Acessibilidade / Reportar erro

Métodos clínicos de avaliação dinâmica e quantitativa do complexo ombro e escápula: uma revisão de escopo

Métodos clínicos de evaluación dinámica y cuantitativa del complejo del hombro y escápula: una revisión de alcance

RESUMO

A articulação do ombro possui a maior amplitude de movimento e está mais suscetível a disfunções. Avaliações dinâmicas e quantitativas dessa região fornecem melhores informações para a clínica, mas a escolha do método a ser utilizado depende de suas propriedades de medição. O objetivo deste estudo foi identificar os métodos existentes de avaliação dinâmica quantitativa do complexo ombro e escápula em um contexto clínico para a população em geral, identificando as propriedades de medição e os desfechos avaliados para cada método. A revisão de escopo incluiu estudos in vivo, com amostras sem uma condição clínica específica e envolvendo métodos aplicáveis em um contexto clínico. Foram identificados: desfecho avaliado, método de medição e suas propriedades de medição. Foram selecionados 29 estudos que investigaram 12 métodos de medição, sendo avaliadas sua validade e confiabilidade para 17 desfechos diferentes. A posição do ombro e da escápula e os desfechos derivados foram abordados pelo maior número de estudos (n=21), sendo seus principais métodos de avaliação as unidades de medição inercial (n=5) e unidades de medição magnética inercial (n=6). Os desfechos que apresentaram métodos válidos e confiáveis foram: amplitude articular de ombro; amplitude de movimento da escápula e do ombro; atividade muscular; centro articular do ombro; comprimento do úmero; curva torque-tempo; desempenho funcional; discinesia escapular; força de rotadores externos do ombro; funcionalidade e amplitude articular; movimento escapular inicial; posição da escápula e do ombro; e velocidade angular do ombro.

Descritores
Reprodutibilidade dos Testes; Amplitude de Movimento Articular; Estudos de Avaliação como Assunto

RESUMEN

La articulación del hombro tiene la mayor amplitud de movimiento y es más susceptible a disfunciones. Las evaluaciones dinámicas y cuantitativas de esta región proporcionan mejores informaciones para la clínica, pero la elección del método a utilizar depende de sus propiedades de medición. El objetivo de este estudio fue identificar los métodos existentes de evaluación dinámica cuantitativa del complejo del hombro y escápula en un contexto clínico para la población general, identificando las propiedades de medición y los resultados evaluados para cada método. La revisión de alcance incluyó estudios in vivo, con muestras sin una condición clínica específica y con métodos aplicables en un contexto clínico. Se identificaron el resultado evaluado, el método de medición y sus propiedades de medición. Se seleccionaron 29 estudios que investigaron 12 métodos de medición, y se evaluó su validez y confiabilidad para 17 resultados diferentes. La posición del hombro y de la escápula, y los resultados derivados fueron abordados por el mayor número de estudios (n=21), y sus principales métodos de evaluación fueron las unidades de medición inercial (n=5) y las unidades de medición magnética inercial (n=6). Los resultados que presentaron métodos válidos y confiables fueron: amplitud articular del hombro; amplitud de movimiento de la escápula y del hombro; actividad muscular; centro articular del hombro; longitud del húmero; curva torque-tiempo; desempeño funcional; discinesia escapular; fuerza de los rotadores externos del hombro; funcionalidad y amplitud articular; movimiento escapular inicial; posición de la escápula y del hombro; y velocidad angular del hombro.

Palabras clave
Reproductibilidad de los Resultados; Rango del Movimiento Articular; Estudios de Evaluación como Asunto

ABSTRACT

The shoulder joint has the greatest range of motion and is the most susceptible to dysfunction. Dynamic and quantitative evaluations of this region provide better information for the clinic but the choice of the method depends on its measurement properties. This study aimed to identify the existing methods of quantitative dynamic evaluation of the shoulder and scapula complex, in a clinical context for the general population, identifying the measurement properties and outcomes of each method. The scoping review included in vivo studies, with samples without a specific clinical condition and involving applicable methods in a clinical context. We identified evaluated outcome, measurement method, and its measurement properties. We selected 29 studies that investigated 12 measurement methods, and evaluated their validity and reliability for 17 different outcomes. Most studies (n=21) addressed the position of the shoulder and the scapula and the derivative outcomes, using mainly the units of inertial measurement (n=5) and inertial magnetic measurement (n=6) as evaluation methods. The outcomes with valid and reliable methods were: shoulder joint range; scapula and shoulder motion range; muscle activity; shoulder joint center; humerus length; torque-time curve; functional performance; scapular dyskinesia; external shoulder rotators force; shoulder joint functionality and range; initial scapular movement; scapula and shoulder position; and shoulder angular velocity.

Keywords
Reproducibility of Results; Range of Motion, Articular; Evaluation Studies as Topic

INTRODUÇÃO

A articulação fisiológica escapulotorácica e as sinoviais esternoclavicular, acromioclavicular e glenoumeral formam o complexo do ombro e escápula11. Kapandji AI. The physiology of the joints: the lower limb. 6th ed. Edinburgh: Churchill Livingstone; 2010.. Esse complexo possui a maior amplitude de movimento do corpo, existindo evidências de que alterações na cinemática estão associadas a disfunções musculoesqueléticas22. Lange T, Struyf F, Schmitt J, Lützner J, Kopkow C. The reliability of physical examination tests for the clinical assessment of scapular dyskinesis in subjects with shoulder complaints: a systematic review. Phys Ther Sport. 2017;26:64-89. doi: 10.1016/j.ptsp.2016.10.006.
https://doi.org/10.1016/j.ptsp.2016.10.0...

3. Furness J, Johnstone S, Hing W, Abbott A, Climstein M. Assessment of shoulder active range of motion in prone versus supine: a reliability and concurrent validity study. Physiother Theory Pract. 2015;31(7):489-95. doi: 10.3109/09593985.2015.1027070.
https://doi.org/10.3109/09593985.2015.10...
-44. Haik MN, Alburquerque-Sendín F, Camargo PR. Reliability and minimal detectable change of 3-dimensional scapular orientation in individuals with and without shoulder impingement. J Orthop Sports Phys Ther. 2014;44(5):341-9. doi: 10.2519/jospt.2014.4705.
https://doi.org/10.2519/jospt.2014.4705...
.

