Acessibilidade / Reportar erro
This document is related to:

Evaluation of the replacement of minimum shear reinforcement by steel fibers in reinforced concrete beams

Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado

Abstracts

Abstract

The shear strength of fiber reinforced elements is usually predicted through analytical models calibrated from experimental tests. Few results obtained from these tests consider the mechanical characterization of the material, allowing to evaluate the different performances of fiber reinforced concrete. This work evaluates the possibility of replacing the minimum shear reinforcement of reinforced concrete beams with steel fibers. For this, comparations were made evaluating the shear strength of 240 experimental tests of steel fiber reinforced concrete (SFRC) beams using formulations from the literature and international standards, to define which equations are in better agreement with the experimental data. Thus, once this expression was identified, SFRC beam design abacuses were developed to determine the amount of steel fibers needed to replace the minimum shear reinforcement, according to NBR 6118 [11 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.]. The results showed that the model by Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
] presented results similar to those obtained in experimental tests of beams. Finally, it is concluded that the developed abacuses will facilitate decision-making in the design of SFRC beams.

Keywords:
steel fiber; beams; reinforced concrete; shear


Resumo

A resistência ao cisalhamento de elementos reforçados com fibras é geralmente prevista por meio de modelos analíticos, calibrados a partir de ensaios experimentais. Poucos resultados obtidos através desses ensaios levam em consideração a caracterização mecânica do material, permitindo avaliar os diferentes desempenhos do concreto reforçado com fibras. Este trabalho avalia a possibilidade de substituição da armadura mínima de cisalhamento de vigas de concreto armado por fibras de aço. Para isso, foram feitas comparações avaliando a resistência ao cisalhamento de 240 ensaios experimentais de vigas de concreto reforçado com fibras de aço (CRFA), utilizando formulações da literatura e normas internacionais para definir quais equações apresentam uma maior concordância com os dados experimentais. Assim, identificada essa expressão, foram desenvolvidos ábacos de dimensionamento de vigas em CRFA que determinam a quantidade de fibras de aço necessárias para substituir as armaduras mínimas de cisalhamento, conforme a NBR 6118 [11 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.]. Os resultados mostraram que o modelo de Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
] apresentou resultados semelhantes aos obtidos em ensaios experimentais de vigas. Por fim, conclui-se que os ábacos desenvolvidos facilitarão a tomada de decisão no dimensionamento de vigas CRFA.

Palavras-chave:
fibras de aço; vigas; concreto armado; cisalhamento


1 INTRODUCTION

The discovery of concrete was responsible for the growth of buildings in the world. Concrete is a widely used material in civil construction and one of the most consumed in the world, according to IBRACON [33 Instituto Brasileiro do Concreto, “Concreto: material construtivo mais consumido no mundo,” vol. 37, no. 53, pp. 1-80, Jan./Mar. 2009.]. Because it is widely used, concrete is one of the most researched building materials, so there is a constant search for innovation in its use. Thus, it is noted the importance of knowing concrete more deeply as structural material.

In recent decades, a material that has shown considerable growth is the steel fiber reinforced concrete (SFRC). This material has been gaining space and its use is concentrated in low fiber consumption applications, being used in works of great social demand, such as sanitation and transportation. Being used in several fields, such as airports, bridges, tunnels, earthquake-resistant structures, and with different types of concrete, such as pre-stressed concrete and pre-cast concrete, [44 A. D. Figueiredo “Concreto com fibras,” in Concreto: Ciência e Tecnologia, B. Tutikian, F. Pacheco, G. Isaía, and I. Battagin, Eds., São Paulo, Brazil: IBRACON, 2nd ed., vol. 2, pp. 1-36, 2011. 5 J. Katzer, “Steel fibers and steel fiber reinforced concrete in civil engineering,” Pac. J. Sci. Technol., vol. 7, no. 1, pp. 53-58, May 2006. 6 A. P. Singh and D. Singhal, “Permeability of steel fibre reinforced concrete influence of fibre parameters,” Procedia Eng., vol. 14, pp. 2823-2829, Oct. 2011, http://dx.doi.org/10.1016/j.proeng.2011.07.355.
http://dx.doi.org/10.1016/j.proeng.2011....
]-[77 D. S. Vijayan et al., “A comprehensive analysis of the use of SFRC in structures and its current state of development in the construction industry,” Materials, vol. 15, pp. 2823-2829, Oct. 2022, http://dx.doi.org/10.3390/ma15197012.
http://dx.doi.org/10.3390/ma15197012...
]. However, some barriers still need to be overcome, so that there is greater acceptance of this material in the field of civil construction.

In Brazil, some technical standards address the SFRC theme, most of which are recently published: NBR 15530 [88 Associação Brasileira de Normas Técnicas, Fibras de Aço para Concretos - Especificação - Procedimento, NBR 15530, 2019.], NBR 8890 [99 Associação Brasileira de Normas Técnicas, Tubo de Concreto Armado de Seção Circular para Esgoto Sanitário, NBR 8890, 2020.], NBR 16935 [1010 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto Reforçado com Fibras - Procedimento, NBR 16935, 2021.], NBR 16938 [1111 Associação Brasileira de Normas Técnicas, Concreto Reforçado com Fibras - Controle da Qualidade, NBR 16938, 2021.], NBR 16939 [1212 Associação Brasileira de Normas Técnicas, Concreto Reforçado com Fibras - Determinação das Resistências à Fissuração e Residuais à Tração por Duplo Puncionamento - Método de Ensaio, NBR 16939, 2021.] and NBR 16940 [1313 Associação Brasileira de Normas Técnicas, Concreto Reforçado com Fibras - Determinação das Resistências à Tração na Flexão (Limite de Proporcionalidade e Resistências Residuais) - Método de Ensaio, NBR 16940, 2021.]. However, in other countries the fibers are already widely used, so several international standards address this issue: ACI 318 [1414 American Concrete Institute, Building Code Requirements for Structural Concrete, ACI 318, 2006.], ACI 544.1R-96 [1515 American Concrete Institute, State-of-the-Art Report on Fiber Reinforced Concrete, ACI 544.1R-96, 2006.], ACI 544.2R-89 [1616 American Concrete Institute, Measurement of Properties of Fiber Reinforced Concrete - Manual of Concrete Practice, ACI 544.2R-89, 2006.], ACI 544.3R-93 [1717 American Concrete Institute, Guide for Specifying, Proportioning, Mixing, Placing and Finishing Steel Fiber Reinforced Concrete, ACI 544.3R-93, 2006.], ACI 544.4R-18 [1818 American Concrete Institute, Design Considerations for Steel Fiber Reinforced Concrete, ACI 544.4R-18, 2018.], DAfStB [1919 DAfStB, Deutscher Ausschuss für Stahlbeton (DAfStb): Richtlinie Stahlfaserbeton, Berlin, Germany, 2012.], fib Model Code [2020 fib, Model Code 2010: Final Draft, fib Model Code for Concrete Structures 2010. International Federation for Structural Concrete (fib), 2012.], JSCE [2121 Japan Society of Civil Engineers, Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Concrete Engineering Series 82, 2008.] and RILEM [2222 RILEM, “RILEM TC 162-TDF: ‘Test and design methods for steel fibre reinforced concrete’, σ-ε-design method,” Mater. Struct., vol. 36, pp. 560-567, Oct. 2003.].

In the past decades, research have shown that the inclusion of steel fibers is highly beneficial to enhance both the behavior of the structural members at Serviceability Limit State (SLS) [2323 L. Biolzi and S. Cattaneo, “Response of steel fiber reinforced high strength concrete beams: experiments and code predictions,” Cement Concr. Compos., vol. 77, pp. 1-13, Mar. 2017, http://dx.doi.org/10.1016/j.cemconcomp.2016.12.002.
http://dx.doi.org/10.1016/j.cemconcomp.2...
24 J. R. Deluce and F. J. Vecchio, “Cracking behavior of steel fiber-reinforced concrete members containing conventional reinforcement,” Struct. J., vol. 110, no. 3, pp. 481-490, May 2013, http://dx.doi.org/10.14359/51685605.
http://dx.doi.org/10.14359/51685605...
]-[2525 G. Tiberti, F. Minelli, and G. Plizzari, “Cracking behavior in reinforced concrete members with steel fibers: a comprehensive experimental study,” Cement Concr. Res., vol. 68, pp. 24-34, Feb. 2014, http://dx.doi.org/10.1016/j.cemconres.2014.10.011.
http://dx.doi.org/10.1016/j.cemconres.20...
] and the structural resistance at Ultimate Limit State (ULS) [2626 D. C. Cardoso, G. B. Pereira, F. A. Silva, J. J. H. Silva Fo., and E. V. Pereira, “Influence of steel fibers on the flexural behavior of RC beams with low reinforcing ratios: analytical and experimental investigation,” Compos. Struct., vol. 222, pp. 110926, Aug. 2019, http://dx.doi.org/10.1016/j.compstruct.2019.110926.
http://dx.doi.org/10.1016/j.compstruct.2...
27 A. Conforti, F. Minelli, and G. A. Plizzari, “Wide-shallow beams with and without steel fibres: a peculiar behaviour in shear and flexure,” Compos., Part B Eng., vol. 51, pp. 282-290, Aug. 2013. https://doi.org/10.1016/j.compositesb.2013.03.033.
https://doi.org/10.1016/j.compositesb.20...
28 C. Cucchiara, L. L. Mendola, and M. Papia, “Effectiveness of stirrups and steel fibres as shear reinforcement,” Cement Concr. Compos., vol. 26, no. 7, pp. 777-786, Oct. 2004, http://dx.doi.org/10.1016/j.cemconcomp.2003.07.001.
http://dx.doi.org/10.1016/j.cemconcomp.2...
29 H. H. Dinh, G. J. Parra-Montesinos, and J. K. Wight, “Shear behavior of steel fiber-reinforced concrete beams without stirrup reinforcement,” Struct. J., vol. 107, no. 5, pp. 597-606, Sep. 2010, http://dx.doi.org/10.14359/51663913.
http://dx.doi.org/10.14359/51663913...
30 H. Ju, D. H. Lee, and K. S. Kim, “Minimum torsional reinforcement ratio for reinforced concrete members with steel fibers,” Compos. Struct., vol. 207, pp. 460-470, Jan. 2019, http://dx.doi.org/10.1016/j.compstruct.2018.09.068.
http://dx.doi.org/10.1016/j.compstruct.2...
31 A. Meda, F. Minelli, and G. A. Plizzari, “Flexural behaviour of RC beams in fibre reinforced concrete,” Compos., Part B Eng., vol. 43, no. 8, pp. 2930-2937, Dec. 2012, http://dx.doi.org/10.1016/j.compositesb.2012.06.003.
http://dx.doi.org/10.1016/j.compositesb....
]-[3232 D.-Y. Yoo and J.-M. Yang, “Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams,” Cement Concr. Compos., vol. 87, pp. 137-148, Mar. 2018, http://dx.doi.org/10.1016/j.cemconcomp.2017.12.010.
http://dx.doi.org/10.1016/j.cemconcomp.2...
]. Steel Fiber Reinforced Concrete (SFRC) generally exhibits improved toughness, ductility, cracking resistance, and tensile strength relative to normal concrete, the possibility to replace partially or totally the conventional reinforcement (Trindade et al. [3333 Y. T. Trindade, L. A. G. Bitencourt Jr., and O. L. Manzoli, “Design of SFRC members aided by a multiscale model: part ii - predicting the behavior of RC-SFRC beams,” Compos. Struct., vol. 241, pp. 112079, Jun. 2020, http://dx.doi.org/10.1016/j.compstruct.2020.112079.
http://dx.doi.org/10.1016/j.compstruct.2...
]). According to Bentur and Mindess [3434 A. Bentur and S. Mindess, Fibre Reinforced Cementitious Composites, 2nd ed. London, United Kingdom: Taylor & Francis, 2007. https://doi.org/10.1201/9781482267747.
https://doi.org/10.1201/9781482267747...
], the main contribution of the addition of fibers occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. The behavior of the composite can be influenced by several parameters: structure of the concrete matrix; material, shape and geometry of the fiber; fiber content; distribution of the fibers and fiber-matrix interface structure, which can justify the variability presented on the mechanical responses of this type of composite.

