Acessibilidade / Reportar erro

Morphoanatomical and histochemical studies of the seed development of Euterpe oleracea (Arecaceae)

Abstract

Although the consumption of açaí (Euterpe oleracea) pulp has long been an important component of the diet of the peoples from the Amazon, the açaí palm tree has recently attracted economic and scientific interest because of its vast array of bioactive compounds found in the fruit pericarp. The açaí seeds are the largest byproduct after pulp extraction and have potential for use in ethanol production, but this process is hindered by limited knowledge of seed biology, chemical composition and pattern reserve deposition during seed development. The aim of this work was to describe the morphoanatomical development of the seeds, as well as to identify the main organic compounds stored in the seeds. To achieve this goal, histological and histochemical analyses were performed on developing seeds. Results showed the seed is albuminous, bitegmic and that ingrowths of the seed coat give rise to a ruminate endosperm. Moreover, the nutritive reserves of açaí seeds are found in the endosperm thickened cell walls as reserve polysaccharides. Our findings provide information for future studies dealing with reproductive biology, propagation and the improvement of this profitable crop.

Key words:
embryogenesis; hypostase; pachychalaza; palm trees; ruminate endosperm

Resumo

Embora o consumo de açaí (Euterpe oleracea) seja há tempos um importante componente da dieta dos povos amazônicos, o açaizeiro tem recentemente atraído tanto o interesse econômico quanto científico devido à presença de urna vasta gama de compostos bioativos encontrados no pericarpo de seus frutos. As sementes de açaí representam o principal subproduto após a extração da polpa e podem ser potencialmente utilizadas para a produção de etanol, mas esse processo é dificultado pelo conhecimento limitado sobre a biología das sementes, sua composição química e a deposição de reserva de padrões durante o desenvolvimento das sementes. O objetivo deste trabalho é descrever o desenvolvimento morfoanatômico das sementes, bem como identificar os principais compostos orgânicos armazenados nas sementes. Para atingir esse objetivo, foram realizadas análises histológicas e histoquímicas das sementes em desenvolvimento. Os resultados revelaram que a semente é albuminosa, bitegmica e que tegumento interno da semente dá origem as ruminações do endosperma. Além disso, os resultados indicam que as reservas nutritivas das sementes de açaí são encontradas nas paredes celulares espessadas pelo endosperma na forma de polissacarídeos de reserva. Nossas descobertas fornecem informações úteis para futuros estudos sobre biología reprodutiva, propagação e melhoria de uma cultura tao lucrativa.

Palavras-chave:
embriogênese; hipóstase; paquicalazal; palmeiras; endosperma ruminado

Introduction

Euterpe oleracea Mart. (Arecaceae), popularly known as “açaí”, is a palm species found in several Brazilian states and is especially important in the North and Northeast Brazil, as it is used for feeding or in the production of cosmetics, crafts and others (Paula 1975Paula JE (1975) Anatomia de Euterpe oleracea Mart. (Palmae da Amazônia). Acta Amazónica 5: 265-278. DOI: <https://doi.org/10.1590/1809-43921975053265>.
https://doi.org/10.1590/1809-43921975053...
; Silva et al. 2006Silva IM, Santana AC & Reis MS (2006) Análise dos retornos sociais oriundos de adoção tecnológica na cultura do açaí no estado do Pará. Amazônia: Ciencia & Desenvimento 2: 25-38.; Lorenzi 2008Lorenzi H (2008) Arvores brasileiras - manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 5ª ed. Instituto Plantarum de Estudos da Flora, Nova Odessa. PÁGINAS?????.). Although the açaí fruit production as well as the consumption of its pulp is an ancient activity of the peoples from the Amazon (Salo et al. 2013Salo M, Sirén A & Kalliola R (2013) Açaí: The forest farms of the Amazon estuary. In: Salo M, Sirén A & Kalliola R (eds.) Diagnosing wild species Harvest. Academic Press, San Diego. Pp. 191-202. DOI: <https://doi.org/10.1016/B978-0-12-397204-0.00011-5>.
https://doi.org/10.1016/B978-0-12-397204...
; Oliveira & Schwartz 2018Oliveira MSP & Schwartz G (2018) Açaí - Euterpe oleracea. In: Rodrigues S, Silva EO & Brito ES (eds.) Exotic Fruits Reference Guide. Academic Press, London. Pp. 1-5. DOI: <https://doi.org/10.1016/B978-0-12-803138-4.00002-2>.
https://doi.org/10.1016/B978-0-12-803138...
), the consumption of açaí beverages has spread far beyond the Amazon basin and its pulp is in increasing demand by the functional food industry (Schauss 2010Schauss AG (2010) Açaí (Euterpe oleracea Mart.): a macro and nutrient rich palm fruit from the Amazon rain forest with demonstrated bioactivities in vitro and in vivo. In: Watson RR & Preedy VR (eds.) Bioactive foods in promoting health. Academic Press, San Diego. Pp. 479-490. DOI: <https://doi.org/10.1016/B978-0-12-374628-3.00032-3>.
https://doi.org/10.1016/B978-0-12-374628...
; Bichara & Rogez 2011Bichara CMG & Rogez H (2011) Açai (Euterpe oleracea Martius). In: Yahia EM (ed.) Postharvest Biology and Technology of Tropical and Subtropical Fruits. Woodhead Publishing, Cambridge. Pp. l-27e. DOI: <https://doi.org/10.1533/9780857092762.l>
https://doi.org/10.1533/9780857092762.l...
; Oliveira & Schwartz 2018Oliveira MSP & Schwartz G (2018) Açaí - Euterpe oleracea. In: Rodrigues S, Silva EO & Brito ES (eds.) Exotic Fruits Reference Guide. Academic Press, London. Pp. 1-5. DOI: <https://doi.org/10.1016/B978-0-12-803138-4.00002-2>.
https://doi.org/10.1016/B978-0-12-803138...
). According to data from Plant Extraction and Forestry Research (Produção da Extração Vegetal e da Silvicultura), the production of açaí in Brazil from 2010 to 2016 has increased from 706 thousand ton to 1 million ton (CONAB 2017CONAB (2017) Companhia Nacional de Abastecimento. Açai, Conjuntura semestral, setembro de 2016. Available at <http://www.conab.gov.br/>. Access on 10 December 2019.
http://www.conab.gov.br/...
). This demand is being met by newly established commercial plantations and independent family growers along the Amazon River estuary. It is hoped that this fruit will become a major revenue source for small and large growers alike.