Avaliações estáticas apresentam limitações na avaliação de movimentos complexos como gestos esportivos, laborais e relativos a atividades da vida diária22. Lange T, Struyf F, Schmitt J, Lützner J, Kopkow C. The reliability of physical examination tests for the clinical assessment of scapular dyskinesis in subjects with shoulder complaints: a systematic review. Phys Ther Sport. 2017;26:64-89. doi: 10.1016/j.ptsp.2016.10.006.
https://doi.org/10.1016/j.ptsp.2016.10.0...
. A avaliação quantitativa dinâmica possibilita a caracterização da cinemática tridimensional e a mensuração de desfechos relacionados ao movimento33. Furness J, Johnstone S, Hing W, Abbott A, Climstein M. Assessment of shoulder active range of motion in prone versus supine: a reliability and concurrent validity study. Physiother Theory Pract. 2015;31(7):489-95. doi: 10.3109/09593985.2015.1027070.
https://doi.org/10.3109/09593985.2015.10...
,55. Fortenbaugh D, Fleisig GS, Andrews JR. Baseball pitching biomechanics in relation to injury risk and performance. Sports Health. 2009;1(4):314-20. doi: 10.1177/1941738109338546.
https://doi.org/10.1177/1941738109338546...
,66. Pain LAM, Baker R, Sohail QZ, Richardson D, Zabjek K, Mogk JPM, et al. Three-dimensional assessment of the asymptomatic and post-stroke shoulder: intra-rater test-retest reliability and within-subject repeatability of the palpation and digitization approach. Disabil Rehabil. 2019;41(15):1826-34. doi: 10.1080/09638288.2018.1451924.
https://doi.org/10.1080/09638288.2018.14...
. Esse tipo de avaliação supera a subjetividade de avaliações qualitativas como testes clínicos ou escalas de avaliação. Porém uma avaliação clínica só é adequada se suas propriedades de medição indicarem resultados válidos e confiáveis para o contexto de aplicação77. Sereno HRS, Sheremetieff A Jr. Guia para elaboração de um plano de manutenção da confiabilidade metrológica de instrumentos de medição - Escolha de instrumentos. Proceedings of the 5th Congresso Latino-Americano de Metrologia; 2007; Curitiba. Curitiba: [publisher unknown]; 2007..

O objetivo desta revisão de escopo é identificar os métodos de avaliação dinâmica quantitativa do complexo do ombro e escápula em um contexto clínico e generalizável para a população como um todo. Para isso, estabelecemos as seguintes questões de pesquisa: (1) Quais são os métodos clínicos existentes para realizar a avaliação dinâmica do complexo do ombro e escápula quantitativamente? (2) Quais as propriedades de medição avaliadas nesses métodos? (3) Quais desfechos esses métodos avaliam?

METODOLOGIA

Este estudo é uma revisão de escopo e segue as orientações do manual para síntese de evidências do Joanna Briggs Institute (JBI) (88. Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Chapter 11: scoping reviews. In: Aromataris E, Munn Z, editors. JBI manual for evidence synthesis. Adelaide: JBI; 2020. p. 406-51. e do Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (Prisma-ScR) (99. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467-73. doi: 10.7326/M18-0850.
https://doi.org/10.7326/M18-0850...
, não havendo protocolo público. Para “população”, estabelecemos: estudos in vivo de populações sem uma condição clínica específica. Para “conceito”: avaliação dinâmica quantitativa do complexo ombro e escápula. Para “contexto”: avaliações clínicas. Como critérios de elegibilidade: publicações em revistas com revisão por pares de estudos que avaliaram propriedades de medição de métodos já existentes. Não foram estabelecidas restrições de data ou idioma. Estudos envolvendo métodos laboratoriais e dedicados a desfechos que não se restringiam ao complexo do ombro e escápula não foram incluídos.

As buscas foram conduzidas nas bases PubMed, Embase e Scopus em janeiro de 2022. A Figura 1 apresenta os descritores utilizados na PubMed. A busca nas demais bases utilizou os mesmos descritores, mas adaptados a elas.

Figura 1
Descritores utilizados na base PubMed

#1 AND #2 AND #3 AND #4 AND #5


Os estudos encontrados foram importados para a plataforma Rayyan, na qual foram excluídas as duplicatas. Dois avaliadores promoveram a seleção de forma cegada, inicialmente considerando títulos e resumos e, posteriormente, a partir dos artigos na íntegra. Avaliações discordantes foram resolvidas em reunião, buscando o consenso.

A extração de dados foi realizada através de um formulário confeccionado pela equipe de pesquisa. Foram extraídas informações sobre: autoria, ano de publicação, nome do método, desfecho mensurado e as propriedades de medição avaliadas. As propriedades de medição foram analisadas segundo a iniciativa COnsensus-based Standards for the selection of health Measurement INstruments (Cosmin) (1010. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63(7):737-45. doi: 10.1016/j.jclinepi.2010.02.006.
https://doi.org/10.1016/j.jclinepi.2010....
,1111. Mokkink LB, Prinsen CAC, Patrick DL, Alonso J, Bouter LM, de Vet HCW, et al. COSMIN study design checklist for patient-reported outcome measurement instruments. Amsterdam: COSMIN; 2019.. Não estabelecemos critérios a priori para determinar a contemplação de cada propriedade de medição, aceitando o indicado por cada estudo.

RESULTADOS

Foram identificados 373 estudos na PubMed, 149 na Embase e 130 na Scopus. Após a remoção de duplicatas e seleção dos estudos, 29 foram incluídos nesta revisão de escopo (Figura 2). A partir deles foram identificados 12 diferentes métodos de avaliação para 17 desfechos relacionados ao complexo do ombro e escápula.

Figura 2
Fluxograma do processo de seleção dos estudos dessa revisão de escopo, seguindo as recomendações Prisma-ScR

A Tabela 1 apresenta os dados extraídos. Os desfechos mais presentes foram os que avaliam a posição da escápula44. Haik MN, Alburquerque-Sendín F, Camargo PR. Reliability and minimal detectable change of 3-dimensional scapular orientation in individuals with and without shoulder impingement. J Orthop Sports Phys Ther. 2014;44(5):341-9. doi: 10.2519/jospt.2014.4705.
https://doi.org/10.2519/jospt.2014.4705...
,1212. Höglund G, Grip H, Öhberg F. The importance of inertial measurement unit placement in assessing upper limb motion. Med Eng Phys. 2021;92:1-9. doi: 10.1016/j.medengphy.2021.03.010.
https://doi.org/10.1016/j.medengphy.2021...
,1313. van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52(11):921-31. doi: 10.1007/s11517-014-1186-2.
https://doi.org/10.1007/s11517-014-1186-...
ou do ombro1212. Höglund G, Grip H, Öhberg F. The importance of inertial measurement unit placement in assessing upper limb motion. Med Eng Phys. 2021;92:1-9. doi: 10.1016/j.medengphy.2021.03.010.
https://doi.org/10.1016/j.medengphy.2021...
,1414. Morrow MB, Lowndes B, Fortune E, Kaufman KR, Hallbeck MS. Validation of inertial measurement units for upper body kinematics. J Appl Biomech. 2017;33(3):227-32. doi: 10.1123/jab.2016-0120.
https://doi.org/10.1123/jab.2016-0120...

15. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...

16. Oyama S, Sosa A, Campbell R, Correa A. Reliability and validity of quantitative video analysis of baseball pitching motion. J Appl Biomech. 2017;33(1):64-8. doi: 10.1123/jab.2016-0011.
https://doi.org/10.1123/jab.2016-0011...

17. Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors - a validity study. Man Ther. 2016;21:241-9. doi: 10.1016/j.math.2015.09.004.
https://doi.org/10.1016/j.math.2015.09.0...

18. Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008;30(1):123-33. doi: 10.1016/j.medengphy.2006.11.010.
https://doi.org/10.1016/j.medengphy.2006...
-1919. Melton C, Mullineaux DR, Mattacola CG, Mair SD, Uhl TL. Reliability of video motion-analysis systems to measure amplitude and velocity of shoulder elevation. J Sport Rehabil. 2011;20(4):393-405. doi: 10.1123/jsr.20.4.393.
https://doi.org/10.1123/jsr.20.4.393...
, além de medidas derivadas destes: amplitude de movimento2020. Thigpen CA, Gross MT, Karas SG, Garrett WE, Yu B. The repeatability of scapular rotations across three planes of humeral elevation. Res Sports Med. 2005;13(3):181-98. doi: 10.1080/15438620500222489.
https://doi.org/10.1080/1543862050022248...

21. Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015.
https://doi.org/10.1016/j.gaitpost.2011....

22. Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52(3):271-82. doi: 10.1007/s11517-013-1121-y.
https://doi.org/10.1007/s11517-013-1121-...

23. Xu X, Robertson M, Chen KB, Lin JH, McGorry RW. Using the Microsoft KinectTM to assess 3-D shoulder kinematics during computer use. Appl Ergon. 2017;65:418-23. doi: 10.1016/j.apergo.2017.04.004.
https://doi.org/10.1016/j.apergo.2017.04...

24. Jordan K, Dziedzic K, Jones PW, Ong BN, Dawes PT. The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology (Oxford). 2000;39(4):382-8. doi: 10.1093/rheumatology/39.4.382.
https://doi.org/10.1093/rheumatology/39....
-2525. Picerno P, Caliandro P, Iacovelli C, Simbolotti C, Crabolu M, Pani D, et al. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Sci Rep. 2019;9(1):14449. doi: 10.1038/s41598-019-50759-z.
https://doi.org/10.1038/s41598-019-50759...
como resultado da diferença de duas posições; amplitude articular2626. Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016;47:80-5. doi: 10.1016/j.gaitpost.2016.04.004.
https://doi.org/10.1016/j.gaitpost.2016....
,2727. Lee SH, Yoon C, Chung SG, Kim HC, Kwak Y, Park HW, et al. Measurement of shoulder range of motion in patients with adhesive capsulitis using a Kinect. PLoS One. 2015;10(6):e0129398. doi: 10.1371/journal.pone.0129398.
https://doi.org/10.1371/journal.pone.012...
relativa às posições extremas de um movimento; e medidas de velocidade angular1515. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...
,1919. Melton C, Mullineaux DR, Mattacola CG, Mair SD, Uhl TL. Reliability of video motion-analysis systems to measure amplitude and velocity of shoulder elevation. J Sport Rehabil. 2011;20(4):393-405. doi: 10.1123/jsr.20.4.393.
https://doi.org/10.1123/jsr.20.4.393...
,2828. Roldán-Jiménez C, Martin-Martin J, Cuesta-Vargas AI. Reliability of a smartphone compared with an inertial sensor to measure shoulder mobility: cross-sectional study. JMIR Mhealth Uhealth. 2019;7(9):e13640. doi: 10.2196/13640.
https://doi.org/10.2196/13640...
. Esses desfechos foram avaliados por 62% (n=18) dos estudos incluídos. Foi predominante a avaliação desses desfechos através de acelerômetros e giroscópios (56%, n=10), tanto na forma de unidades de medição inercial (UMI) (1414. Morrow MB, Lowndes B, Fortune E, Kaufman KR, Hallbeck MS. Validation of inertial measurement units for upper body kinematics. J Appl Biomech. 2017;33(3):227-32. doi: 10.1123/jab.2016-0120.
https://doi.org/10.1123/jab.2016-0120...
,1515. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...
,1717. Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors - a validity study. Man Ther. 2016;21:241-9. doi: 10.1016/j.math.2015.09.004.
https://doi.org/10.1016/j.math.2015.09.0...
,2828. Roldán-Jiménez C, Martin-Martin J, Cuesta-Vargas AI. Reliability of a smartphone compared with an inertial sensor to measure shoulder mobility: cross-sectional study. JMIR Mhealth Uhealth. 2019;7(9):e13640. doi: 10.2196/13640.
https://doi.org/10.2196/13640...
quanto de unidades de medição magnética inercial (UMMI) (1212. Höglund G, Grip H, Öhberg F. The importance of inertial measurement unit placement in assessing upper limb motion. Med Eng Phys. 2021;92:1-9. doi: 10.1016/j.medengphy.2021.03.010.
https://doi.org/10.1016/j.medengphy.2021...
,1313. van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52(11):921-31. doi: 10.1007/s11517-014-1186-2.
https://doi.org/10.1007/s11517-014-1186-...
,1818. Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008;30(1):123-33. doi: 10.1016/j.medengphy.2006.11.010.
https://doi.org/10.1016/j.medengphy.2006...
,2121. Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015.
https://doi.org/10.1016/j.gaitpost.2011....
,2222. Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52(3):271-82. doi: 10.1007/s11517-013-1121-y.
https://doi.org/10.1007/s11517-013-1121-...
,2525. Picerno P, Caliandro P, Iacovelli C, Simbolotti C, Crabolu M, Pani D, et al. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Sci Rep. 2019;9(1):14449. doi: 10.1038/s41598-019-50759-z.
https://doi.org/10.1038/s41598-019-50759...
, quando combinados com magnetômetros. Estas ainda foram utilizadas para a avaliação do centro articular do ombro2929. Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34. doi: 10.1186/s12938-017-0324-0.
https://doi.org/10.1186/s12938-017-0324-...
, do comprimento do úmero3030. Crabolu M, Pani D, Raffo L, Conti M, Cereatti A. Functional estimation of bony segment lengths using magneto-inertial sensing: application to the humerus. PLoS One. 2018;13(9):e0203861. doi: 10.1371/journal.pone.0203861.
https://doi.org/10.1371/journal.pone.020...
, da curva de torque-tempo1515. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...
e do desempenho funcional3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
.