Recently, several authors have studied the post-cracking behavior of SFRC according to EN 14651 [3535 European Committee for Standardization, Test Method for Metallic Fiber Concrete - Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual), EN 14651:2005+A1:2007, 2007.], investigating the influence of several parameters [3636 G. Tiberti, F. Germano, A. Mudadu, and G. A. Plizzari, “An overview of the flexural postcracking behavior of steel fiber reinforced concrete,” Struct. Concr., vol. 19, no. 3, pp. 695-718, Oct. 2018, http://dx.doi.org/10.1002/suco.201700068.
http://dx.doi.org/10.1002/suco.201700068...
37 A. Mudadu, G. Tiberti, F. Germano, G. A. Plizzari, and A. Morbi, “The effect of fiber orientation on the post-cracking behavior of steel fiber reinforced concrete under bending and uniaxial tensile tests,” Cement Concr. Compos., vol. 93, pp. 274-288, Oct. 2018, http://dx.doi.org/10.1016/j.cemconcomp.2018.07.012.
http://dx.doi.org/10.1016/j.cemconcomp.2...
38 M. Alberti, A. Enfedaque, and J. Gálvez, “A review on the assessment and prediction of the orientation and distribution of fibres for concrete,” Compos., Part B Eng., vol. 151, pp. 274-290, Oct. 2018, http://dx.doi.org/10.1016/j.compositesb.2018.05.040.
https://doi.org/10.1016/j.compositesb.20...
39 J.-H. Lee, “Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete,” Compos. Struct., vol. 168, pp. 216-225, May 2017, https://doi.org/10.1016/j.compstruct.2017.01.052.
https://doi.org/10.1016/j.compstruct.201...
40 O. Švec, G. Žirgulis, J. E. Bolander, and H. Stang, “Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements,” Cement Concr. Compos., vol. 50, pp. 60-72, Jul. 2014, http://dx.doi.org/10.1016/j.cemconcomp.2013.12.002.
http://dx.doi.org/10.1016/j.cemconcomp.2...
41 S.-J. Lee, Y. Hong, A.-H. Eom, and J.-P. Won, “Effect of steel fibres on fracture parameters of cementitious composites,” Compos. Struct., vol. 204, pp. 658-663, Nov. 2018, http://dx.doi.org/10.1016/j.compstruct.2018.08.002.
http://dx.doi.org/10.1016/j.compstruct.2...
]-[4242 S. Zhang, L. Liao, S. Song, and C. Zhang, “Experimental and analytical study of the fibre distribution in SFRC: a comparison between image processing and the inductive test,” Compos. Struct., vol. 188, pp. 78-88, Mar. 2018, http://dx.doi.org/10.1016/j.compstruct.2018.01.006.
http://dx.doi.org/10.1016/j.compstruct.2...
]. In the same way, several research have been developed for the application of steel fibers in structural elements to replace shear reinforcement. According to Lim et al. [4343 T. Y. Lim, P. Paramasivam, and S. L. Lee, “Shear and moment capacity of reinforced steel-fiber-concrete beams,” Mag. Concr. Res., vol. 39, no. 140, pp. 148-160, Sep. 1987, http://dx.doi.org/10.1680/macr.1987.39.140.148.
http://dx.doi.org/10.1680/macr.1987.39.1...
], the replacement of stirrups by the fibers in structural members is especially attractive in regions of high shear and bending moments.

Studies of shear strength in SFRC beams have been developed over the years [4444 A. K. Sharma, “Shear strength of steel fiber reinforced concrete beams,” ACI J. Proc., vol. 83, no. 4, pp. 624-628, Jul. 1986, http://dx.doi.org/10.14359/10559.
http://dx.doi.org/10.14359/10559...
]-[5656 G. Arslan, R. Keskin, and S. Ulusoy, “An experimental study on the shear strength of SFRC beams without stirrups,” J. Theor. Appl. Mech., vol. 55, no. 4, pp. 1205-1217, 2017, http://dx.doi.org/10.15632/jtam-pl.55.4.1205.
http://dx.doi.org/10.15632/jtam-pl.55.4....
], with the intention of understanding how the addition of steel fibers inside the concrete influence the increase of strength to shear force. Some authors report a considerable gain in the shear strength of SFRC beams compared to conventional concrete beams. Slater et al. [5757 E. Slater, M. Moni, and M. S. Alam, “Predicting the shear strength of steel fiber reinforced concrete beams,” Constr. Build. Mater., vol. 26, no. 1, pp. 423-436, Jan. 2012, http://dx.doi.org/10.1016/j.conbuildmat.2011.06.042.
http://dx.doi.org/10.1016/j.conbuildmat....
] described a 258% increase, according to study by Adebar et al. [5858 P. Adebar, S. Mindess, D. St.-Pierre, and B. Olund, “Shear tests of fiber concrete beams without stirrups,” ACI Struct. J., vol. 94, no. 1, pp. 68-76, Jan. 1997, http://dx.doi.org/10.14359/462.
http://dx.doi.org/10.14359/462...
]. However, the same authors cite a study by Shin et al. [5959 S. W. Shin, J. G. Oh, and S. K. Ghosh, “Shear behavior of laboratory-sized high strength concrete beams reinforced with bars and steel fibers,” ACI SP142-Fiber Renforced Concrete-Developments and Innovations, vol. 142, pp. 181-200, Jan. 1994, https://dx.doi.org/10.14359/3917.
https://dx.doi.org/10.14359/3917...
] where the strength gain of SFRC beams was below 9%. Nzambi et al. [6060 A. K. L. L. Nzambi, D. R. C. Oliveira, M. V. S. Monteiro, and L. F. A. Silva, “Experimental analysis of steel fiber reinforced concrete beams in shear,” Rev. IBRACON Estrut. Mater., vol. 15, no. 3, pp. e15301, Oct. 2022, http://dx.doi.org/10.1590/S1983-41952022000300001.
http://dx.doi.org/10.1590/S1983-41952022...
] observed that shear strength increased approximately 109% with the addition of 1% of steel fibers, comparing beams with the same longitudinal reinforcement ratio. Thus, variability in the experimental results of studies related to the gain of shear strength promoted by steel fibers has been observed.

Steel fibers are defined as a discontinuous element, presenting length much greater than the largest dimension of the cross section. They are manufactured with different shapes and geometries (hooked, crimped, straight smooth, mixed, fibers with a flat end, flat fibers, round fibers, mill-cut fibers, 4D/5D hooked-end ones, recycled fibers, and corrugated fibers, among others) [88 Associação Brasileira de Normas Técnicas, Fibras de Aço para Concretos - Especificação - Procedimento, NBR 15530, 2019.], [6161 E. O. L. Lantsoght, “Database of shear experiments on steel fiber reinforced concrete beams without stirrups,” Materials, vol. 12, no. 6, pp. 917, Mar. 2019, http://dx.doi.org/10.3390/ma12060917.
http://dx.doi.org/10.3390/ma12060917...
62 S. Abdallah, M. Fan, and D. W. Rees, “Effect of elevated temperature on pull-out behaviour of 4DH/5DH hooked end steel fibres,” Compos. Struct., vol. 165, pp. 180-191, Apr. 2017, http://dx.doi.org/10.1016/j.compstruct.2017.01.005.
http://dx.doi.org/10.1016/j.compstruct.2...
]-[6363 S. Abdallah, M. Fan, and D. W. Rees, “Predicting pull-out behaviour of 4D/5D hooked end fibres embedded in normal-high strength concrete,” Eng. Struct., vol. 172, pp. 967-980, Oct. 2018, http://dx.doi.org/10.1016/j.engstruct.2018.06.066.
http://dx.doi.org/10.1016/j.engstruct.20...
], presenting an important influence on the behavior of the composite [6464 A. D. Figueiredo, “Parâmetros de controle e dosagem do concreto projetado com fibras de aço,” Doctoral dissertation, Esco. Politéc., Univ. São Paulo, São Paulo, Brazil, 1997.].

Generally, steel fibers provide an increase in the shear strength of SFRC beams by their random distribution inside the concrete, promoting a small space between them, transferring the tensile stresses between the cracks, changing the post-cracking behavior of the concrete, and increasing the ductility of the material. The interest in studying the behavior of shear in beams is essential since this force can cause a fragile rupture, which can be altered with the addition of fibers. In previous studies, [6565 E. Cuenca, A. Conforti, F. Mneli, G. A. Plizzari, J. N. Gregori, and P. Serna, “A material-performance-based database for FRC and RC elements under shear loading,” Mater. Struct., vol. 51, pp. 11, Jan. 2018, http://dx.doi.org/10.1617/s11527-017-1130-7.
http://dx.doi.org/10.1617/s11527-017-113...
66 A. M. Bernat, N. Spinella, A. Recupero, and A. Cladera, “Mechanical model for the shear strength of steel fiber reinforced concrete (SFRC) beams without stirrups,” Mater. Struct., vol. 53, pp. 28, Feb. 2020, http://dx.doi.org/10.1617/s11527-020-01461-4.
http://dx.doi.org/10.1617/s11527-020-014...
67 T. L. Resende, D. C. T. Cardoso, and L. C. D. Shehata, “Influence of steel fibers on the dowel action of RC beams without stirrups,” Eng. Struct., vol. 221, pp. 111044, Oct. 2020, http://dx.doi.org/10.1016/j.engstruct.2020.111044.
http://dx.doi.org/10.1016/j.engstruct.20...
68 Y. Yu, X. Zhao, J. Xu, S. Wang, and T. Xie, “Evaluation of shear capacity of steel fiber reinforced concrete beams without stirrups using artificial intelligence models,” Materials, vol. 15, no. 7, pp. 2407, Mar. 2022, http://dx.doi.org/10.3390/ma15072407.
http://dx.doi.org/10.3390/ma15072407...
69 M. Tariq, A. Khan, A. Ullah, J. Shayanfar, and M. Niaz, “Improved shear strength prediction model of steel fiber reinforced concrete beams by adopting gene expression programming,” Materials, vol. 15, no. 11, pp. 3758, May 2022, http://dx.doi.org/10.3390/ma15113758.
http://dx.doi.org/10.3390/ma15113758...
]-[7070 A. Z. Saber, “Prediction and developing of shear strength of reinforced high strength concrete beams with and without steel fibers using multiple mathematical models,” PLoS One, vol. 17, no. 3, pp. e0265677, Mar. 2022, http://dx.doi.org/10.1371/journal.pone.0265677.
http://dx.doi.org/10.1371/journal.pone.0...
], the influences of several parameters: compressive strength of concrete (fc ), the relationship between the shear span and effective depth of the beam cross section (a/d), longitudinal reinforcement ratio (ρ), fiber volume (Vf), fiber format (ρf), and aspect ratio (lf/df) on the shear strength behavior of SFRC were analyzed. Lantsoght [6161 E. O. L. Lantsoght, “Database of shear experiments on steel fiber reinforced concrete beams without stirrups,” Materials, vol. 12, no. 6, pp. 917, Mar. 2019, http://dx.doi.org/10.3390/ma12060917.
http://dx.doi.org/10.3390/ma12060917...
], Vitor et al. [7171 P. C. P. Vitor, A. C. Santos, and L. M. Trautwein, “Resistência ao cisalhamento em vigas de concreto armado sem armadura transversal reforçadas com fibras de aço,” Ambient. Constr., vol. 18, no. 3, pp. 255-270, Jul./Sep. 2018, http://dx.doi.org/10.1590/s1678-86212018000300280.
http://dx.doi.org/10.1590/s1678-86212018...
], Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
], and Arslan et al. [5656 G. Arslan, R. Keskin, and S. Ulusoy, “An experimental study on the shear strength of SFRC beams without stirrups,” J. Theor. Appl. Mech., vol. 55, no. 4, pp. 1205-1217, 2017, http://dx.doi.org/10.15632/jtam-pl.55.4.1205.
http://dx.doi.org/10.15632/jtam-pl.55.4....
] reported a gain in the strength of steel fiber reinforced concrete beams, using longitudinal reinforcements and without stirrups.

According to the results from this literature, it can be claimed that the development of this type of research brings significant benefits to the current scenario of civil construction. Once that the use of SFRC may dispense, in part or completely, the conventional (passive) reinforcements of the concrete elements, promoting an increase in productivity and minimization of construction errors. Furthermore, it may also provide a reduction in material consumption and optimization in construction processes.

Within this context, this research evaluates the possibility of replacing the minimum shear reinforcement by steel fibers in reinforced concrete beams. Through statistical methods, comparisons are made between 240 results of experimental tests with 3 international normative formulations and 10 sets of equations in the literature, evaluating the shear strength of reinforced concrete beams to choose the expression that was closest to the experimental data. Therefore, the formulation that best represented the experimental tests results was used to develop SFRC beam design abacuses, becoming a simple alternative to define the amount of steel fibers needed to replace the minimum shear reinforcement, according to the NBR 6118 [11 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.]. The proposed design abacuses can be considered simple and easy to apply for SFRC beam design.

2 DATA BASE

The models for predicting shear strength in SFRC beams, presented in item 3, were applied to an experimental database. These tests measured the shear strength of concrete beams, reinforced longitudinally and without stirrups. The database developed for this study contains 240 experiments of SFRC beams, which was mainly collected from a public domain database compiled (488 experiments) by Lantsoght [6161 E. O. L. Lantsoght, “Database of shear experiments on steel fiber reinforced concrete beams without stirrups,” Materials, vol. 12, no. 6, pp. 917, Mar. 2019, http://dx.doi.org/10.3390/ma12060917.
http://dx.doi.org/10.3390/ma12060917...
] and the 8 tests conducted by Vitor et al. [7171 P. C. P. Vitor, A. C. Santos, and L. M. Trautwein, “Resistência ao cisalhamento em vigas de concreto armado sem armadura transversal reforçadas com fibras de aço,” Ambient. Constr., vol. 18, no. 3, pp. 255-270, Jul./Sep. 2018, http://dx.doi.org/10.1590/s1678-86212018000300280.
http://dx.doi.org/10.1590/s1678-86212018...
]. The database covers a very large distribution of significative parameters, e.g., many different fiber types, several cross sections, the maximum beam width and height that has been tested are 610 mm and 1220 mm, respectively. More information about the public domain database, see in Lantsoght [6161 E. O. L. Lantsoght, “Database of shear experiments on steel fiber reinforced concrete beams without stirrups,” Materials, vol. 12, no. 6, pp. 917, Mar. 2019, http://dx.doi.org/10.3390/ma12060917.
http://dx.doi.org/10.3390/ma12060917...
] and Lantsoght [7272 E. O. L. Lantsoght. “Database of experiments on SFRC beams without stirrups failing in shear.” Zenodo. http://dx.doi.org/10.5281/zenodo.2578060 (accessed Jul. 13, 2023).
http://dx.doi.org/10.5281/zenodo.2578060...
].

