofacial Surgery, vol. 58, no. 11, pp. 1251-1256. http://dx.doi.org/10.1053/joms.2000.16625 PMid:11078136.
    » http://dx.doi.org/10.1053/joms.2000.16625
  • Ellies, M., Rohrbach-Volland, S., Arglebe, C., Wilken, B., Laskawi, R. and Hanefeld, F., 2002. Successful managenment of drooling with botulinum toxin A in neurologically disbled children. Neuropediatrics, vol. 33, no. 6, pp. 327-330. http://dx.doi.org/10.1055/s-2002-37084 PMid:12571790.
    » http://dx.doi.org/10.1055/s-2002-37084
  • Ellies, M., Schütz, S., Quondamatteo, F. and Laskawi, R., 2006a. The effect of local injection of botulinum toxin A on the immunoreactivity of nNOS in the rat submandibular gland: An immunohistochemical study. International Journal of Pediatric Otorhinolaryngology, vol. 70, no. 1, pp. 59-63. http://dx.doi.org/10.1016/j.ijporl.2005.05.015 PMid:16002154.
    » http://dx.doi.org/10.1016/j.ijporl.2005.05.015
  • Ellies, M., Schütz, S., Quondamatteo, F. and Laskawi, R., 2006b. Immunohistochemical Investigations of the Influence of Botulinum Toxin A on the Immunoreactivity of nNOS in the Parotid Gland of the Rat. Journal of Oral and Maxillofacial Surgery, vol. 64, no. 3, pp. 397-401. http://dx.doi.org/10.1016/j.joms.2005.11.029 PMid:16487800.
    » http://dx.doi.org/10.1016/j.joms.2005.11.029
  • Emmelin, N., 1961. Supersensitivity of salivary gland caused by botulinum toxin. The Journal of Physiology, vol. 156, no. 1, pp. 121-127. http://dx.doi.org/10.1113/jphysiol.1961.sp006662 PMid:13726643.
    » http://dx.doi.org/10.1113/jphysiol.1961.sp006662
  • Flora-Filho, R. and Zilberstein, B., 2000. Óxido nítrico: o simples mensageiro percorrendo a complexidade. Metabolismo, síntese e funções. Revista da Associação Médica Brasileira, vol. 46, no. 3, pp. 265-271. http://dx.doi.org/10.1590/S0104-42302000000300012 PMid:11070518.
    » http://dx.doi.org/10.1590/S0104-42302000000300012
  • Gerlinger, I., Szalai, G., Hollódy, K. and Németh, A., 2007. Ultrasound-guided, intraglandular injection of botulinum toxin A in children suffering from excessive salivation. The Journal of Laryngology and Otology, vol. 121, no. 10, pp. 947-951. http://dx.doi.org/10.1017/S0022215107006949 PMid:17391573.
    » http://dx.doi.org/10.1017/S0022215107006949
  • Intiso, D., 2012. Therapeutic Use of Botulinum Toxin in Neurorehabilitation. Journal of Toxicology, vol. 2012, pp. 1-12. http://dx.doi.org/10.1155/2012/802893 PMid:21941544.
    » http://dx.doi.org/10.1155/2012/802893
  • Jankovic, J., 2009. Disease-oriented approach to botulinum toxin use. Toxicon, vol. 54, no. 5, pp. 614-623. http://dx.doi.org/10.1016/j.toxicon.2008.11.013 PMid:19073203.
    » http://dx.doi.org/10.1016/j.toxicon.2008.11.013
  • Jongerius, P.H., Rotteveel, J.J., Van Den Hoogen, F., Joosten, F., Van Hulst, K. and Gabreëls, F.J.M., 2001. Botulinum toxin A: a new option for treatment of drooling in children with cerebral palsy. Presentation of a case serie. European Journal of Pediatrics, vol. 160, no. 8, pp. 509-512. http://dx.doi.org/10.1007/s004310100784 PMid:11548191.
    » http://dx.doi.org/10.1007/s004310100784
  • Kasarskis, E.J., Hodskins, J. and Clair, W.H.S., 2011. Unilateral parotid electron beam radiotherapy as palliative treatment for sialorrhea in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, vol. 308, no. 1-2, pp. 155-157. http://dx.doi.org/10.1016/j.jns.2011.06.016 PMid:21726879.
    » http://dx.doi.org/10.1016/j.jns.2011.06.016
  • Lagalla, G., Millevolte, M., Capecci, M., Provinciali, L. and Ceravolo, M.G., 2009. Long-lasting benefits of botulinum toxin type B in Parkinson’s disea.se-related drooling. Journal of Neurology, vol. 256, no. 4, pp. 563-567. http://dx.doi.org/10.1007/s00415-009-0085-1 PMid:19401804.