Tabela 1
Dados extraídos dos estudos incluídos na revisão

Dentre as propriedades de medição, 21 estudos abordaram a confiabilidade e 20 a validade. Uma análise conjunta de validade e confiabilidade foi realizada por 12 estudos (41%). A validade concorrente foi verificada em 18 estudos1414. Morrow MB, Lowndes B, Fortune E, Kaufman KR, Hallbeck MS. Validation of inertial measurement units for upper body kinematics. J Appl Biomech. 2017;33(3):227-32. doi: 10.1123/jab.2016-0120.
https://doi.org/10.1123/jab.2016-0120...

15. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...

16. Oyama S, Sosa A, Campbell R, Correa A. Reliability and validity of quantitative video analysis of baseball pitching motion. J Appl Biomech. 2017;33(1):64-8. doi: 10.1123/jab.2016-0011.
https://doi.org/10.1123/jab.2016-0011...

17. Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors - a validity study. Man Ther. 2016;21:241-9. doi: 10.1016/j.math.2015.09.004.
https://doi.org/10.1016/j.math.2015.09.0...
-1818. Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008;30(1):123-33. doi: 10.1016/j.medengphy.2006.11.010.
https://doi.org/10.1016/j.medengphy.2006...
,2222. Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52(3):271-82. doi: 10.1007/s11517-013-1121-y.
https://doi.org/10.1007/s11517-013-1121-...
,2323. Xu X, Robertson M, Chen KB, Lin JH, McGorry RW. Using the Microsoft KinectTM to assess 3-D shoulder kinematics during computer use. Appl Ergon. 2017;65:418-23. doi: 10.1016/j.apergo.2017.04.004.
https://doi.org/10.1016/j.apergo.2017.04...
,2525. Picerno P, Caliandro P, Iacovelli C, Simbolotti C, Crabolu M, Pani D, et al. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Sci Rep. 2019;9(1):14449. doi: 10.1038/s41598-019-50759-z.
https://doi.org/10.1038/s41598-019-50759...

26. Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016;47:80-5. doi: 10.1016/j.gaitpost.2016.04.004.
https://doi.org/10.1016/j.gaitpost.2016....

27. Lee SH, Yoon C, Chung SG, Kim HC, Kwak Y, Park HW, et al. Measurement of shoulder range of motion in patients with adhesive capsulitis using a Kinect. PLoS One. 2015;10(6):e0129398. doi: 10.1371/journal.pone.0129398.
https://doi.org/10.1371/journal.pone.012...

28. Roldán-Jiménez C, Martin-Martin J, Cuesta-Vargas AI. Reliability of a smartphone compared with an inertial sensor to measure shoulder mobility: cross-sectional study. JMIR Mhealth Uhealth. 2019;7(9):e13640. doi: 10.2196/13640.
https://doi.org/10.2196/13640...

29. Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34. doi: 10.1186/s12938-017-0324-0.
https://doi.org/10.1186/s12938-017-0324-...