In this paper, only rectangular cross section beams were selected and whose concrete has a compressive strength up to 50 MPa. The rectangular cross section was chosen because it is the most commonly used in beam designs. The compressive strength of concrete belonging to Group 1 of NBR 6118 [11 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.] was considered. The tests were conducted by [4343 T. Y. Lim, P. Paramasivam, and S. L. Lee, “Shear and moment capacity of reinforced steel-fiber-concrete beams,” Mag. Concr. Res., vol. 39, no. 140, pp. 148-160, Sep. 1987, http://dx.doi.org/10.1680/macr.1987.39.140.148.
http://dx.doi.org/10.1680/macr.1987.39.1...
], [4646 R. Narayanan and I. Y. S. Darwish, “Fiber concrete deep beams in shear,” ACI Struct. J., vol. 85, no. 2, pp. 141-149, Mar. 1988, http://dx.doi.org/10.14359/2698.
http://dx.doi.org/10.14359/2698...
], [4747 K. H. Kwak, J. Suh, and C. T. T. Hsu, “Shear-fatigue behavior of steel fiber reinforced concrete beams,” ACI Struct. J., vol. 88, no. 2, pp. 155-160, Mar. 1991, http://dx.doi.org/10.14359/2653.
http://dx.doi.org/10.14359/2653...
48 R. N. Swamy, R. Jones, and A. T. P. Chiam, “Influence of steel fibers on the shear resistance of lightweight concrete I-beams,” ACI Struct. J., vol. 90, no. 1, pp. 103-114, Jan. 1993, http://dx.doi.org/10.14359/4201.
http://dx.doi.org/10.14359/4201...
], [5151 G. J. Parra-Montesinos, J. K. Wight, H. H. Dinh, A. Libbrecht, and C. Padilla, Shear Strength of Fiber Reinforced Concrete Beams without Stirrups. Ann Arbor, MI, USA: Univ. of Michigan Press, 2006.]-[5454 D. R. Sahoo and A. Sharma, “Effect of steel fiber content on behavior of concrete beams with and without stirrups,” ACI Struct. J., vol. 111, no. 5, pp. 1157-1166, Sep. 2014, http://dx.doi.org/10.14359/51686821.
http://dx.doi.org/10.14359/51686821...
55 D. R. Sahoo, S. Bhagat, and T. C. V. Reddy, “Experimental study on shear-span to effective-depth ratio of steel fiber reinforced concrete T-beams,” Mater. Struct., vol. 49, pp. 3815-3830, Nov. 2016, http://dx.doi.org/10.1617/s11527-015-0756-6.
http://dx.doi.org/10.1617/s11527-015-075...
], [5656 G. Arslan, R. Keskin, and S. Ulusoy, “An experimental study on the shear strength of SFRC beams without stirrups,” J. Theor. Appl. Mech., vol. 55, no. 4, pp. 1205-1217, 2017, http://dx.doi.org/10.15632/jtam-pl.55.4.1205.
http://dx.doi.org/10.15632/jtam-pl.55.4....
], [5858 P. Adebar, S. Mindess, D. St.-Pierre, and B. Olund, “Shear tests of fiber concrete beams without stirrups,” ACI Struct. J., vol. 94, no. 1, pp. 68-76, Jan. 1997, http://dx.doi.org/10.14359/462.
http://dx.doi.org/10.14359/462...
], [7171 P. C. P. Vitor, A. C. Santos, and L. M. Trautwein, “Resistência ao cisalhamento em vigas de concreto armado sem armadura transversal reforçadas com fibras de aço,” Ambient. Constr., vol. 18, no. 3, pp. 255-270, Jul./Sep. 2018, http://dx.doi.org/10.1590/s1678-86212018000300280.
http://dx.doi.org/10.1590/s1678-86212018...
], [7373 A. Shoaib, A. S. Lubell, and V. S. Bindiganavile, “Shear response of lightweight steel fiber reinforced concrete members without stirrups,” Mater. Struct., vol. 48, pp. 3141-3157, Jul. 2015, http://dx.doi.org/10.1617/s11527-014-0387-3.
http://dx.doi.org/10.1617/s11527-014-038...
74 J. Rosenbusch and M. Teutsch, Trial Beams in Shear Brite/Euram Project 97-4163, Final Report Sub Task 4.2. Braunschweig, Germany: Tech. Univ. Braunschweig, 2003. 75 C. Cucchiara, L. La Mendola, and M. Papia, “Effectiveness of stirrups and steel fibres as shear reinforcement,” Cement Concr. Compos., vol. 26, no. 7, pp. 777-786, Oct. 2004, http://dx.doi.org/10.1016/j.cemconcomp.2003.07.001.
http://dx.doi.org/10.1016/j.cemconcomp.2...
76 D. H. Lim and B. H. Oh, “Experimental and theoretical investigation on the shear of steel fibre reinforced concrete beams,” Eng. Struct., vol. 21, no. 10, pp. 937-944, Oct. 1999, http://dx.doi.org/10.1016/S0141-0296(98)00049-2.
http://dx.doi.org/10.1016/S0141-0296(98)...
77 F. Minelli and G. Plizzari, “On the effectiveness of steel fibers as shear reinforcement,” ACI Struct. J., vol. 110, no. 3, pp. 379-390, May 2013, http://dx.doi.org/10.14359/51685596.
http://dx.doi.org/10.14359/51685596...
78 M. A. Mansur, K. C. G. Ong, and P. Paramasivam, “Shear strength of fibrous concrete beamswithout stirrups,” J. Struct. Eng., vol. 112, no. 9, pp. 2066-2079, Sep. 1986, http://dx.doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066).
http://dx.doi.org/10.1061/(ASCE)0733-944...
79 M. R. Zarrinpour and S. H. Chao, “Shear strength enhancement mechanisms of steel fiber-reinforced concrete slender beams,” ACI Struct. J., vol. 114, no. 3, pp. 729-742, May 2017, http://dx.doi.org/10.14359/51689449.
http://dx.doi.org/10.14359/51689449...
80 T. Greenough and M. Nehdi, “Shear behavior of fiber-reinforced self-consolidating concrete slender beams,” ACI Mater. J., vol. 105, no. 5, pp. 468-477, Sep. 2008, http://dx.doi.org/10.14359/19976.
http://dx.doi.org/10.14359/19976...
81 T. H. K. Kang, W. Kim, L. M. Massone, and T. A. Galleguillos, “Shear-flexure coupling behavior of steel fiber-reinforced concrete beams,” ACI Struct. J., vol. 109, no. 4, pp. 435-444, Jul. 2012, http://dx.doi.org/10.14359/51683863.
http://dx.doi.org/10.14359/51683863...
82 D. Dupont and L. Vandewalle, “Shear capacity of concrete beams containing longitudinal reinforcement and steel fibers,” ACI Spec. Publ., vol. 216, pp. 79-94, Oct. 2003, http://dx.doi.org/10.14359/12893.
http://dx.doi.org/10.14359/12893...
83 G. Batson, E. Jenkins, and R. Spatney, “Steel fibers as shear reinforcement in beams,” ACI J. Proc., vol. 69, no. 10, pp. 640-644, Oct. 1972, http://dx.doi.org/10.14359/7151.
http://dx.doi.org/10.14359/7151...
84 J. Zhao, J. Liang, L. Chu, and F. Shen, “Experimental study on shear behavior of steel fiber reinforced concrete beams with high-strength reinforcement,” Materials, vol. 11, no. 9, pp. 1682, Sep. 2018, http://dx.doi.org/10.3390/ma11091682.
http://dx.doi.org/10.3390/ma11091682...
85 R. L. Jindal, “Shear and moment capacities of steel fiber reinforced concrete beams,” ACI Spec. Publ., vol. 81, pp. 1-16, Nov. 1984, http://dx.doi.org/10.14359/6443.
http://dx.doi.org/10.14359/6443...
86 J. H. Hwang, D. H. Lee, K. S. Kim, H. Ju, and S. Y. Seo, “Evaluation of shear performance of steel fibre reinforced concrete beams using a modified smeared-truss model,” Mag. Concr. Res., vol. 65, no. 5, pp. 283-296, Mar. 2013, http://dx.doi.org/10.1680/macr.12.00009.
http://dx.doi.org/10.1680/macr.12.00009...
87 S. Gali and K. V. L. Subramaniam, “Shear behavior of steel fiber reinforced concrete using full-field displacements from digital image correlation,” MATEC Web Conf., vol. 120, pp. 04003, Aug. 2017, http://dx.doi.org/10.1051/matecconf/201712004003.
http://dx.doi.org/10.1051/matecconf/2017...
88 A. Shoaib, A. S. Lubell, and V. S. Bindiganavile, “Size effect in shear for steel fiber-reinforced concrete members without stirrups,” ACI Struct. J., vol. 111, no. 5, pp. 1081-1090, Sep. 2014, http://dx.doi.org/10.14359/51686813.
http://dx.doi.org/10.14359/51686813...
89 A. Shoaib, “Shear in steel fiber reinforced concrete without stirrups,” Ph.D. dissertation, Univ. Alberta, Edmonton, Canada, 2012.]-[9090 A. S. Abdul-Zaher, L. M. Abdul-Hafez, Y. R. Tawfic, and O. Hammed, “Shear behavior of fiber reinforced concrete beams,” J. Eng. Sci., vol. 44, no. 2, pp. 132-144, Mar./Apr. 2016.]. The database used in this work can be found at [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.].

Table 1 shows the ranges and statistics of the parameters bw (width of cross section), h (height of cross section), d (effective depth), L (length of the beam), a/d, ρ, da (maximum aggregate size), fc, Vf, lf, df and lf/df in the database. It can be observed that wide ranges of selected parameters are considered.

Table 1
Ranges of parameters in database [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.].

The frequency distribution of the main database parameters is shown in Figures 1 to 5. According to Figure 1, the geometric parameters of bw and h have their values concentrated between 100 - 250 mm (<97%) and up to 350 mm (<74%), respectively.

Figure 1
Distribution of parameters in database [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.]: (a) beam width and (b) beam height.
Figure 5
Distribution of parameters in database [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.]: (a) fiber volume and (b) aspect factor.

From Figure 2, it can be seen that the effective beam height d have their values concentrated between 100 - 400 mm <88% and the span length L shows crowding in a small beam length range, up to 2250 mm (<74%).

Figure 2
Distribution of parameters in database [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.]: (a) effective height and (b) span length.

The specimens in the database are normally distributed in terms of shear span to depth ratio, see Figure 3a, with a/d=3.5 as the most frequently used value. Typically, this value is widely used because smaller values increase the shear strength caused by the arching action [9292 P. B. Fusco, Estruturas de Concreto: Solicitações Transversais. São Paulo, Brazil: PINI, 2008.]. Figure 3b shows the range of values of the reinforcement ratio from 1.0 - 3.5% (<95%). The longitudinal reinforcement ratio was relatively well distributed, observing high values, which is common for this type of test, thus compelling beam failure in shear mode rather than flexure.

Figure 3
Distribution of parameters in database [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.]: (a) shear span to depth ratio and (b) longitudinal reinforcement ratio.

The maximum diameter of the aggregate has its values between 10 and 15 mm, as shown in Figure 4a. From Figure 4b, it can be seen that the concrete compressive strength was distributed between 20 and 50 MPa, and has its highest concentration between 30 and 45 MPa. The results lie withing the range of normal strength concrete.

Figure 4
Distribution of parameters in database [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.]: (a) maximum aggregate size and (b) compressive strength of concrete.

According to Figure 5a, the fiber volume fraction, shows crowding in the range of 0.5 - 1.5% (<87%). Although tests with Vf up to 3% were considered, few tests have employed more than 1.5%, because above these fractions the material is less effective in terms of workability. Most of the steel fibers used in the tests have an aspect ratio between 50 and 75, as shown in Figure 5b. Various steel fiber types are available on the market today, however, the most frequently used fibers in the database are hooked (67%) and crimped (17%).

3 MODELS OF PREDICTION OF THE SHEAR STRENGTH IN SFRC BEAMS

Over the past 60 years, several models for predicting shear strength in SFRC beams have been proposed. The vast majority of them are empirical models [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
], [4444 A. K. Sharma, “Shear strength of steel fiber reinforced concrete beams,” ACI J. Proc., vol. 83, no. 4, pp. 624-628, Jul. 1986, http://dx.doi.org/10.14359/10559.
http://dx.doi.org/10.14359/10559...
], [5353 B. Singh and K. Jain, “An appraisal of steel fibers as minimum shear reinforcement in concrete beams,” ACI Struct. J., vol. 111, no. 5, pp. 1191-1202, Sep. 2014, http://dx.doi.org/10.14359/51686969.
http://dx.doi.org/10.14359/51686969...
], [5454 D. R. Sahoo and A. Sharma, “Effect of steel fiber content on behavior of concrete beams with and without stirrups,” ACI Struct. J., vol. 111, no. 5, pp. 1157-1166, Sep. 2014, http://dx.doi.org/10.14359/51686821.
http://dx.doi.org/10.14359/51686821...
], [9393 G. Arslan, “Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams,” KSCE J. Civ. Eng., vol. 18, pp. 587-594, Mar. 2014, http://dx.doi.org/10.1007/s12205-014-0320-x.
http://dx.doi.org/10.1007/s12205-014-032...
] and [9494 H. H. Dinh, G. J. Parra-Montesinos, and J. K. Wight, “Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement,” J. Struct. Eng., vol. 137, no. 10, pp. 1039-1051, Dec. 2011., http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000362.
http://dx.doi.org/10.1061/(ASCE)ST.1943-...
], developed from an experimental data set. Furthermore, some formulations are based on the mechanical properties of the composite material ([9595 M. Sarveghadi, A. H. Gandomi, H. Bolandi, and A. H. Alavi, “Development of prediction models for shear strength of SFRCB using a machine learning approach,” Neural Comput. Appl., vol. 31, pp. 2085-2094, Aug. 2015, http://dx.doi.org/10.1007/s00521-015-1997-6.
http://dx.doi.org/10.1007/s00521-015-199...
], [9696 M. Imam, L. Vandewalle, F. Mortelmans, and D. Van Gemert, “Shear domain of fibre-reinforced high-strength concrete beams,” Eng. Struct., vol. 19, no. 9, pp. 738-747, Sep. 1997, http://dx.doi.org/10.1016/S0141-0296(96)00150-2.
http://dx.doi.org/10.1016/S0141-0296(96)...
]). Generally, the models use as main parameters to predict shear strength in SFRC beams: the compressive and tensile strengths of concrete (fc and fct), a/d ratio (shear span and effective height), longitudinal reinforcement ratio (ρ), fiber volume (Vf) and parameters related to the type of steel fiber used.