    » http://dx.doi.org/10.1007/s00415-009-0085-1
  • Manrique, D., do Brasil, O.O. and Ramos, H., 2007. Drooling: analysis and evaluation of 31 children who underwent bilateral submandibular gland excision and parotid duct ligation. Revista Brasileira de Otorrinolaringologia, vol. 73, no. 1, pp. 41-45. http://dx.doi.org/10.1590/S0034-72992007000100007 PMid:17505597.
    » http://dx.doi.org/10.1590/S0034-72992007000100007
  • Melvin, J.E., Yule, D., Shuttleworth, T. and Begenisich, T., 2005. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annual Review of Physiology, vol. 67, no. 1, pp. 445-469. http://dx.doi.org/10.1146/annurev.physiol.67.041703.084745 PMid:15709965.
    » http://dx.doi.org/10.1146/annurev.physiol.67.041703.084745
  • Nakamura, T., Mastsui, M., Uchidak, K., Futatsugi, A., Kusakawa, S., Matsumoto, N., Nakamura, K., Manabe, T., Taketo, M.M. and Mikoshiba, K., 2004. M3 muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. The Journal of Physiology, vol. 558, no. 2, pp. 561-575. http://dx.doi.org/10.1113/jphysiol.2004.064626 PMid:15146045.
    » http://dx.doi.org/10.1113/jphysiol.2004.064626
  • Pérez-Legaspi, L.A., Rico-Martínez, R. and Quintanar, J.L., 2015. Reduced expression of exocytotic proteins caused by anti-cholinesterase pesticides in Brachionus calyciflorus (Rotifera: Monogononta). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 75, no. 3, pp. 759-765. http://dx.doi.org/10.1590/1519-6984.01614 PMid:26465735.
    » http://dx.doi.org/10.1590/1519-6984.01614
  • Poulain, B., Popoff, M.R. and Molgo, J., 2008. How do the botulinum neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action. The Botulinum Journal, vol. 1, no. 1, pp. 14-87. http://dx.doi.org/10.1504/TBJ.2008.018951
    » http://dx.doi.org/10.1504/TBJ.2008.018951
  • Proctor, G.B., 2006. Muscarinic receptors and salivary secretion. Journal of Applied Physiology, vol. 100, no. 4, pp. 1103-1104. http://dx.doi.org/10.1152/japplphysiol.01546.2005 PMid:16540706.
    » http://dx.doi.org/10.1152/japplphysiol.01546.2005
  • Rodrigues, J.A.O., Höfling, J.F., Tavares, F.C.A., Duarte, K.M.R., Gonçalves, R.B. and Azevedo, R.A., 2004. Evaluation of biochemical and serological methods to identify and clustering yeast cells of oral Candida species by CHROMagar test, SDS-PAGE and ELISA. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 64, no. 2, pp. 317-326. http://dx.doi.org/10.1590/S1519-69842004000200018 PMid:15462306.
    » http://dx.doi.org/10.1590/S1519-69842004000200018
  • Sanioto, S.M., Amorim, J.B.O., Mancini, M.N.G. and Baldo, M.V.C., 2013. Regulação neurovegetativa do aparelho estomatognático: fisiologia da secreção salivar. In: M.V.C. BALDO and M.C. REGATÃO. Fundamentos de odontologia: fisiologia oral. São Paulo: Santos. 192 p.
  • Savarese, R., Diamond, M., Elovic, E. and Millis, R.S., 2004. Intraparotid injection of botulinum toxin A as a treatment to control sialorrhea in children with cerebral palsy. American Journal of Physical Medicine & Rehabilitation, vol. 83, no. 4, pp. 304-311, quiz 312-314, 336. http://dx.doi.org/10.1097/01.PHM.0000104680.28335.B9 PMid:15024333.
    » http://dx.doi.org/10.1097/01.PHM.0000104680.28335.B9
  • Schiavo, G., Matteoli, M. and Montecucco, C., 2000. Neurotoxins affecting neuroexocytosis. Physiological Reviews, vol. 80, no. 2, pp. 717-766. http://dx.doi.org/10.1.1.326.2327 PMid:10747206.
    » http://dx.doi.org/10.1.1.326.2327
  • Shan, X.-F., Xu, H., Cai, Z.-G., Wu, L.-L. and Yu, G.-Y., 2013. Botulinum toxin A inhibits salivary secretion of rabbit submandibular gland. International Journal of Oral Science, vol. 5, no. 4, pp. 217-223. http://dx.doi.org/10.1038/ijos.2013.82 PMid:24158141.
    » http://dx.doi.org/10.1038/ijos.2013.82
  • Sposito, M.M.M., 2004. Toxina botulínica tipo A – propriedades farmacológicas e uso clínico. Acta Fisiátrica, suppl. 01, pp. S7-S44.
  • Sposito, M.M.M., 2009. Botulinic toxin type A: action mechanism. Acta Fisiátrica, vol. 16, no. 1, pp. 25-37.