30. Crabolu M, Pani D, Raffo L, Conti M, Cereatti A. Functional estimation of bony segment lengths using magneto-inertial sensing: application to the humerus. PLoS One. 2018;13(9):e0203861. doi: 10.1371/journal.pone.0203861.
https://doi.org/10.1371/journal.pone.020...
-3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
,3333. Hackett L, Reed D, Halaki M, Ginn KA. Assessing the validity of surface electromyography for recording muscle activation patterns from serratus anterior. J Electromyogr Kinesiol. 2014;24(2):221-7. doi: 10.1016/j.jelekin.2014.01.007.
https://doi.org/10.1016/j.jelekin.2014.0...
,3434. MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
https://doi.org/10.1186/1471-2474-8-42...
,3636. Popchak A, Poploski K, Patterson-Lynch B, Nigolian J, Lin A. Reliability and validity of a return to sports testing battery for the shoulder. Phys Ther Sport. 2021;48:1-11. doi: 10.1016/j.ptsp.2020.12.003.
https://doi.org/10.1016/j.ptsp.2020.12.0...
, a testagem de hipóteses em quatro1919. Melton C, Mullineaux DR, Mattacola CG, Mair SD, Uhl TL. Reliability of video motion-analysis systems to measure amplitude and velocity of shoulder elevation. J Sport Rehabil. 2011;20(4):393-405. doi: 10.1123/jsr.20.4.393.
https://doi.org/10.1123/jsr.20.4.393...
,3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
,3434. MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
https://doi.org/10.1186/1471-2474-8-42...
,3535. Totlis T, Kitridis D, Tsikopoulos K, Georgoulis A. A computer tablet software can quantify the deviation of scapula medial border from the thoracic wall during clinical assessment of scapula dyskinesis. Knee Surg Sports Traumatol Arthrosc. 2021;29(1):202-9. doi: 10.1007/s00167-020-05916-7.
https://doi.org/10.1007/s00167-020-05916...
e dois3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
,3434. MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
https://doi.org/10.1186/1471-2474-8-42...
verificaram ambas simultaneamente. A confiabilidade teve um perfil mais heterogêneo de análise. A reprodutibilidade intra-avaliador foi investigada por 10 estudos44. Haik MN, Alburquerque-Sendín F, Camargo PR. Reliability and minimal detectable change of 3-dimensional scapular orientation in individuals with and without shoulder impingement. J Orthop Sports Phys Ther. 2014;44(5):341-9. doi: 10.2519/jospt.2014.4705.
https://doi.org/10.2519/jospt.2014.4705...
,1313. van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52(11):921-31. doi: 10.1007/s11517-014-1186-2.
https://doi.org/10.1007/s11517-014-1186-...
,1616. Oyama S, Sosa A, Campbell R, Correa A. Reliability and validity of quantitative video analysis of baseball pitching motion. J Appl Biomech. 2017;33(1):64-8. doi: 10.1123/jab.2016-0011.
https://doi.org/10.1123/jab.2016-0011...
,2020. Thigpen CA, Gross MT, Karas SG, Garrett WE, Yu B. The repeatability of scapular rotations across three planes of humeral elevation. Res Sports Med. 2005;13(3):181-98. doi: 10.1080/15438620500222489.
https://doi.org/10.1080/1543862050022248...
,2121. Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015.
https://doi.org/10.1016/j.gaitpost.2011....
,2424. Jordan K, Dziedzic K, Jones PW, Ong BN, Dawes PT. The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology (Oxford). 2000;39(4):382-8. doi: 10.1093/rheumatology/39.4.382.
https://doi.org/10.1093/rheumatology/39....
,3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
,3232. Seitz AL, Uhl TL. Reliability and minimal detectable change in scapulothoracic neuromuscular activity. J Electromyogr Kinesiol. 2012;22(6):968-74. doi: 10.1016/j.jelekin.2012.05.003.
https://doi.org/10.1016/j.jelekin.2012.0...
,3636. Popchak A, Poploski K, Patterson-Lynch B, Nigolian J, Lin A. Reliability and validity of a return to sports testing battery for the shoulder. Phys Ther Sport. 2021;48:1-11. doi: 10.1016/j.ptsp.2020.12.003.
https://doi.org/10.1016/j.ptsp.2020.12.0...
,3838. Pearl ML, van de Bunt F, Pearl M, Lightdale-Miric N, Rethlefsen S, Loiselle J. Assessing shoulder motion in children: age limitations to Mallet and ABC loops. Clin Orthop Relat Res. 2014;472(2):740-8. doi: 10.1007/s11999-013-3324-9.
https://doi.org/10.1007/s11999-013-3324-...
, a repetibilidade por 1044. Haik MN, Alburquerque-Sendín F, Camargo PR. Reliability and minimal detectable change of 3-dimensional scapular orientation in individuals with and without shoulder impingement. J Orthop Sports Phys Ther. 2014;44(5):341-9. doi: 10.2519/jospt.2014.4705.
https://doi.org/10.2519/jospt.2014.4705...
,1515. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...
,1717. Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors - a validity study. Man Ther. 2016;21:241-9. doi: 10.1016/j.math.2015.09.004.
https://doi.org/10.1016/j.math.2015.09.0...
,1919. Melton C, Mullineaux DR, Mattacola CG, Mair SD, Uhl TL. Reliability of video motion-analysis systems to measure amplitude and velocity of shoulder elevation. J Sport Rehabil. 2011;20(4):393-405. doi: 10.1123/jsr.20.4.393.
https://doi.org/10.1123/jsr.20.4.393...
,2020. Thigpen CA, Gross MT, Karas SG, Garrett WE, Yu B. The repeatability of scapular rotations across three planes of humeral elevation. Res Sports Med. 2005;13(3):181-98. doi: 10.1080/15438620500222489.
https://doi.org/10.1080/1543862050022248...
,2222. Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52(3):271-82. doi: 10.1007/s11517-013-1121-y.
https://doi.org/10.1007/s11517-013-1121-...
,2626. Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016;47:80-5. doi: 10.1016/j.gaitpost.2016.04.004.
https://doi.org/10.1016/j.gaitpost.2016....
,2929. Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34. doi: 10.1186/s12938-017-0324-0.
https://doi.org/10.1186/s12938-017-0324-...
,3232. Seitz AL, Uhl TL. Reliability and minimal detectable change in scapulothoracic neuromuscular activity. J Electromyogr Kinesiol. 2012;22(6):968-74. doi: 10.1016/j.jelekin.2012.05.003.
https://doi.org/10.1016/j.jelekin.2012.0...
,3535. Totlis T, Kitridis D, Tsikopoulos K, Georgoulis A. A computer tablet software can quantify the deviation of scapula medial border from the thoracic wall during clinical assessment of scapula dyskinesis. Knee Surg Sports Traumatol Arthrosc. 2021;29(1):202-9. doi: 10.1007/s00167-020-05916-7.
https://doi.org/10.1007/s00167-020-05916...
e a reprodutibilidade inter-avaliador por sete1313. van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52(11):921-31. doi: 10.1007/s11517-014-1186-2.
https://doi.org/10.1007/s11517-014-1186-...
,1616. Oyama S, Sosa A, Campbell R, Correa A. Reliability and validity of quantitative video analysis of baseball pitching motion. J Appl Biomech. 2017;33(1):64-8. doi: 10.1123/jab.2016-0011.
https://doi.org/10.1123/jab.2016-0011...
,2121. Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015.
https://doi.org/10.1016/j.gaitpost.2011....
,2424. Jordan K, Dziedzic K, Jones PW, Ong BN, Dawes PT. The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology (Oxford). 2000;39(4):382-8. doi: 10.1093/rheumatology/39.4.382.
https://doi.org/10.1093/rheumatology/39....
,3737. Johansson FR, Skillgate E, Lapauw ML, Clijmans D, Deneulin VP, Palmans T, et al. Measuring eccentric strength of the shoulder external rotators using a handheld dynamometer: reliability and validity. J Athl Train. 2015;50(7):719-25. doi: 10.4085/1062-6050-49.3.72.
https://doi.org/10.4085/1062-6050-49.3.7...

38. Pearl ML, van de Bunt F, Pearl M, Lightdale-Miric N, Rethlefsen S, Loiselle J. Assessing shoulder motion in children: age limitations to Mallet and ABC loops. Clin Orthop Relat Res. 2014;472(2):740-8. doi: 10.1007/s11999-013-3324-9.
https://doi.org/10.1007/s11999-013-3324-...
-3939. Larsen CM, Søgaard K, Eshoj H, Ingwersen K, Juul-Kristensen B. Clinical assessment methods for scapular position and function. An inter-rater reliability study. Physiother Theory Pract. 2020;36(12):1399-420. doi: 10.1080/09593985.2019.1579284.
https://doi.org/10.1080/09593985.2019.15...
. Nenhum estudo verificou as três propriedades de confiabilidade simultaneamente e um3434. MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
https://doi.org/10.1186/1471-2474-8-42...
avaliou a confiabilidade através de uma propriedade que não foi identificada. Ainda, um estudo1212. Höglund G, Grip H, Öhberg F. The importance of inertial measurement unit placement in assessing upper limb motion. Med Eng Phys. 2021;92:1-9. doi: 10.1016/j.medengphy.2021.03.010.
https://doi.org/10.1016/j.medengphy.2021...
avaliou outra propriedade de confiabilidade: a reprodutibilidade para diferentes posicionamentos de sensores.