It is shown in the Table 2, the models for predicting shear strength in steel fiber reinforced concrete beams selected for this work: eight models proposed by several authors ([22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
], [4444 A. K. Sharma, “Shear strength of steel fiber reinforced concrete beams,” ACI J. Proc., vol. 83, no. 4, pp. 624-628, Jul. 1986, http://dx.doi.org/10.14359/10559.
http://dx.doi.org/10.14359/10559...
], [5252 H. H. Dinh, G. J. Parra-Montesinos, and J. K. Wight, “Shear behavior of steel fiber-reinforced concrete beams without stirrup reinforcement,” ACI Struct. J., vol. 107, no. 5, pp. 597-606, Sep. 2010.]-[5454 D. R. Sahoo and A. Sharma, “Effect of steel fiber content on behavior of concrete beams with and without stirrups,” ACI Struct. J., vol. 111, no. 5, pp. 1157-1166, Sep. 2014, http://dx.doi.org/10.14359/51686821.
http://dx.doi.org/10.14359/51686821...
], [9393 G. Arslan, “Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams,” KSCE J. Civ. Eng., vol. 18, pp. 587-594, Mar. 2014, http://dx.doi.org/10.1007/s12205-014-0320-x.
http://dx.doi.org/10.1007/s12205-014-032...
], [9595 M. Sarveghadi, A. H. Gandomi, H. Bolandi, and A. H. Alavi, “Development of prediction models for shear strength of SFRCB using a machine learning approach,” Neural Comput. Appl., vol. 31, pp. 2085-2094, Aug. 2015, http://dx.doi.org/10.1007/s00521-015-1997-6.
http://dx.doi.org/10.1007/s00521-015-199...
], [9696 M. Imam, L. Vandewalle, F. Mortelmans, and D. Van Gemert, “Shear domain of fibre-reinforced high-strength concrete beams,” Eng. Struct., vol. 19, no. 9, pp. 738-747, Sep. 1997, http://dx.doi.org/10.1016/S0141-0296(96)00150-2.
http://dx.doi.org/10.1016/S0141-0296(96)...
] - models 1 to 8), three models of international standards ([1919 DAfStB, Deutscher Ausschuss für Stahlbeton (DAfStb): Richtlinie Stahlfaserbeton, Berlin, Germany, 2012.], [2020 fib, Model Code 2010: Final Draft, fib Model Code for Concrete Structures 2010. International Federation for Structural Concrete (fib), 2012.], [2222 RILEM, “RILEM TC 162-TDF: ‘Test and design methods for steel fibre reinforced concrete’, σ-ε-design method,” Mater. Struct., vol. 36, pp. 560-567, Oct. 2003.] - models 9 to 11) and two models developed based on linear regression ([9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.] - models 12 and 13).

Table 2
Models for predicting shear strength in SFRC beams.

In the model 1 proposed by Singh and Jain [5353 B. Singh and K. Jain, “An appraisal of steel fibers as minimum shear reinforcement in concrete beams,” ACI Struct. J., vol. 111, no. 5, pp. 1191-1202, Sep. 2014, http://dx.doi.org/10.14359/51686969.
http://dx.doi.org/10.14359/51686969...
], the value of fiber efficiency factor (Df) was considered equal to 1 for hooked fibers and 0.75 for the others. Similarly, the value of bond strength between fibers and matrix (τ) was considered equal to 0.85 fc for hooked fibers and 0.75 fc for the other types of fibers. The value of height of compression zone ( c) was obtained according to the established in the model of Dinh et al. [5252 H. H. Dinh, G. J. Parra-Montesinos, and J. K. Wight, “Shear behavior of steel fiber-reinforced concrete beams without stirrup reinforcement,” ACI Struct. J., vol. 107, no. 5, pp. 597-606, Sep. 2010.].

In the model 4 from Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
], the value fcuf was adopted as fc/0.85 , proposed by Lantsoght [6161 E. O. L. Lantsoght, “Database of shear experiments on steel fiber reinforced concrete beams without stirrups,” Materials, vol. 12, no. 6, pp. 917, Mar. 2019, http://dx.doi.org/10.3390/ma12060917.
http://dx.doi.org/10.3390/ma12060917...
]. The value of adherence factor (β) was considered equal to the factor that takes into the type of steel fiber used (ρf). The factor ρf has the values 1.0, 0.75, and 0.5 for fibers with hooked, crimped and other types of fibers, respectively.

In the model 7 from Imam et al. [9696 M. Imam, L. Vandewalle, F. Mortelmans, and D. Van Gemert, “Shear domain of fibre-reinforced high-strength concrete beams,” Eng. Struct., vol. 19, no. 9, pp. 738-747, Sep. 1997, http://dx.doi.org/10.1016/S0141-0296(96)00150-2.
http://dx.doi.org/10.1016/S0141-0296(96)...
], the maximum aggregate size (da) was considered equal to the weighted mean among the large aggregates used for the tests performed by Vitor et al. [7171 P. C. P. Vitor, A. C. Santos, and L. M. Trautwein, “Resistência ao cisalhamento em vigas de concreto armado sem armadura transversal reforçadas com fibras de aço,” Ambient. Constr., vol. 18, no. 3, pp. 255-270, Jul./Sep. 2018, http://dx.doi.org/10.1590/s1678-86212018000300280.
http://dx.doi.org/10.1590/s1678-86212018...
]. Additionally, Vitor et al. [7171 P. C. P. Vitor, A. C. Santos, and L. M. Trautwein, “Resistência ao cisalhamento em vigas de concreto armado sem armadura transversal reforçadas com fibras de aço,” Ambient. Constr., vol. 18, no. 3, pp. 255-270, Jul./Sep. 2018, http://dx.doi.org/10.1590/s1678-86212018000300280.
http://dx.doi.org/10.1590/s1678-86212018...
] used 25% of large aggregate with a maximum diameter of 12.5 mm and 75% with a maximum diameter of 19 mm, and this weighted mean was made, obtaining value of da equal to 17,375 mm.

In addition to the models from the literature, the models of three international standards were adopted: German standard DAfStB [1919 DAfStB, Deutscher Ausschuss für Stahlbeton (DAfStb): Richtlinie Stahlfaserbeton, Berlin, Germany, 2012.], fib Model Code [2020 fib, Model Code 2010: Final Draft, fib Model Code for Concrete Structures 2010. International Federation for Structural Concrete (fib), 2012.] and the model code of RILEM [2222 RILEM, “RILEM TC 162-TDF: ‘Test and design methods for steel fibre reinforced concrete’, σ-ε-design method,” Mater. Struct., vol. 36, pp. 560-567, Oct. 2003.]. These standards enable to perform prism tests to determine the portion of steel fibers in obtaining shear strength.

Therefore, to be able to apply the formulations, some parameters were adopted, according to Lantsoght [6161 E. O. L. Lantsoght, “Database of shear experiments on steel fiber reinforced concrete beams without stirrups,” Materials, vol. 12, no. 6, pp. 917, Mar. 2019, http://dx.doi.org/10.3390/ma12060917.
http://dx.doi.org/10.3390/ma12060917...
]. For applications of the international standards, it should be adopted that the values of γc and γctf equal to 1, to compare the shear strength prediction models in SFRC beams. In turn the value of fcfIk,L2f of the German standard DAfStB [1919 DAfStB, Deutscher Ausschuss für Stahlbeton (DAfStb): Richtlinie Stahlfaserbeton, Berlin, Germany, 2012.] should be equal to the value of fspfc, according to the expression proposed by Thomas and Ramaswamy [9797 J. Thomas and A. Ramaswamy, “Mechanical properties of steel fiber-reinforced concrete,” J. Mater. Civ. Eng., vol. 19, no. 5, pp. 385-392, May 2007, http://dx.doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385).
http://dx.doi.org/10.1061/(ASCE)0899-156...
] (Equation 49).

f s p f c = 0.63 f c u f + 0.288 F f c u f + 0.052 F (49)

being fcuf igual to fc/0.85, as adopted for the model of Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
].

For the model code of RILEM [2222 RILEM, “RILEM TC 162-TDF: ‘Test and design methods for steel fibre reinforced concrete’, σ-ε-design method,” Mater. Struct., vol. 36, pp. 560-567, Oct. 2003.], Lantsoght [6161 E. O. L. Lantsoght, “Database of shear experiments on steel fiber reinforced concrete beams without stirrups,” Materials, vol. 12, no. 6, pp. 917, Mar. 2019, http://dx.doi.org/10.3390/ma12060917.
http://dx.doi.org/10.3390/ma12060917...
] recommended to adopt the value of fRk,4 equal to fspfc, calculated according to Thomas and Ramaswamy [9797 J. Thomas and A. Ramaswamy, “Mechanical properties of steel fiber-reinforced concrete,” J. Mater. Civ. Eng., vol. 19, no. 5, pp. 385-392, May 2007, http://dx.doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385).
http://dx.doi.org/10.1061/(ASCE)0899-156...
]. In the fib model code [2020 fib, Model Code 2010: Final Draft, fib Model Code for Concrete Structures 2010. International Federation for Structural Concrete (fib), 2012.], the value fFtuk is adopted equal to fctR,uf, according to the German standard [1919 DAfStB, Deutscher Ausschuss für Stahlbeton (DAfStb): Richtlinie Stahlfaserbeton, Berlin, Germany, 2012.].

The first linear regression model proposed in this research (model 12) was developed from the database (item 2), taking into account all parameters: width of the cross section of the beam b, height of the beam cross section h, effective height of the beam cross section (d), beam test span (L), shear span (a), longitudinal reinforcement ratio (ρ), relationship between shear span and the effective height of the cross section of the beam (a/d), maximum aggregate size (da), compressive strength of concrete (fc), fiber shape (ρc), fiber length (lf), fiber volume (Vf), fiber diameter df, aspect ratio (lf/df), tensile strength of the fibers (ff), and fiber factor (F), and considering the normalized shear stress νu/fc.

After a preliminary study, it was verified that some parameters (b, h, d, L,a, da, fc, lf, lf/df and ff) had a little influence on the value of normalized shear stress. Thus, such parameters were disregarded and the formulation associated with linear regression is shown in Table 2.

For developing equations related to the weighted linear regression (model 13) the database was divided into six groups. These groups varied according to the type of steel fiber used and a/d ratio. Similar methodology was adopted by Slater et al. [5757 E. Slater, M. Moni, and M. S. Alam, “Predicting the shear strength of steel fiber reinforced concrete beams,” Constr. Build. Mater., vol. 26, no. 1, pp. 423-436, Jan. 2012, http://dx.doi.org/10.1016/j.conbuildmat.2011.06.042.
http://dx.doi.org/10.1016/j.conbuildmat....
] and Islam and Alam [9898 M. S. Islam and S. Alam, “Principal component and multiple regression analysis for Steel Fiber Reinforced Concrete (SFRC) beams,” Int. J. Concr. Struct. Mater., vol. 7, pp. 303-317, Nov. 2013, http://dx.doi.org/10.1007/s40069-013-0059-7.
http://dx.doi.org/10.1007/s40069-013-005...
].

The characteristics of the groups adopted for the application of the weighted linear regression model are shown in Table 3. This table shows that most of the data are in the groups of steel fibers hooked (G1 and G4), because this type of fiber is the most used in experimental tests. After classifying the data into groups, linear regression was applied to each group and the equations obtained are presented in Table 2. It can be observed that some equations do not present all parameters, due to the reduced influence it has on the shear strength of SFRC beams.

Table 3
Characteristics of the groups according to the type of steel fiber used and the a/d [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.].

3.1 Comparison between the prediction models

All models used for predicting shear strength in steel fiber reinforced concrete beams, presented in Table 2 were compared with the experimental results. For the comparison between the prediction models, some statistical tests were used.

Initially, the relationship between experimental shear strength and strength obtained in the prediction models (Vu-expVu-teo) was calculated, with their mean, maximum and minimum values. Then, the standard deviation (S.D.) and coefficient of variation (C.V.) tests were applied for the ratio (Vu-expVu-teo). Also, the absolute mean error (Emean), the correlation coefficient (R) and the coefficient of determination (R²) between the values of Vu-teo and Vu-exp were considered.

Finally, the maximum and minimum values of shear strength were calculated for each model (Vu-teo). The shear strength in SFRC beams obtained using the analyzed models, see item 5, is compared with experimental data through point cloud graphs.

4 DESIGN ABACUSES

To analyze the possibility of replacing the minimum shear reinforcement by steel fibers in reinforced concrete beams, initially it was necessary to define the minimum limit for shear force, following the Calculation Model I based on NBR 6118 [11 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.], according to Equation 50.

V R d , m i n = 0.0137 b w d f c k 2 3 (50)

The design value of the external shear force (VSd) should be compared with the minimum resistant shear force (VRd,min), so that:

  • If VSdVRd,min minimum shear reinforcement used;

  • If VSd>VRd,min the shear reinforcement calculated for VSd.

Analyzing Equation 50, it is observed that the factors that influence the definition of minimum shear reinforcement values for beams are the effective width (bw and d) of the cross section and the concrete compressive strength (fck). From this formulation, it was possible to define the shear force limit for each analyzed beam and to determine the minimum resistant shear force value that would need to be adopted in SFRC beams. This equation was compared with the formulation of Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
] (Equations 13 to 17), which was developed to obtain the ultimate shear force in concrete beams without stirrups, with steel fibers, longitudinally reinforced, as can be seen in Equation 51.