  • Takai, N., Uchihashi, K., Higuchi, K., Yoshida, Y. and Yamaguchi, M.M., 1999. Localization of neuronal-constitutive nitric oxide synthase and secretory regulation by nitric oxide in the rat submandibular and sublingual glands. Archives of Oral Biology, vol. 44, no. 9, pp. 745-750. http://dx.doi.org/10.1016/S0003-9969(99)00064-3 PMid:10471158.
    » http://dx.doi.org/10.1016/S0003-9969(99)00064-3
  • Teymoortash, A., Sommer, F., Mandic, R., Schulz, S., Bette, M., Aumüller, G. and Werner, J.A., 2007. Intraglandular application of botulinum toxin leads to structural and functional changes in rat acinar cells. British Journal of Pharmacology, vol. 152, no. 1, pp. 161-167. http://dx.doi.org/10.1038/sj.bjp.0707375 PMid:17618309.
    » http://dx.doi.org/10.1038/sj.bjp.0707375
  • Tscheng, D.Z., 2002. Sialorrhea – therapeutic drug options. The Annals of Pharmacotherapy, vol. 36, no. 11, pp. 1785-1790. http://dx.doi.org/10.1345/aph.1C019 PMid:12398577.
    » http://dx.doi.org/10.1345/aph.1C019
  • Tsui, J.K.C., 1996. Botulinum Toxin as a Therapeutic Agent. Pharmacology & Therapeutics, vol. 72, no. 1, pp. 13-24. http://dx.doi.org/10.1016/S0163-7258(96)00091-5 PMid:8981568.
    » http://dx.doi.org/10.1016/S0163-7258(96)00091-5
  • Turk-Gonzales, M. and Odderson, I.R., 2005. Quantitative reduction of saliva production with botulinum toxin type B injection into the salivary glands. Neurorehabilitation and Neural Repair, vol. 19, no. 1, pp. 58-61. http://dx.doi.org/10.1177/1545968304273201 PMid:15673844.
    » http://dx.doi.org/10.1177/1545968304273201
  • Valencia, D.V. and Mendoza, A., 2011. Toxina botulínica tipo A, una nueva opción en el tratamiento de la sialorrea en niños con parálisis cerebral. Revista Colombiana de Medicina Física y Rehabilitación, vol. 21, no. 1, pp. 23-31.
  • Wen, W.-D., Yuan, F. and Hou, Y.P., 2009. The mechanism of inhibitory effect on parotid gland secretion with local injection of botulinum toxin type A in the rat. Zhonghua Kou Qiang Yi Xue Za Zhi, vol. 44, no. 1, pp. 38-40. http://dx.doi.org/10.3760/cama.j.issn.1002-0098.2009.01.011 PMid:19489258.
    » http://dx.doi.org/10.3760/cama.j.issn.1002-0098.2009.01.011
  • WORLD HEALTH ORGANIZATION – WHO, 2013 [viewed 21 June 2014]. Governments to agree increased focus on people with disabilities in development strategies [online]. Geneva: WHO. Available from: http://www.who.int/mediacentre/news/notes/2013/disability_and_development_20130920/en/
    » http://www.who.int/mediacentre/news/notes/2013/disability_and_development_20130920/en/
  • Xu, H., Shan, X.F., Cong, X., Yang, N.Y., Wu, L.L., Yu, G.Y., Zhang, Y. and Cai, Z.G., 2015. Pre- and post-synaptic effects of botulinum toxin A on submandibular glands. Journal of Dental Research, vol. 94, no. 10, pp. 1454-1462. http://dx.doi.org/10.1177/0022034515590087
    » http://dx.doi.org/10.1177/0022034515590087
  • Yang, P.-Y., Han, T.-I., Chou, L.-W., Jou, H.-J., Chou, Y.-C. and Meng, N.-H., 2006. Botulinum toxin A in the treatment of sialorrhea in children with cerebral palsy. Mid-Taiwan Journal of Medicine, vol. 11, pp. 261-266.
  • Younis, R.E., Abou Elkhier, M.T., Mourad, M.I. and Elnahas, W., 2013. The ultrastructural changes of the parotid gland of rats after intraglandular injection of botulinum toxin A. Annals of Oral & Maxillofacial Surgery, vol. 1, no. 4, pp. 38. http://dx.doi.org/10.13172/2052-7837-1-4-1095
    » http://dx.doi.org/10.13172/2052-7837-1-4-1095
  • Yuan, F., Hou, Y.-P. and Wen, W.-D., 2004. Immunohistochemical and morphological investigations of the influence of botulinum toxin type A on the submandibular gland of the rats. Lin chuang er bi yan hou ke za zhi = Journal of Clinical Otorhinolaryngology, vol. 18, no. 9, p. 558-560. PMID: 15696959.

Publication Dates

  • Publication in this collection
    05 Sept 2016
  • Date of issue
    Apr-Jun 2017

History

  • Received
    24 July 2015
  • Accepted
    15 Feb 2016
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br