DISCUSSÃO

A validade concorrente exige a concordância do método testado com uma referência válida. Alguns estudos utilizaram como referência métodos de avaliação estáticos2929. Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34. doi: 10.1186/s12938-017-0324-0.
https://doi.org/10.1186/s12938-017-0324-...
ou semidinâmicos2727. Lee SH, Yoon C, Chung SG, Kim HC, Kwak Y, Park HW, et al. Measurement of shoulder range of motion in patients with adhesive capsulitis using a Kinect. PLoS One. 2015;10(6):e0129398. doi: 10.1371/journal.pone.0129398.
https://doi.org/10.1371/journal.pone.012...
, o que é contraditório para avaliar métodos dinâmicos. A realização de avaliações dinâmicas gera resultados distintos de avaliações estáticas4040. d'Entremont AG, Nordmeyer-Massner JA, Bos C, Wilson DR, Pruessmann KP. Do dynamic-based MR knee kinematics methods produce the same results as static methods? Magn Reson Med. 2013;69(6):1634-44. doi: 10.1002/mrm.24425.
https://doi.org/10.1002/mrm.24425...
, indicando uma limitação dos estudos que utilizam tal procedimento. Limitação semelhante ocorre entre os estudos dedicados ao desempenho funcional que estabeleceram como referência avaliações subjetivas e/ou inespecíficas para o ombro como o Disabilities of the Arm, Shoulder and Hand (DASH) (3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
,3434. MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
https://doi.org/10.1186/1471-2474-8-42...
. Uma vez que os métodos avaliados se propõem a ser um avanço em relação às referências33. Furness J, Johnstone S, Hing W, Abbott A, Climstein M. Assessment of shoulder active range of motion in prone versus supine: a reliability and concurrent validity study. Physiother Theory Pract. 2015;31(7):489-95. doi: 10.3109/09593985.2015.1027070.
https://doi.org/10.3109/09593985.2015.10...
,55. Fortenbaugh D, Fleisig GS, Andrews JR. Baseball pitching biomechanics in relation to injury risk and performance. Sports Health. 2009;1(4):314-20. doi: 10.1177/1941738109338546.
https://doi.org/10.1177/1941738109338546...
,66. Pain LAM, Baker R, Sohail QZ, Richardson D, Zabjek K, Mogk JPM, et al. Three-dimensional assessment of the asymptomatic and post-stroke shoulder: intra-rater test-retest reliability and within-subject repeatability of the palpation and digitization approach. Disabil Rehabil. 2019;41(15):1826-34. doi: 10.1080/09638288.2018.1451924.
https://doi.org/10.1080/09638288.2018.14...
, a concordância pode, justamente, indicar que isso não ocorreu.

Acreditamos que a exploração de novos métodos de validação pode superar essas limitações. Disciplinas como a metrologia e a psicometria avançaram em seus processos a partir da recepção de conceitos da filosofia da medição, como a abordagem baseada em modelo e a epistemologia da medição4141. Tal E. Measurement in science. In: Zalta EN, editor. The Stanford Encyclopedia of Philosophy [Internet]. Stanford: Stanford University; 2020 [cited 2021 Mar 30]. Available from: Available from: https://plato.stanford.edu/archives/fall2020/entries/measurement-science/ .
https://plato.stanford.edu/archives/fall...
. O diálogo da filosofia com as ciências da saúde pode oferecer novas possibilidades de validação, ou ainda auxiliar na adaptação de procedimentos já utilizados em outras áreas, como a validade convergente e discriminante, de uso comum na psicometria4242. American Educational Research Association; American Psychological Association; National Council on Measurement in Education. The standards for educational and psychological testing. Washington, DC: American Educational Research Association; 2014. e presente em alguns estudos incluídos nesta revisão3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
,3434. MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
https://doi.org/10.1186/1471-2474-8-42...
,3535. Totlis T, Kitridis D, Tsikopoulos K, Georgoulis A. A computer tablet software can quantify the deviation of scapula medial border from the thoracic wall during clinical assessment of scapula dyskinesis. Knee Surg Sports Traumatol Arthrosc. 2021;29(1):202-9. doi: 10.1007/s00167-020-05916-7.
https://doi.org/10.1007/s00167-020-05916...
.

Houve uma dificuldade na identificação da propriedade de medição analisada em cada estudo. Alguns utilizavam metodologias distintas para a análise de uma propriedade sob um mesmo termo. Outros empregavam metodologias similares, mas com terminologias distintas. O apontamento de critérios objetivos para a aceitação de uma propriedade de medição foi feito apenas por 4 dos 29 estudos1515. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...
,2121. Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015.
https://doi.org/10.1016/j.gaitpost.2011....
,2222. Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52(3):271-82. doi: 10.1007/s11517-013-1121-y.
https://doi.org/10.1007/s11517-013-1121-...
,2525. Picerno P, Caliandro P, Iacovelli C, Simbolotti C, Crabolu M, Pani D, et al. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Sci Rep. 2019;9(1):14449. doi: 10.1038/s41598-019-50759-z.
https://doi.org/10.1038/s41598-019-50759...
. A necessidade de definições de termos, metodologias e critérios é um desafio enfrentado dentro da medição em saúde e vem gerando guias metodológicos que orientam os pesquisadores1010. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63(7):737-45. doi: 10.1016/j.jclinepi.2010.02.006.
https://doi.org/10.1016/j.jclinepi.2010....
,1111. Mokkink LB, Prinsen CAC, Patrick DL, Alonso J, Bouter LM, de Vet HCW, et al. COSMIN study design checklist for patient-reported outcome measurement instruments. Amsterdam: COSMIN; 2019.,4242. American Educational Research Association; American Psychological Association; National Council on Measurement in Education. The standards for educational and psychological testing. Washington, DC: American Educational Research Association; 2014.. Entretanto nenhum estudo incluído nesta revisão utilizou um guia desse tipo. Portanto, parece haver uma lacuna quanto aos termos, metodologias e critérios que devem ser empregados para avaliar métodos de medição de fenômenos clínicos a partir de fenômenos físicos, como os métodos presentes nesta revisão.