V d = 1 γ c f 3.7 e f s p f c 2 / 3 ρ d a 1 / 3 + 0.8 υ b b w d (51)

being, Vd the design shear force for the formulation of Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
].

In the development of structural designs, the use of characteristic strength values represents a safety margin in relation to the average values of this variable. In this context, in normative procedures safety coefficients are used, applied to the characteristic values of strength and actions.

The ABNT NBR 16935 [1010 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto Reforçado com Fibras - Procedimento, NBR 16935, 2021.] standard recommends values of 1.4 and 1.5 for the safety factors associated with compressive and tensile strength of fiber reinforced concrete. In this work, for the definition of the safety coefficients, the normative recommendations of NBR 6118 [11 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.] were considered and the safety factor γcf=1.4 was adopted.

To facilitate the determination of the amount of steel fibers (fiber volume - Vf) needed to promote the replacement of the minimum shear reinforcement by steel fibers in reinforced concrete beams were developed design abacuses. Given a reinforced concrete beam and considering that it can be reinforced transversely with minimum reinforcement ratio [11 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.], the abacus determines the volume of steel fiber that could be used to dispense the minimum shear reinforcement.

The abacuses connect the a/d ratio and the longitudinal reinforcement ratio (ρ), providing the steel fiber volume ratio for values between 0.25%, 0.50%, 0.75%, 1.0%, 1.25% and 1.50%. These percentages of fibers were chosen because they are volumes normally used in practice. The limit of Vf=1.50% was defined because above this value, the workability of the concrete is compromised. If a large amount of steel fibers (above 1.50%) for avoid of the minimum shear reinforcement is required, it would be convenient to seek another solution, such as maintaining the shear reinforcement or changing the dimensions of the beam.

The abacuses were developed for the following value ranges: 3.5a/d12.0, 0ρ4% and 20 MPafc50 MPa with increments of 5 MPa. The limits were defined to reproduce cases that approach practical situations, meeting the restrictions of NBR 6118 [11 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.].

5 RESULTS AND DISCUSSIONS

A summary of the statistical tests applied to the entire set of beams in the database (240 tests) is presented with the models for predicting the shear strength of steel fiber reinforced concrete beams in Table 4. Some studies used different criteria to define the best model for predicting shear strength in SFRC beams. The results were evaluated in terms of the mean/maximum(Max)/minimum(Min) of the relationship between the experimental (Vu-exp) and theoretical (Vu-teo) values of the shear force of rupture, standard deviation (S.D.), coefficient of variation (C.V.), absolute mean error (Emean) and coefficient of determination (R²). In this work, the C.V. will be prioritized in the choice of the model that most closely approximates the experimental values of shear strength of the tested beams.

Table 4
Statistical analysis of shear strength prediction models in SFRC beams.

It is observed that the model by Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
] has the smallest coefficient of variation (C.V.=24.9%), as shown in Table 4. However, when evaluating the means of the relationship Vu-expVu-teo, being verified that the models of Imam et al. [9696 M. Imam, L. Vandewalle, F. Mortelmans, and D. Van Gemert, “Shear domain of fibre-reinforced high-strength concrete beams,” Eng. Struct., vol. 19, no. 9, pp. 738-747, Sep. 1997, http://dx.doi.org/10.1016/S0141-0296(96)00150-2.
http://dx.doi.org/10.1016/S0141-0296(96)...
] and the weighted linear regression (WLR), developed in this work, present the best values (closer to the unit), although the model of Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
] also has a higher mean (1.04). The Imam model ([4949 M. Imam, L. Vandewalle, and F. Mortelmans, “Shear capacity of steel fiber high-strength concrete beams,” ACI Spec. Publ. High Perform. Concr., vol. 149, pp. 227-242, Oct. 1994, http://dx.doi.org/10.14359/4164.
http://dx.doi.org/10.14359/4164...
50 S. Furlan and J. B. de Hanai, “Shear behaviour of fiber reinforced concrete beams,” Cement Concr. Compos., vol. 19, no. 4, pp. 359-366, May 1997, http://dx.doi.org/10.1016/S0958-9465(97)00031-0.
http://dx.doi.org/10.1016/S0958-9465(97)...
], [96]) presents a minimum value for the relationship Vu-expVu-teo=0.09, reflection of the maximum value of the ultimate shear force (Vu-teo=4592.48 kN). This value occurred for the beams of the tests performed by Narayanan and Darwish [4545 R. Narayanan and I. Y. S. Darwish, “Use of steel fibers as shear reinforcement,” ACI Mater. Struct. J., vol. 84, no. 3, pp. 216-227, May 1987, http://dx.doi.org/10.14359/2654.
http://dx.doi.org/10.14359/2654...
], since it has a very low a/d ratio, which impacts the value of Vu-teo for this model. Lantsoght [6161 E. O. L. Lantsoght, “Database of shear experiments on steel fiber reinforced concrete beams without stirrups,” Materials, vol. 12, no. 6, pp. 917, Mar. 2019, http://dx.doi.org/10.3390/ma12060917.
http://dx.doi.org/10.3390/ma12060917...
] determined that the model of Kwak et al. [2] presented the best approximations for the values of shear strength in SFRC beams, analyzed a total of 488 tests. When only rectangular cross section beams were analyzed, the author determined that the Arslan [9393 G. Arslan, “Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams,” KSCE J. Civ. Eng., vol. 18, pp. 587-594, Mar. 2014, http://dx.doi.org/10.1007/s12205-014-0320-x.
http://dx.doi.org/10.1007/s12205-014-032...
] was more efficient.

The models of Arslan [9393 G. Arslan, “Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams,” KSCE J. Civ. Eng., vol. 18, pp. 587-594, Mar. 2014, http://dx.doi.org/10.1007/s12205-014-0320-x.
http://dx.doi.org/10.1007/s12205-014-032...
] and Sarveghadi et al. [9595 M. Sarveghadi, A. H. Gandomi, H. Bolandi, and A. H. Alavi, “Development of prediction models for shear strength of SFRCB using a machine learning approach,” Neural Comput. Appl., vol. 31, pp. 2085-2094, Aug. 2015, http://dx.doi.org/10.1007/s00521-015-1997-6.
http://dx.doi.org/10.1007/s00521-015-199...
] present the second and third best C.V., respectively, in addition to very good values of Vu-expVu-teo means. When observing the value of R², it was verified that, after the model of Sarveghadi et al. [9595 M. Sarveghadi, A. H. Gandomi, H. Bolandi, and A. H. Alavi, “Development of prediction models for shear strength of SFRCB using a machine learning approach,” Neural Comput. Appl., vol. 31, pp. 2085-2094, Aug. 2015, http://dx.doi.org/10.1007/s00521-015-1997-6.
http://dx.doi.org/10.1007/s00521-015-199...
], the model of Arslan [9393 G. Arslan, “Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams,” KSCE J. Civ. Eng., vol. 18, pp. 587-594, Mar. 2014, http://dx.doi.org/10.1007/s12205-014-0320-x.
http://dx.doi.org/10.1007/s12205-014-032...
] reflects 80.5% of the experimental data, very close to the third place that is the Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
] (80.1%). The model Imam et al. [9696 M. Imam, L. Vandewalle, F. Mortelmans, and D. Van Gemert, “Shear domain of fibre-reinforced high-strength concrete beams,” Eng. Struct., vol. 19, no. 9, pp. 738-747, Sep. 1997, http://dx.doi.org/10.1016/S0141-0296(96)00150-2.
http://dx.doi.org/10.1016/S0141-0296(96)...
], despite having the best mean ratio Vu-expVu-teo, as discussed above, has the lowest value for R2=0.257.

The model of Sahoo and Sharma [5454 D. R. Sahoo and A. Sharma, “Effect of steel fiber content on behavior of concrete beams with and without stirrups,” ACI Struct. J., vol. 111, no. 5, pp. 1157-1166, Sep. 2014, http://dx.doi.org/10.14359/51686821.
http://dx.doi.org/10.14359/51686821...
] has the highest C.V. and also the highest value of the mean ratio Vu-expVu-teo, followed by the models of international standards, Dinh et al. [9494 H. H. Dinh, G. J. Parra-Montesinos, and J. K. Wight, “Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement,” J. Struct. Eng., vol. 137, no. 10, pp. 1039-1051, Dec. 2011., http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000362.
http://dx.doi.org/10.1061/(ASCE)ST.1943-...
] as well as Singh and Jain [5353 B. Singh and K. Jain, “An appraisal of steel fibers as minimum shear reinforcement in concrete beams,” ACI Struct. J., vol. 111, no. 5, pp. 1191-1202, Sep. 2014, http://dx.doi.org/10.14359/51686969.
http://dx.doi.org/10.14359/51686969...
]. The models with the highest values of the mean ratio Vu-expVu-teo are the most conservative, which is desirable by the standards.

The linear regression models developed in this study showed very good values for the relationship Vu-expVu-teo. The linear regression model (model 12) also presented excellent values of Emean and R². The negative value of Vu-teo in the WLR model (model 13) result from the application of the regression equations.

The absolute mean error (Emean) is another measure that can be used to analyze the model with less disparity in relation to experimental data. When analyzing this measure, it can be seen that the model of Arslan [9393 G. Arslan, “Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams,” KSCE J. Civ. Eng., vol. 18, pp. 587-594, Mar. 2014, http://dx.doi.org/10.1007/s12205-014-0320-x.
http://dx.doi.org/10.1007/s12205-014-032...
] had the smallest Emean, followed by Sharma model [4444 A. K. Sharma, “Shear strength of steel fiber reinforced concrete beams,” ACI J. Proc., vol. 83, no. 4, pp. 624-628, Jul. 1986, http://dx.doi.org/10.14359/10559.
http://dx.doi.org/10.14359/10559...
], Linear regression [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.] and Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
], respectively.

Figure 6 shows for each model the comparison between tested Vu-exp and predicted Vu-teo results. As can be seen in Figure 6d-f-h, Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
], Sarveghadi et al. [9595 M. Sarveghadi, A. H. Gandomi, H. Bolandi, and A. H. Alavi, “Development of prediction models for shear strength of SFRCB using a machine learning approach,” Neural Comput. Appl., vol. 31, pp. 2085-2094, Aug. 2015, http://dx.doi.org/10.1007/s00521-015-1997-6.
http://dx.doi.org/10.1007/s00521-015-199...
] and Arslan [9393 G. Arslan, “Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams,” KSCE J. Civ. Eng., vol. 18, pp. 587-594, Mar. 2014, http://dx.doi.org/10.1007/s12205-014-0320-x.
http://dx.doi.org/10.1007/s12205-014-032...
] presented the points cloud close to the identity function (line) as they are the models with the best values for S.D., C.V., Emean and R². Despite some discrepancies with the experimental results, the model of Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
] is adopted because it presents the smallest C.V. value. In addition, this model was chosen for the elaboration of the design abacuses because it is more easily used, since the analysis parameters (fc, a/d, ρ, ρf, Lf/df and Vf) are directly related to the ultimate shear force (Vu), as presented in the Equations 13 to 17.

Figure 6
Relationship between experimental and theoretical values of the ultimate shear force: (a) Singh and Jain [5353 B. Singh and K. Jain, “An appraisal of steel fibers as minimum shear reinforcement in concrete beams,” ACI Struct. J., vol. 111, no. 5, pp. 1191-1202, Sep. 2014, http://dx.doi.org/10.14359/51686969.
http://dx.doi.org/10.14359/51686969...
], (b) Sahoo and Sharma [5454 D. R. Sahoo and A. Sharma, “Effect of steel fiber content on behavior of concrete beams with and without stirrups,” ACI Struct. J., vol. 111, no. 5, pp. 1157-1166, Sep. 2014, http://dx.doi.org/10.14359/51686821.
http://dx.doi.org/10.14359/51686821...
], (c) Dinh et al. [9494 H. H. Dinh, G. J. Parra-Montesinos, and J. K. Wight, “Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement,” J. Struct. Eng., vol. 137, no. 10, pp. 1039-1051, Dec. 2011., http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000362.
http://dx.doi.org/10.1061/(ASCE)ST.1943-...
], (d) Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
], (e) Sharma [4444 A. K. Sharma, “Shear strength of steel fiber reinforced concrete beams,” ACI J. Proc., vol. 83, no. 4, pp. 624-628, Jul. 1986, http://dx.doi.org/10.14359/10559.
http://dx.doi.org/10.14359/10559...
], (f) Sarveghadi et al. [9595 M. Sarveghadi, A. H. Gandomi, H. Bolandi, and A. H. Alavi, “Development of prediction models for shear strength of SFRCB using a machine learning approach,” Neural Comput. Appl., vol. 31, pp. 2085-2094, Aug. 2015, http://dx.doi.org/10.1007/s00521-015-1997-6.
http://dx.doi.org/10.1007/s00521-015-199...
], (g) Imam et al. [9696 M. Imam, L. Vandewalle, F. Mortelmans, and D. Van Gemert, “Shear domain of fibre-reinforced high-strength concrete beams,” Eng. Struct., vol. 19, no. 9, pp. 738-747, Sep. 1997, http://dx.doi.org/10.1016/S0141-0296(96)00150-2.
http://dx.doi.org/10.1016/S0141-0296(96)...
], (h) Arslan [9393 G. Arslan, “Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams,” KSCE J. Civ. Eng., vol. 18, pp. 587-594, Mar. 2014, http://dx.doi.org/10.1007/s12205-014-0320-x.
http://dx.doi.org/10.1007/s12205-014-032...
], (i) DAfStB [1919 DAfStB, Deutscher Ausschuss für Stahlbeton (DAfStb): Richtlinie Stahlfaserbeton, Berlin, Germany, 2012.], (j) fib Model Code [2020 fib, Model Code 2010: Final Draft, fib Model Code for Concrete Structures 2010. International Federation for Structural Concrete (fib), 2012.], (k) RILEM [2222 RILEM, “RILEM TC 162-TDF: ‘Test and design methods for steel fibre reinforced concrete’, σ-ε-design method,” Mater. Struct., vol. 36, pp. 560-567, Oct. 2003.], (l) Linear regression [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.] and (m) Weighted linear regression [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.].

It is observed that many authors ([5353 B. Singh and K. Jain, “An appraisal of steel fibers as minimum shear reinforcement in concrete beams,” ACI Struct. J., vol. 111, no. 5, pp. 1191-1202, Sep. 2014, http://dx.doi.org/10.14359/51686969.
http://dx.doi.org/10.14359/51686969...
], [5454 D. R. Sahoo and A. Sharma, “Effect of steel fiber content on behavior of concrete beams with and without stirrups,” ACI Struct. J., vol. 111, no. 5, pp. 1157-1166, Sep. 2014, http://dx.doi.org/10.14359/51686821.
http://dx.doi.org/10.14359/51686821...
], [6161 E. O. L. Lantsoght, “Database of shear experiments on steel fiber reinforced concrete beams without stirrups,” Materials, vol. 12, no. 6, pp. 917, Mar. 2019, http://dx.doi.org/10.3390/ma12060917.
http://dx.doi.org/10.3390/ma12060917...
], [7171 P. C. P. Vitor, A. C. Santos, and L. M. Trautwein, “Resistência ao cisalhamento em vigas de concreto armado sem armadura transversal reforçadas com fibras de aço,” Ambient. Constr., vol. 18, no. 3, pp. 255-270, Jul./Sep. 2018, http://dx.doi.org/10.1590/s1678-86212018000300280.
http://dx.doi.org/10.1590/s1678-86212018...
], [9494 H. H. Dinh, G. J. Parra-Montesinos, and J. K. Wight, “Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement,” J. Struct. Eng., vol. 137, no. 10, pp. 1039-1051, Dec. 2011., http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000362.
http://dx.doi.org/10.1061/(ASCE)ST.1943-...
]) converge to the opinion that more research needs to be carried out to better understand the behavior of shear in SFRC beams.

Finally, to make more practical the process of using steel fibers in place of the minimum shear reinforcement in reinforced concrete beams, when these reinforcements are dimensioned according to the NBR 6118 [11 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.], design abacuses have been developed. In order to estimate the Vf in a straightforward manner, abacuses can be derived from the Equations 13 to 17 of Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
http://dx.doi.org/10.14359/12122...
], in which steel fiber volume, values from 0.25% to 1.50% with increments of 0.25%, can be immediately derived as a function of the parameters: longitudinal reinforcement ratio (ρ) and a/d ratio.

Abacuses were elaborated for fc from 20 MPa to 50 MPa with increments of 5 MPa and taking into account the parameters related to the type of steel fiber used, ρf=1,0 (fiber hooked), 0,75 (fiber crimped), 1,0 (other type) and lf/df=35, 60 and 80. The 42 abacuses developed can be found at [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.]. In this work, it is shown only an abacus for the development of an application example.

5.1 Design abacus application - Case study

The present example illustrates the calculation of steel fiber volume for SFRC beam without stirrups. The rectangular section illustrated in Figure 7 is defined by the following geometric parameters: bw=0.15 m, h=0.30 m, effective height d = 0.25 m and L=3.50 m. The material used is concrete with fc=30 MPa. Longitudinally reinforced with 3 reinforcements of 16.0 mm at the bottom (tension) and 2 reinforcements of 5.0 mm at the top (compressed). Considering a shear span equal to a=L/2=175 cm, ratio a/d=7.0, longitudinal tensile reinforcement equal to 3 16.0 mm, longitudinal reinforcement ratio ρ=1.61% and shear reinforcement equal to minimum reinforcement (Asw,min).

Figure 7
Details of the cross section of the beam.

For example, let's consider the abacus B2.3 (Figure 8) from Santos [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.] with the following parameters: ρf=1.0 (fiber hooked), lf/df=60 ratio and fc=30 MPa. Using the abacus in Figure 8, the point of intersection of the parameters a/d=7.0 and ρ=1.61% is immediately identified. This point represents the steel fiber volume, and fall between the iso-limit curves Vf=0.75% and Vf=1.0%; linear interpolation between 0.75% and 1.0% provides the value of the searched steel fiber volume.

Figure 8
Abacus B2.3 [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.] for steel fiber volume in beam.

If the point was above the limit curve (Vf=1.50%) it would be necessary to use a steel fiber content higher than 1.50%, thus, it would be better to seek for other alternatives. It is not recommended to use large quantities of steel fibers to avoid problems with the workability of concrete.

Figure 9 shows the influence of fc, ρ, Vf in Vd and the amount of steel fibers required to replace the minimum shear reinforcement in SFRC beams. It can be concluded that the required amount of steel fiber was reduced with the increase of the longitudinal reinforcement ratio (ρ) and with the reduction of the a/d ratio. This reduction occurs due to increased shear strength (Equation 51).

Figure 9
Influence of fc, ρ, Vf in Vdand the amount of steel fibers required to replace the minimum shear reinforcement in SFRC beams: (a) ρ = 1.0%, (b) ρ = 1.50%.

Through the abacuses [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.], it is observed that the growth in shear strength in SFRC beams (Vd) occurs with the growth of the parameters fc, ρ and Vf. It is noticed that the increase in these values causes an increase in shear strength in SFRC beams (Vd). It is also observed that by increasing the compressive strength of concrete (fc), there was a need for a greater amount of steel fibers to replace the minimum shear reinforcement. Thus, a possible increase of fc, is not an economical solution, since in addition to increasing the cost for a more resistant concrete as well as the cost of fibers. It should be noted that the analyses shown in the Figure 9 consider a single type of steel fiber. For other types of fibers, see Santos [9191 M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.].

The increase in Vd with the growth of the parameters fc, ρ and Vf is not always observed in experimental tests. Vitor et al. [7171 P. C. P. Vitor, A. C. Santos, and L. M. Trautwein, “Resistência ao cisalhamento em vigas de concreto armado sem armadura transversal reforçadas com fibras de aço,” Ambient. Constr., vol. 18, no. 3, pp. 255-270, Jul./Sep. 2018, http://dx.doi.org/10.1590/s1678-86212018000300280.
http://dx.doi.org/10.1590/s1678-86212018...
] found a reduction of up to 11.25% in the shear strength of SFRC beams, with fc= 40 MPa, ρ = 1.32% and Vf from 0.67% to 0.77%, when the measurement of normalized shear stress (νu/fc) was used. In [6969 M. Tariq, A. Khan, A. Ullah, J. Shayanfar, and M. Niaz, “Improved shear strength prediction model of steel fiber reinforced concrete beams by adopting gene expression programming,” Materials, vol. 15, no. 11, pp. 3758, May 2022, http://dx.doi.org/10.3390/ma15113758.
http://dx.doi.org/10.3390/ma15113758...
] it was observed that the higher the parameter that takes into account the type of steel fiber (ρf) and the form factor (Lf/df), the higher the beam shear strength and the fewer steel fibers will be required to replace the minimum shear sectional reinforcement.

Therefore, with the beam data and considering that minimum shear reinforcement was obtained, according to the normative procedures of NBR 6118 [11 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.], the procedure for defining the amount of steel fibers required to replace the minimum shear-reinforcement become very simple with the use of abacuses.

6 CONCLUSIONS

This study aimed to evaluate the possibility of replacing the minimum shear-reinforcement in steel fiber reinforced concrete beams, being designed as recommended by the NBR 6118 [11 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.]. In this context, the authors analyzed and compared some models of prediction of the shear strength of SFRC beams, proposed in the literature and in international standards.

Statistical analysis selected the model that presented the highest agreement with the experimental tests. Subsequently, abacuses were developed to define, in a simple and more straightforward, the content of steel fibers necessary to replace the minimum shear reinforcement in SFRC beams.

With the results obtained, the following conclusions can be stated:

  • A great variability was observed in the results of experimental tests related to shear strength in SFRC beams, when analyzing the database with 240 beams.

  • Most of the steel fibers in the database were type hooked. The volume of fibers used in the database ranges from 0.5% to 1.50%. These values are normally used in practice to contribute to the shear strength of SFRC beams.

  • The model of Kwak et al. [22 Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122.
    http://dx.doi.org/10.14359/12122...
    ] presented the best coefficient of variation. But the models of Sarveghadi et al. [9595 M. Sarveghadi, A. H. Gandomi, H. Bolandi, and A. H. Alavi, “Development of prediction models for shear strength of SFRCB using a machine learning approach,” Neural Comput. Appl., vol. 31, pp. 2085-2094, Aug. 2015, http://dx.doi.org/10.1007/s00521-015-1997-6.
    http://dx.doi.org/10.1007/s00521-015-199...
    ] and Arslan [9393 G. Arslan, “Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams,” KSCE J. Civ. Eng., vol. 18, pp. 587-594, Mar. 2014, http://dx.doi.org/10.1007/s12205-014-0320-x.
    http://dx.doi.org/10.1007/s12205-014-032...
    ] were also very efficient in this analysis. The models of international standards were quite conservative. The linear regression models developed in this research showed a good mean of the relationship Vu-expVu-teo, but very high values in the coefficient of variation.

  • The definition of the amount of steel fibers required to replace the minimum shear reinforcement in SFRC beams, when these beams are sized according to NBR 6118 [11 Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.], using abacuses can be considered simple and practical, which can facilitate its use in SFRC beams of conventional structures.

  • It was observed through abacuses that the growth of the longitudinal reinforcement ratio (ρ) and the reduction of the a/d ratio results in a smaller amount of steel fibers required to replace the minimum shear reinforcements in reinforced concrete beams. The increase of the parameters fc, ρ, ρf and Lf/df causes growth in shear strength in SFRC beams (Vu) and fewer steel fibers (Vf) will be necessary to replace the minimum shear reinforcement.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.

  • Financial support: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.
  • Data Availability:

    the data that support the findings of this study are openly available in Attena Repositório Digital da UFPE at https://repositorio.ufpe.br/handle/123456789/41989, reference number 41989.
  • How to cite: G. F. F. Bono, G. Bono, and M. Santos Júnior, “Evaluation of the replacement of minimum shear reinforcement by steel fibers in reinforced concrete beams,” Rev. IBRACON Estrut. Mater., vol. 17, no. 4, e17405, 2024, https://doi.org/10.1590/S1983-41952024000400005