CONCLUSÃO

Foram identificados 12 métodos que avaliam desfechos do ombro e da escápula: ABC loops; análise de vídeo; kinect; dinamômetro manual; eletromiografia de superfície; escala Mallet; FIT-HaNSA; inclinômetro; repetição até falha; sensores eletromagnéticos; UMI; e UMMI. Nesses métodos as propriedades de medição avaliadas variaram em: validade concorrente, testagem de hipóteses, repetibilidade, reprodutividade inter-avaliador, reprodutibilidade intra-avaliador e reprodutibilidade para diferentes posicionamentos de sensores. Nesta pesquisa é apresentada uma compilação de todos os métodos existentes até o momento e suas propriedades de medição. A partir destes dados possibilita-se que o profissional da saúde conheça a adequação de cada método para promover uma avaliação dinâmica quantitativa do complexo do ombro e escápula em um contexto clínico subsidiando sua escolha.

REFERÊNCIAS

  • 1
    Kapandji AI. The physiology of the joints: the lower limb. 6th ed. Edinburgh: Churchill Livingstone; 2010.
  • 2
    Lange T, Struyf F, Schmitt J, Lützner J, Kopkow C. The reliability of physical examination tests for the clinical assessment of scapular dyskinesis in subjects with shoulder complaints: a systematic review. Phys Ther Sport. 2017;26:64-89. doi: 10.1016/j.ptsp.2016.10.006.
    » https://doi.org/10.1016/j.ptsp.2016.10.006
  • 3
    Furness J, Johnstone S, Hing W, Abbott A, Climstein M. Assessment of shoulder active range of motion in prone versus supine: a reliability and concurrent validity study. Physiother Theory Pract. 2015;31(7):489-95. doi: 10.3109/09593985.2015.1027070.
    » https://doi.org/10.3109/09593985.2015.1027070
  • 4
    Haik MN, Alburquerque-Sendín F, Camargo PR. Reliability and minimal detectable change of 3-dimensional scapular orientation in individuals with and without shoulder impingement. J Orthop Sports Phys Ther. 2014;44(5):341-9. doi: 10.2519/jospt.2014.4705.
    » https://doi.org/10.2519/jospt.2014.4705
  • 5
    Fortenbaugh D, Fleisig GS, Andrews JR. Baseball pitching biomechanics in relation to injury risk and performance. Sports Health. 2009;1(4):314-20. doi: 10.1177/1941738109338546.
    » https://doi.org/10.1177/1941738109338546
  • 6
    Pain LAM, Baker R, Sohail QZ, Richardson D, Zabjek K, Mogk JPM, et al. Three-dimensional assessment of the asymptomatic and post-stroke shoulder: intra-rater test-retest reliability and within-subject repeatability of the palpation and digitization approach. Disabil Rehabil. 2019;41(15):1826-34. doi: 10.1080/09638288.2018.1451924.
    » https://doi.org/10.1080/09638288.2018.1451924
  • 7
    Sereno HRS, Sheremetieff A Jr. Guia para elaboração de um plano de manutenção da confiabilidade metrológica de instrumentos de medição - Escolha de instrumentos. Proceedings of the 5th Congresso Latino-Americano de Metrologia; 2007; Curitiba. Curitiba: [publisher unknown]; 2007.
  • 8
    Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Chapter 11: scoping reviews. In: Aromataris E, Munn Z, editors. JBI manual for evidence synthesis. Adelaide: JBI; 2020. p. 406-51.
  • 9
    Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467-73. doi: 10.7326/M18-0850.
    » https://doi.org/10.7326/M18-0850
  • 10
    Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63(7):737-45. doi: 10.1016/j.jclinepi.2010.02.006.
    » https://doi.org/10.1016/j.jclinepi.2010.02.006
  • 11
    Mokkink LB, Prinsen CAC, Patrick DL, Alonso J, Bouter LM, de Vet HCW, et al. COSMIN study design checklist for patient-reported outcome measurement instruments. Amsterdam: COSMIN; 2019.
  • 12
    Höglund G, Grip H, Öhberg F. The importance of inertial measurement unit placement in assessing upper limb motion. Med Eng Phys. 2021;92:1-9. doi: 10.1016/j.medengphy.2021.03.010.
    » https://doi.org/10.1016/j.medengphy.2021.03.010
  • 13
    van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52(11):921-31. doi: 10.1007/s11517-014-1186-2.
    » https://doi.org/10.1007/s11517-014-1186-2
  • 14
    Morrow MB, Lowndes B, Fortune E, Kaufman KR, Hallbeck MS. Validation of inertial measurement units for upper body kinematics. J Appl Biomech. 2017;33(3):227-32. doi: 10.1123/jab.2016-0120.
    » https://doi.org/10.1123/jab.2016-0120
  • 15
    Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
    » https://doi.org/10.1682/jrrd.2014.06.0146
  • 16
    Oyama S, Sosa A, Campbell R, Correa A. Reliability and validity of quantitative video analysis of baseball pitching motion. J Appl Biomech. 2017;33(1):64-8. doi: 10.1123/jab.2016-0011.
    » https://doi.org/10.1123/jab.2016-0011
  • 17
    Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors - a validity study. Man Ther. 2016;21:241-9. doi: 10.1016/j.math.2015.09.004.
    » https://doi.org/10.1016/j.math.2015.09.004
  • 18
    Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008;30(1):123-33. doi: 10.1016/j.medengphy.2006.11.010.
    » https://doi.org/10.1016/j.medengphy.2006.11.010
  • 19
    Melton C, Mullineaux DR, Mattacola CG, Mair SD, Uhl TL. Reliability of video motion-analysis systems to measure amplitude and velocity of shoulder elevation. J Sport Rehabil. 2011;20(4):393-405. doi: 10.1123/jsr.20.4.393.
    » https://doi.org/10.1123/jsr.20.4.393
  • 20
    Thigpen CA, Gross MT, Karas SG, Garrett WE, Yu B. The repeatability of scapular rotations across three planes of humeral elevation. Res Sports Med. 2005;13(3):181-98. doi: 10.1080/15438620500222489.
    » https://doi.org/10.1080/15438620500222489
  • 21
    Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015.
    » https://doi.org/10.1016/j.gaitpost.2011.12.015
  • 22
    Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52(3):271-82. doi: 10.1007/s11517-013-1121-y.
    » https://doi.org/10.1007/s11517-013-1121-y
  • 23
    Xu X, Robertson M, Chen KB, Lin JH, McGorry RW. Using the Microsoft KinectTM to assess 3-D shoulder kinematics during computer use. Appl Ergon. 2017;65:418-23. doi: 10.1016/j.apergo.2017.04.004.
    » https://doi.org/10.1016/j.apergo.2017.04.004
  • 24
    Jordan K, Dziedzic K, Jones PW, Ong BN, Dawes PT. The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology (Oxford). 2000;39(4):382-8. doi: 10.1093/rheumatology/39.4.382.
    » https://doi.org/10.1093/rheumatology/39.4.382
  • 25
    Picerno P, Caliandro P, Iacovelli C, Simbolotti C, Crabolu M, Pani D, et al. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Sci Rep. 2019;9(1):14449. doi: 10.1038/s41598-019-50759-z.
    » https://doi.org/10.1038/s41598-019-50759-z
  • 26
    Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016;47:80-5. doi: 10.1016/j.gaitpost.2016.04.004.
    » https://doi.org/10.1016/j.gaitpost.2016.04.004
  • 27
    Lee SH, Yoon C, Chung SG, Kim HC, Kwak Y, Park HW, et al. Measurement of shoulder range of motion in patients with adhesive capsulitis using a Kinect. PLoS One. 2015;10(6):e0129398. doi: 10.1371/journal.pone.0129398.
    » https://doi.org/10.1371/journal.pone.0129398
  • 28
    Roldán-Jiménez C, Martin-Martin J, Cuesta-Vargas AI. Reliability of a smartphone compared with an inertial sensor to measure shoulder mobility: cross-sectional study. JMIR Mhealth Uhealth. 2019;7(9):e13640. doi: 10.2196/13640.
    » https://doi.org/10.2196/13640
  • 29
    Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34. doi: 10.1186/s12938-017-0324-0.
    » https://doi.org/10.1186/s12938-017-0324-0
  • 30
    Crabolu M, Pani D, Raffo L, Conti M, Cereatti A. Functional estimation of bony segment lengths using magneto-inertial sensing: application to the humerus. PLoS One. 2018;13(9):e0203861. doi: 10.1371/journal.pone.0203861.
    » https://doi.org/10.1371/journal.pone.0203861
  • 31
    Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
    » https://doi.org/10.1016/j.jse.2011.05.026
  • 32
    Seitz AL, Uhl TL. Reliability and minimal detectable change in scapulothoracic neuromuscular activity. J Electromyogr Kinesiol. 2012;22(6):968-74. doi: 10.1016/j.jelekin.2012.05.003.
    » https://doi.org/10.1016/j.jelekin.2012.05.003
  • 33
    Hackett L, Reed D, Halaki M, Ginn KA. Assessing the validity of surface electromyography for recording muscle activation patterns from serratus anterior. J Electromyogr Kinesiol. 2014;24(2):221-7. doi: 10.1016/j.jelekin.2014.01.007.
    » https://doi.org/10.1016/j.jelekin.2014.01.007
  • 34
    MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
    » https://doi.org/10.1186/1471-2474-8-42
  • 35
    Totlis T, Kitridis D, Tsikopoulos K, Georgoulis A. A computer tablet software can quantify the deviation of scapula medial border from the thoracic wall during clinical assessment of scapula dyskinesis. Knee Surg Sports Traumatol Arthrosc. 2021;29(1):202-9. doi: 10.1007/s00167-020-05916-7.
    » https://doi.org/10.1007/s00167-020-05916-7
  • 36
    Popchak A, Poploski K, Patterson-Lynch B, Nigolian J, Lin A. Reliability and validity of a return to sports testing battery for the shoulder. Phys Ther Sport. 2021;48:1-11. doi: 10.1016/j.ptsp.2020.12.003.
    » https://doi.org/10.1016/j.ptsp.2020.12.003
  • 37
    Johansson FR, Skillgate E, Lapauw ML, Clijmans D, Deneulin VP, Palmans T, et al. Measuring eccentric strength of the shoulder external rotators using a handheld dynamometer: reliability and validity. J Athl Train. 2015;50(7):719-25. doi: 10.4085/1062-6050-49.3.72.
    » https://doi.org/10.4085/1062-6050-49.3.72
  • 38
    Pearl ML, van de Bunt F, Pearl M, Lightdale-Miric N, Rethlefsen S, Loiselle J. Assessing shoulder motion in children: age limitations to Mallet and ABC loops. Clin Orthop Relat Res. 2014;472(2):740-8. doi: 10.1007/s11999-013-3324-9.
    » https://doi.org/10.1007/s11999-013-3324-9
  • 39
    Larsen CM, Søgaard K, Eshoj H, Ingwersen K, Juul-Kristensen B. Clinical assessment methods for scapular position and function. An inter-rater reliability study. Physiother Theory Pract. 2020;36(12):1399-420. doi: 10.1080/09593985.2019.1579284.
    » https://doi.org/10.1080/09593985.2019.1579284
  • 40
    d'Entremont AG, Nordmeyer-Massner JA, Bos C, Wilson DR, Pruessmann KP. Do dynamic-based MR knee kinematics methods produce the same results as static methods? Magn Reson Med. 2013;69(6):1634-44. doi: 10.1002/mrm.24425.
    » https://doi.org/10.1002/mrm.24425
  • 41
    Tal E. Measurement in science. In: Zalta EN, editor. The Stanford Encyclopedia of Philosophy [Internet]. Stanford: Stanford University; 2020 [cited 2021 Mar 30]. Available from: Available from: https://plato.stanford.edu/archives/fall2020/entries/measurement-science/
    » https://plato.stanford.edu/archives/fall2020/entries/measurement-science/
  • 42
    American Educational Research Association; American Psychological Association; National Council on Measurement in Education. The standards for educational and psychological testing. Washington, DC: American Educational Research Association; 2014.
  • 1
    Fonte de financiamento: nada a declarar

Datas de Publicação

  • Publicação nesta coleção
    05 Dez 2022
  • Data do Fascículo
    Jul-Sep 2022

Histórico

  • Recebido
    24 Mar 2022
  • Aceito
    30 Ago 2022
Universidade de São Paulo Rua Ovídio Pires de Campos, 225 2° andar. , 05403-010 São Paulo SP / Brasil, Tel: 55 11 2661-7703, Fax 55 11 3743-7462 - São Paulo - SP - Brazil
E-mail: revfisio@usp.br