REFERENCES

  • 1
    Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto - Procedimento, NBR 6118, 2014.
  • 2
    Y. K. Kwak, M. O. Eberhard, W. S. Kim, and J. Kim, “Shear strength of steel fiber-reinforced concrete beams without stirrups,” ACI Struct. J., vol. 49, no. 4, pp. 530-538, Jul. 2002, http://dx.doi.org/10.14359/12122
    » http://dx.doi.org/10.14359/12122
  • 3
    Instituto Brasileiro do Concreto, “Concreto: material construtivo mais consumido no mundo,” vol. 37, no. 53, pp. 1-80, Jan./Mar. 2009.
  • 4
    A. D. Figueiredo “Concreto com fibras,” in Concreto: Ciência e Tecnologia, B. Tutikian, F. Pacheco, G. Isaía, and I. Battagin, Eds., São Paulo, Brazil: IBRACON, 2nd ed., vol. 2, pp. 1-36, 2011.
  • 5
    J. Katzer, “Steel fibers and steel fiber reinforced concrete in civil engineering,” Pac. J. Sci. Technol., vol. 7, no. 1, pp. 53-58, May 2006.
  • 6
    A. P. Singh and D. Singhal, “Permeability of steel fibre reinforced concrete influence of fibre parameters,” Procedia Eng., vol. 14, pp. 2823-2829, Oct. 2011, http://dx.doi.org/10.1016/j.proeng.2011.07.355
    » http://dx.doi.org/10.1016/j.proeng.2011.07.355
  • 7
    D. S. Vijayan et al., “A comprehensive analysis of the use of SFRC in structures and its current state of development in the construction industry,” Materials, vol. 15, pp. 2823-2829, Oct. 2022, http://dx.doi.org/10.3390/ma15197012
    » http://dx.doi.org/10.3390/ma15197012
  • 8
    Associação Brasileira de Normas Técnicas, Fibras de Aço para Concretos - Especificação - Procedimento, NBR 15530, 2019.
  • 9
    Associação Brasileira de Normas Técnicas, Tubo de Concreto Armado de Seção Circular para Esgoto Sanitário, NBR 8890, 2020.
  • 10
    Associação Brasileira de Normas Técnicas, Projeto de Estruturas de Concreto Reforçado com Fibras - Procedimento, NBR 16935, 2021.
  • 11
    Associação Brasileira de Normas Técnicas, Concreto Reforçado com Fibras - Controle da Qualidade, NBR 16938, 2021.
  • 12
    Associação Brasileira de Normas Técnicas, Concreto Reforçado com Fibras - Determinação das Resistências à Fissuração e Residuais à Tração por Duplo Puncionamento - Método de Ensaio, NBR 16939, 2021.
  • 13
    Associação Brasileira de Normas Técnicas, Concreto Reforçado com Fibras - Determinação das Resistências à Tração na Flexão (Limite de Proporcionalidade e Resistências Residuais) - Método de Ensaio, NBR 16940, 2021.
  • 14
    American Concrete Institute, Building Code Requirements for Structural Concrete, ACI 318, 2006.
  • 15
    American Concrete Institute, State-of-the-Art Report on Fiber Reinforced Concrete, ACI 544.1R-96, 2006.
  • 16
    American Concrete Institute, Measurement of Properties of Fiber Reinforced Concrete - Manual of Concrete Practice, ACI 544.2R-89, 2006.
  • 17
    American Concrete Institute, Guide for Specifying, Proportioning, Mixing, Placing and Finishing Steel Fiber Reinforced Concrete, ACI 544.3R-93, 2006.
  • 18
    American Concrete Institute, Design Considerations for Steel Fiber Reinforced Concrete, ACI 544.4R-18, 2018.
  • 19
    DAfStB, Deutscher Ausschuss für Stahlbeton (DAfStb): Richtlinie Stahlfaserbeton, Berlin, Germany, 2012.
  • 20
    fib, Model Code 2010: Final Draft, fib Model Code for Concrete Structures 2010. International Federation for Structural Concrete (fib), 2012.
  • 21
    Japan Society of Civil Engineers, Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Concrete Engineering Series 82, 2008.
  • 22
    RILEM, “RILEM TC 162-TDF: ‘Test and design methods for steel fibre reinforced concrete’, σ-ε-design method,” Mater. Struct., vol. 36, pp. 560-567, Oct. 2003.
  • 23
    L. Biolzi and S. Cattaneo, “Response of steel fiber reinforced high strength concrete beams: experiments and code predictions,” Cement Concr. Compos., vol. 77, pp. 1-13, Mar. 2017, http://dx.doi.org/10.1016/j.cemconcomp.2016.12.002
    » http://dx.doi.org/10.1016/j.cemconcomp.2016.12.002
  • 24
    J. R. Deluce and F. J. Vecchio, “Cracking behavior of steel fiber-reinforced concrete members containing conventional reinforcement,” Struct. J., vol. 110, no. 3, pp. 481-490, May 2013, http://dx.doi.org/10.14359/51685605
    » http://dx.doi.org/10.14359/51685605
  • 25
    G. Tiberti, F. Minelli, and G. Plizzari, “Cracking behavior in reinforced concrete members with steel fibers: a comprehensive experimental study,” Cement Concr. Res., vol. 68, pp. 24-34, Feb. 2014, http://dx.doi.org/10.1016/j.cemconres.2014.10.011
    » http://dx.doi.org/10.1016/j.cemconres.2014.10.011
  • 26
    D. C. Cardoso, G. B. Pereira, F. A. Silva, J. J. H. Silva Fo., and E. V. Pereira, “Influence of steel fibers on the flexural behavior of RC beams with low reinforcing ratios: analytical and experimental investigation,” Compos. Struct., vol. 222, pp. 110926, Aug. 2019, http://dx.doi.org/10.1016/j.compstruct.2019.110926
    » http://dx.doi.org/10.1016/j.compstruct.2019.110926
  • 27
    A. Conforti, F. Minelli, and G. A. Plizzari, “Wide-shallow beams with and without steel fibres: a peculiar behaviour in shear and flexure,” Compos., Part B Eng., vol. 51, pp. 282-290, Aug. 2013. https://doi.org/10.1016/j.compositesb.2013.03.033
    » https://doi.org/10.1016/j.compositesb.2013.03.033
  • 28
    C. Cucchiara, L. L. Mendola, and M. Papia, “Effectiveness of stirrups and steel fibres as shear reinforcement,” Cement Concr. Compos., vol. 26, no. 7, pp. 777-786, Oct. 2004, http://dx.doi.org/10.1016/j.cemconcomp.2003.07.001
    » http://dx.doi.org/10.1016/j.cemconcomp.2003.07.001
  • 29
    H. H. Dinh, G. J. Parra-Montesinos, and J. K. Wight, “Shear behavior of steel fiber-reinforced concrete beams without stirrup reinforcement,” Struct. J., vol. 107, no. 5, pp. 597-606, Sep. 2010, http://dx.doi.org/10.14359/51663913
    » http://dx.doi.org/10.14359/51663913
  • 30
    H. Ju, D. H. Lee, and K. S. Kim, “Minimum torsional reinforcement ratio for reinforced concrete members with steel fibers,” Compos. Struct., vol. 207, pp. 460-470, Jan. 2019, http://dx.doi.org/10.1016/j.compstruct.2018.09.068
    » http://dx.doi.org/10.1016/j.compstruct.2018.09.068
  • 31
    A. Meda, F. Minelli, and G. A. Plizzari, “Flexural behaviour of RC beams in fibre reinforced concrete,” Compos., Part B Eng., vol. 43, no. 8, pp. 2930-2937, Dec. 2012, http://dx.doi.org/10.1016/j.compositesb.2012.06.003
    » http://dx.doi.org/10.1016/j.compositesb.2012.06.003
  • 32
    D.-Y. Yoo and J.-M. Yang, “Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams,” Cement Concr. Compos., vol. 87, pp. 137-148, Mar. 2018, http://dx.doi.org/10.1016/j.cemconcomp.2017.12.010
    » http://dx.doi.org/10.1016/j.cemconcomp.2017.12.010
  • 33
    Y. T. Trindade, L. A. G. Bitencourt Jr., and O. L. Manzoli, “Design of SFRC members aided by a multiscale model: part ii - predicting the behavior of RC-SFRC beams,” Compos. Struct., vol. 241, pp. 112079, Jun. 2020, http://dx.doi.org/10.1016/j.compstruct.2020.112079
    » http://dx.doi.org/10.1016/j.compstruct.2020.112079
  • 34
    A. Bentur and S. Mindess, Fibre Reinforced Cementitious Composites, 2nd ed. London, United Kingdom: Taylor & Francis, 2007. https://doi.org/10.1201/9781482267747
    » https://doi.org/10.1201/9781482267747
  • 35
    European Committee for Standardization, Test Method for Metallic Fiber Concrete - Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual), EN 14651:2005+A1:2007, 2007.
  • 36
    G. Tiberti, F. Germano, A. Mudadu, and G. A. Plizzari, “An overview of the flexural postcracking behavior of steel fiber reinforced concrete,” Struct. Concr., vol. 19, no. 3, pp. 695-718, Oct. 2018, http://dx.doi.org/10.1002/suco.201700068
    » http://dx.doi.org/10.1002/suco.201700068
  • 37
    A. Mudadu, G. Tiberti, F. Germano, G. A. Plizzari, and A. Morbi, “The effect of fiber orientation on the post-cracking behavior of steel fiber reinforced concrete under bending and uniaxial tensile tests,” Cement Concr. Compos., vol. 93, pp. 274-288, Oct. 2018, http://dx.doi.org/10.1016/j.cemconcomp.2018.07.012
    » http://dx.doi.org/10.1016/j.cemconcomp.2018.07.012
  • 38
    M. Alberti, A. Enfedaque, and J. Gálvez, “A review on the assessment and prediction of the orientation and distribution of fibres for concrete,” Compos., Part B Eng., vol. 151, pp. 274-290, Oct. 2018, http://dx.doi.org/10.1016/j.compositesb.2018.05.040.
    » https://doi.org/10.1016/j.compositesb.2018.05.040
  • 39
    J.-H. Lee, “Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete,” Compos. Struct., vol. 168, pp. 216-225, May 2017, https://doi.org/10.1016/j.compstruct.2017.01.052
    » https://doi.org/10.1016/j.compstruct.2017.01.052
  • 40
    O. Švec, G. Žirgulis, J. E. Bolander, and H. Stang, “Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements,” Cement Concr. Compos., vol. 50, pp. 60-72, Jul. 2014, http://dx.doi.org/10.1016/j.cemconcomp.2013.12.002
    » http://dx.doi.org/10.1016/j.cemconcomp.2013.12.002
  • 41
    S.-J. Lee, Y. Hong, A.-H. Eom, and J.-P. Won, “Effect of steel fibres on fracture parameters of cementitious composites,” Compos. Struct., vol. 204, pp. 658-663, Nov. 2018, http://dx.doi.org/10.1016/j.compstruct.2018.08.002
    » http://dx.doi.org/10.1016/j.compstruct.2018.08.002
  • 42
    S. Zhang, L. Liao, S. Song, and C. Zhang, “Experimental and analytical study of the fibre distribution in SFRC: a comparison between image processing and the inductive test,” Compos. Struct., vol. 188, pp. 78-88, Mar. 2018, http://dx.doi.org/10.1016/j.compstruct.2018.01.006
    » http://dx.doi.org/10.1016/j.compstruct.2018.01.006
  • 43
    T. Y. Lim, P. Paramasivam, and S. L. Lee, “Shear and moment capacity of reinforced steel-fiber-concrete beams,” Mag. Concr. Res., vol. 39, no. 140, pp. 148-160, Sep. 1987, http://dx.doi.org/10.1680/macr.1987.39.140.148
    » http://dx.doi.org/10.1680/macr.1987.39.140.148
  • 44
    A. K. Sharma, “Shear strength of steel fiber reinforced concrete beams,” ACI J. Proc., vol. 83, no. 4, pp. 624-628, Jul. 1986, http://dx.doi.org/10.14359/10559
    » http://dx.doi.org/10.14359/10559
  • 45
    R. Narayanan and I. Y. S. Darwish, “Use of steel fibers as shear reinforcement,” ACI Mater. Struct. J., vol. 84, no. 3, pp. 216-227, May 1987, http://dx.doi.org/10.14359/2654
    » http://dx.doi.org/10.14359/2654
  • 46
    R. Narayanan and I. Y. S. Darwish, “Fiber concrete deep beams in shear,” ACI Struct. J., vol. 85, no. 2, pp. 141-149, Mar. 1988, http://dx.doi.org/10.14359/2698
    » http://dx.doi.org/10.14359/2698
  • 47
    K. H. Kwak, J. Suh, and C. T. T. Hsu, “Shear-fatigue behavior of steel fiber reinforced concrete beams,” ACI Struct. J., vol. 88, no. 2, pp. 155-160, Mar. 1991, http://dx.doi.org/10.14359/2653
    » http://dx.doi.org/10.14359/2653
  • 48
    R. N. Swamy, R. Jones, and A. T. P. Chiam, “Influence of steel fibers on the shear resistance of lightweight concrete I-beams,” ACI Struct. J., vol. 90, no. 1, pp. 103-114, Jan. 1993, http://dx.doi.org/10.14359/4201
    » http://dx.doi.org/10.14359/4201
  • 49
    M. Imam, L. Vandewalle, and F. Mortelmans, “Shear capacity of steel fiber high-strength concrete beams,” ACI Spec. Publ. High Perform. Concr., vol. 149, pp. 227-242, Oct. 1994, http://dx.doi.org/10.14359/4164
    » http://dx.doi.org/10.14359/4164
  • 50
    S. Furlan and J. B. de Hanai, “Shear behaviour of fiber reinforced concrete beams,” Cement Concr. Compos., vol. 19, no. 4, pp. 359-366, May 1997, http://dx.doi.org/10.1016/S0958-9465(97)00031-0
    » http://dx.doi.org/10.1016/S0958-9465(97)00031-0
  • 51
    G. J. Parra-Montesinos, J. K. Wight, H. H. Dinh, A. Libbrecht, and C. Padilla, Shear Strength of Fiber Reinforced Concrete Beams without Stirrups Ann Arbor, MI, USA: Univ. of Michigan Press, 2006.
  • 52
    H. H. Dinh, G. J. Parra-Montesinos, and J. K. Wight, “Shear behavior of steel fiber-reinforced concrete beams without stirrup reinforcement,” ACI Struct. J., vol. 107, no. 5, pp. 597-606, Sep. 2010.
  • 53
    B. Singh and K. Jain, “An appraisal of steel fibers as minimum shear reinforcement in concrete beams,” ACI Struct. J., vol. 111, no. 5, pp. 1191-1202, Sep. 2014, http://dx.doi.org/10.14359/51686969
    » http://dx.doi.org/10.14359/51686969
  • 54
    D. R. Sahoo and A. Sharma, “Effect of steel fiber content on behavior of concrete beams with and without stirrups,” ACI Struct. J., vol. 111, no. 5, pp. 1157-1166, Sep. 2014, http://dx.doi.org/10.14359/51686821
    » http://dx.doi.org/10.14359/51686821
  • 55
    D. R. Sahoo, S. Bhagat, and T. C. V. Reddy, “Experimental study on shear-span to effective-depth ratio of steel fiber reinforced concrete T-beams,” Mater. Struct., vol. 49, pp. 3815-3830, Nov. 2016, http://dx.doi.org/10.1617/s11527-015-0756-6
    » http://dx.doi.org/10.1617/s11527-015-0756-6
  • 56
    G. Arslan, R. Keskin, and S. Ulusoy, “An experimental study on the shear strength of SFRC beams without stirrups,” J. Theor. Appl. Mech., vol. 55, no. 4, pp. 1205-1217, 2017, http://dx.doi.org/10.15632/jtam-pl.55.4.1205
    » http://dx.doi.org/10.15632/jtam-pl.55.4.1205
  • 57
    E. Slater, M. Moni, and M. S. Alam, “Predicting the shear strength of steel fiber reinforced concrete beams,” Constr. Build. Mater., vol. 26, no. 1, pp. 423-436, Jan. 2012, http://dx.doi.org/10.1016/j.conbuildmat.2011.06.042
    » http://dx.doi.org/10.1016/j.conbuildmat.2011.06.042
  • 58
    P. Adebar, S. Mindess, D. St.-Pierre, and B. Olund, “Shear tests of fiber concrete beams without stirrups,” ACI Struct. J., vol. 94, no. 1, pp. 68-76, Jan. 1997, http://dx.doi.org/10.14359/462
    » http://dx.doi.org/10.14359/462
  • 59
    S. W. Shin, J. G. Oh, and S. K. Ghosh, “Shear behavior of laboratory-sized high strength concrete beams reinforced with bars and steel fibers,” ACI SP142-Fiber Renforced Concrete-Developments and Innovations, vol. 142, pp. 181-200, Jan. 1994, https://dx.doi.org/10.14359/3917
    » https://dx.doi.org/10.14359/3917
  • 60
    A. K. L. L. Nzambi, D. R. C. Oliveira, M. V. S. Monteiro, and L. F. A. Silva, “Experimental analysis of steel fiber reinforced concrete beams in shear,” Rev. IBRACON Estrut. Mater., vol. 15, no. 3, pp. e15301, Oct. 2022, http://dx.doi.org/10.1590/S1983-41952022000300001
    » http://dx.doi.org/10.1590/S1983-41952022000300001
  • 61
    E. O. L. Lantsoght, “Database of shear experiments on steel fiber reinforced concrete beams without stirrups,” Materials, vol. 12, no. 6, pp. 917, Mar. 2019, http://dx.doi.org/10.3390/ma12060917
    » http://dx.doi.org/10.3390/ma12060917
  • 62
    S. Abdallah, M. Fan, and D. W. Rees, “Effect of elevated temperature on pull-out behaviour of 4DH/5DH hooked end steel fibres,” Compos. Struct., vol. 165, pp. 180-191, Apr. 2017, http://dx.doi.org/10.1016/j.compstruct.2017.01.005
    » http://dx.doi.org/10.1016/j.compstruct.2017.01.005
  • 63
    S. Abdallah, M. Fan, and D. W. Rees, “Predicting pull-out behaviour of 4D/5D hooked end fibres embedded in normal-high strength concrete,” Eng. Struct., vol. 172, pp. 967-980, Oct. 2018, http://dx.doi.org/10.1016/j.engstruct.2018.06.066
    » http://dx.doi.org/10.1016/j.engstruct.2018.06.066
  • 64
    A. D. Figueiredo, “Parâmetros de controle e dosagem do concreto projetado com fibras de aço,” Doctoral dissertation, Esco. Politéc., Univ. São Paulo, São Paulo, Brazil, 1997.
  • 65
    E. Cuenca, A. Conforti, F. Mneli, G. A. Plizzari, J. N. Gregori, and P. Serna, “A material-performance-based database for FRC and RC elements under shear loading,” Mater. Struct., vol. 51, pp. 11, Jan. 2018, http://dx.doi.org/10.1617/s11527-017-1130-7
    » http://dx.doi.org/10.1617/s11527-017-1130-7
  • 66
    A. M. Bernat, N. Spinella, A. Recupero, and A. Cladera, “Mechanical model for the shear strength of steel fiber reinforced concrete (SFRC) beams without stirrups,” Mater. Struct., vol. 53, pp. 28, Feb. 2020, http://dx.doi.org/10.1617/s11527-020-01461-4
    » http://dx.doi.org/10.1617/s11527-020-01461-4
  • 67
    T. L. Resende, D. C. T. Cardoso, and L. C. D. Shehata, “Influence of steel fibers on the dowel action of RC beams without stirrups,” Eng. Struct., vol. 221, pp. 111044, Oct. 2020, http://dx.doi.org/10.1016/j.engstruct.2020.111044
    » http://dx.doi.org/10.1016/j.engstruct.2020.111044
  • 68
    Y. Yu, X. Zhao, J. Xu, S. Wang, and T. Xie, “Evaluation of shear capacity of steel fiber reinforced concrete beams without stirrups using artificial intelligence models,” Materials, vol. 15, no. 7, pp. 2407, Mar. 2022, http://dx.doi.org/10.3390/ma15072407
    » http://dx.doi.org/10.3390/ma15072407
  • 69
    M. Tariq, A. Khan, A. Ullah, J. Shayanfar, and M. Niaz, “Improved shear strength prediction model of steel fiber reinforced concrete beams by adopting gene expression programming,” Materials, vol. 15, no. 11, pp. 3758, May 2022, http://dx.doi.org/10.3390/ma15113758
    » http://dx.doi.org/10.3390/ma15113758
  • 70
    A. Z. Saber, “Prediction and developing of shear strength of reinforced high strength concrete beams with and without steel fibers using multiple mathematical models,” PLoS One, vol. 17, no. 3, pp. e0265677, Mar. 2022, http://dx.doi.org/10.1371/journal.pone.0265677
    » http://dx.doi.org/10.1371/journal.pone.0265677
  • 71
    P. C. P. Vitor, A. C. Santos, and L. M. Trautwein, “Resistência ao cisalhamento em vigas de concreto armado sem armadura transversal reforçadas com fibras de aço,” Ambient. Constr., vol. 18, no. 3, pp. 255-270, Jul./Sep. 2018, http://dx.doi.org/10.1590/s1678-86212018000300280
    » http://dx.doi.org/10.1590/s1678-86212018000300280
  • 72
    E. O. L. Lantsoght. “Database of experiments on SFRC beams without stirrups failing in shear.” Zenodo. http://dx.doi.org/10.5281/zenodo.2578060 (accessed Jul. 13, 2023).
    » http://dx.doi.org/10.5281/zenodo.2578060
  • 73
    A. Shoaib, A. S. Lubell, and V. S. Bindiganavile, “Shear response of lightweight steel fiber reinforced concrete members without stirrups,” Mater. Struct., vol. 48, pp. 3141-3157, Jul. 2015, http://dx.doi.org/10.1617/s11527-014-0387-3
    » http://dx.doi.org/10.1617/s11527-014-0387-3
  • 74
    J. Rosenbusch and M. Teutsch, Trial Beams in Shear Brite/Euram Project 97-4163, Final Report Sub Task 4.2 Braunschweig, Germany: Tech. Univ. Braunschweig, 2003.
  • 75
    C. Cucchiara, L. La Mendola, and M. Papia, “Effectiveness of stirrups and steel fibres as shear reinforcement,” Cement Concr. Compos., vol. 26, no. 7, pp. 777-786, Oct. 2004, http://dx.doi.org/10.1016/j.cemconcomp.2003.07.001
    » http://dx.doi.org/10.1016/j.cemconcomp.2003.07.001
  • 76
    D. H. Lim and B. H. Oh, “Experimental and theoretical investigation on the shear of steel fibre reinforced concrete beams,” Eng. Struct., vol. 21, no. 10, pp. 937-944, Oct. 1999, http://dx.doi.org/10.1016/S0141-0296(98)00049-2
    » http://dx.doi.org/10.1016/S0141-0296(98)00049-2
  • 77
    F. Minelli and G. Plizzari, “On the effectiveness of steel fibers as shear reinforcement,” ACI Struct. J., vol. 110, no. 3, pp. 379-390, May 2013, http://dx.doi.org/10.14359/51685596
    » http://dx.doi.org/10.14359/51685596
  • 78
    M. A. Mansur, K. C. G. Ong, and P. Paramasivam, “Shear strength of fibrous concrete beamswithout stirrups,” J. Struct. Eng., vol. 112, no. 9, pp. 2066-2079, Sep. 1986, http://dx.doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
    » http://dx.doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
  • 79
    M. R. Zarrinpour and S. H. Chao, “Shear strength enhancement mechanisms of steel fiber-reinforced concrete slender beams,” ACI Struct. J., vol. 114, no. 3, pp. 729-742, May 2017, http://dx.doi.org/10.14359/51689449
    » http://dx.doi.org/10.14359/51689449
  • 80
    T. Greenough and M. Nehdi, “Shear behavior of fiber-reinforced self-consolidating concrete slender beams,” ACI Mater. J., vol. 105, no. 5, pp. 468-477, Sep. 2008, http://dx.doi.org/10.14359/19976
    » http://dx.doi.org/10.14359/19976
  • 81
    T. H. K. Kang, W. Kim, L. M. Massone, and T. A. Galleguillos, “Shear-flexure coupling behavior of steel fiber-reinforced concrete beams,” ACI Struct. J., vol. 109, no. 4, pp. 435-444, Jul. 2012, http://dx.doi.org/10.14359/51683863
    » http://dx.doi.org/10.14359/51683863
  • 82
    D. Dupont and L. Vandewalle, “Shear capacity of concrete beams containing longitudinal reinforcement and steel fibers,” ACI Spec. Publ., vol. 216, pp. 79-94, Oct. 2003, http://dx.doi.org/10.14359/12893
    » http://dx.doi.org/10.14359/12893
  • 83
    G. Batson, E. Jenkins, and R. Spatney, “Steel fibers as shear reinforcement in beams,” ACI J. Proc., vol. 69, no. 10, pp. 640-644, Oct. 1972, http://dx.doi.org/10.14359/7151
    » http://dx.doi.org/10.14359/7151
  • 84
    J. Zhao, J. Liang, L. Chu, and F. Shen, “Experimental study on shear behavior of steel fiber reinforced concrete beams with high-strength reinforcement,” Materials, vol. 11, no. 9, pp. 1682, Sep. 2018, http://dx.doi.org/10.3390/ma11091682
    » http://dx.doi.org/10.3390/ma11091682
  • 85
    R. L. Jindal, “Shear and moment capacities of steel fiber reinforced concrete beams,” ACI Spec. Publ., vol. 81, pp. 1-16, Nov. 1984, http://dx.doi.org/10.14359/6443
    » http://dx.doi.org/10.14359/6443
  • 86
    J. H. Hwang, D. H. Lee, K. S. Kim, H. Ju, and S. Y. Seo, “Evaluation of shear performance of steel fibre reinforced concrete beams using a modified smeared-truss model,” Mag. Concr. Res., vol. 65, no. 5, pp. 283-296, Mar. 2013, http://dx.doi.org/10.1680/macr.12.00009
    » http://dx.doi.org/10.1680/macr.12.00009
  • 87
    S. Gali and K. V. L. Subramaniam, “Shear behavior of steel fiber reinforced concrete using full-field displacements from digital image correlation,” MATEC Web Conf., vol. 120, pp. 04003, Aug. 2017, http://dx.doi.org/10.1051/matecconf/201712004003
    » http://dx.doi.org/10.1051/matecconf/201712004003
  • 88
    A. Shoaib, A. S. Lubell, and V. S. Bindiganavile, “Size effect in shear for steel fiber-reinforced concrete members without stirrups,” ACI Struct. J., vol. 111, no. 5, pp. 1081-1090, Sep. 2014, http://dx.doi.org/10.14359/51686813
    » http://dx.doi.org/10.14359/51686813
  • 89
    A. Shoaib, “Shear in steel fiber reinforced concrete without stirrups,” Ph.D. dissertation, Univ. Alberta, Edmonton, Canada, 2012.
  • 90
    A. S. Abdul-Zaher, L. M. Abdul-Hafez, Y. R. Tawfic, and O. Hammed, “Shear behavior of fiber reinforced concrete beams,” J. Eng. Sci., vol. 44, no. 2, pp. 132-144, Mar./Apr. 2016.
  • 91
    M. Santos Jr., “Avaliação da substituição da armadura transversal mínima por fibras de aço em vigas de concreto armado,” Master thesis, Prog. Pós-Grad. Eng. Civil Amb., Univ. Fed. Pernambuco, Caruaru, Brazil, 2021.
  • 92
    P. B. Fusco, Estruturas de Concreto: Solicitações Transversais São Paulo, Brazil: PINI, 2008.
  • 93
    G. Arslan, “Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams,” KSCE J. Civ. Eng., vol. 18, pp. 587-594, Mar. 2014, http://dx.doi.org/10.1007/s12205-014-0320-x
    » http://dx.doi.org/10.1007/s12205-014-0320-x
  • 94
    H. H. Dinh, G. J. Parra-Montesinos, and J. K. Wight, “Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement,” J. Struct. Eng., vol. 137, no. 10, pp. 1039-1051, Dec. 2011., http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000362
    » http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000362
  • 95
    M. Sarveghadi, A. H. Gandomi, H. Bolandi, and A. H. Alavi, “Development of prediction models for shear strength of SFRCB using a machine learning approach,” Neural Comput. Appl., vol. 31, pp. 2085-2094, Aug. 2015, http://dx.doi.org/10.1007/s00521-015-1997-6
    » http://dx.doi.org/10.1007/s00521-015-1997-6
  • 96
    M. Imam, L. Vandewalle, F. Mortelmans, and D. Van Gemert, “Shear domain of fibre-reinforced high-strength concrete beams,” Eng. Struct., vol. 19, no. 9, pp. 738-747, Sep. 1997, http://dx.doi.org/10.1016/S0141-0296(96)00150-2
    » http://dx.doi.org/10.1016/S0141-0296(96)00150-2
  • 97
    J. Thomas and A. Ramaswamy, “Mechanical properties of steel fiber-reinforced concrete,” J. Mater. Civ. Eng., vol. 19, no. 5, pp. 385-392, May 2007, http://dx.doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385)
    » http://dx.doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385)
  • 98
    M. S. Islam and S. Alam, “Principal component and multiple regression analysis for Steel Fiber Reinforced Concrete (SFRC) beams,” Int. J. Concr. Struct. Mater., vol. 7, pp. 303-317, Nov. 2013, http://dx.doi.org/10.1007/s40069-013-0059-7
    » http://dx.doi.org/10.1007/s40069-013-0059-7

Edited by

Editors: Leandro Trautwein, Mario Pimentel, Mauro de Vasconcellos Real.

Data availability

the data that support the findings of this study are openly available in Attena Repositório Digital da UFPE at https://repositorio.ufpe.br/handle/123456789/41989, reference number 41989.

Publication Dates

  • Publication in this collection
    13 Oct 2023
  • Date of issue
    2024

History

  • Received
    18 Sept 2022
  • Reviewed
    13 July 2023
  • Accepted
    10 Aug 2023
  • Corrected
    27 Mar 2024
IBRACON - Instituto Brasileiro do Concreto Instituto Brasileiro do Concreto (IBRACON), Av. Queiroz Filho, nº 1700 sala 407/408 Torre D, Villa Lobos Office Park, CEP 05319-000, São Paulo, SP - Brasil, Tel. (55 11) 3735-0202, Fax: (55 11) 3733-2190 - São Paulo - SP - Brazil
E-mail: arlene@ibracon.org.br