The lack of basic knowledge about the biology and biochemistry of this crop hinders both its genetic improvement and the ability to mitigate environmental problems arising from the seed surplus after pulp extraction. Because there is no significant commercial for the seeds at this time (Farinas et al. 2009Farinas CS, Santos RRM, Neto VB & Pessoa JDC (2009) Aproveitamento do caroço do açai como substrato para produção de enzimas por fermentação em estado sólido. Boletim de Pesquisa e Desenvolvimento 30. 15p.; Monteiro et al. 2019Monteiro AF, Miguez IS, Silva JPRB & Silva AS (2019) High concentration and yield production of mannose from açaí (Euterpe oleracea) seeds via diluted-acid and mannanase-catalyzed hydrolysis. Scientific Reports 1-35. DOI: <https://doi.org/10.1038/ s41598-019-47401-3>.
https://doi.org/10.1038/ s41598-019-4740...
), the disposal of thousands of tons of seeds annually represents a significant ecological problem. Although it is technologically feasible to use this surplus of seeds to produce ethanol, this cannot be accomplished without defining the details of the major cell wall carbohydrates of the seeds. Identifying of the enzymes used in the synthesis and deposition of the carbohydrates during seed development is also important. Acquiring this knowledge will require a comprehensive description of seed development, which will be used for the metabolomic and proteomic analysis of the relevant organs, tissues and developmental stages.

Morphoanatomical studies are fundamental for understanding embryo development and the germination process, as demonstrated for Syagrus inajai (Spruce) Becc. (Genovese-Marcomini et al. 2014Genovese-Marcomini PR, Mendonça MS & Carmello-Guerreiro SM (2014) Embryonic development of Syagrus inajai (Spruce) Becc. (Arecaceae, Arecoideae), an Amazonian palm. Australian Journal of Botany 61: 611-621. DOI: <https://doi.org/10.1071/BT13162>
https://doi.org/10.1071/BT13162...
). Bearing in mind that seeds are the main means of plant propagation and establishment of palm species (Genovese-Marcomini et al. 2013Genovese-Marcomini P, Mendonça M & Carmello-Guerreiro S (2013) Morphoanatomy of the flower of Syagrus inajai (Spruce) Becc. (Arecaceae-Arecoideae- Attaleinae), Amazon. Brazilian Journal of Biology 73: 649-661. DOI: <https://doi.org/10.1590/S1519-69842013000300025>.
https://doi.org/10.1590/S1519-6984201300...
), sound knowledge of seed development is essential for understanding the reserves that sustain the germination and seedling establishment processes. Although anatomical studies have been performed on açaí species (both E. oleracea, Euterpe precatoria Mart, and Euterpe edulis Mart.) (Aguiar & Mendonça 2003Aguiar MO & Mendonça MS (2003) Morfo-anatomia da semente de Euterpe precatoria Mart. (Palmae). Revista Brasileña de Sementes 25: 37-42. DOI: <https://doi.org/10.1590/S0101-31222003000100007>.
<https://doi.org/10.1590/S0101-312220030...
; Gonçalves et al. 2010Gonçalves JFC, Lima RBS, Fernandes AV, Borges EEL & Buckeridge MS (2010) Physiological and biochemical characterization of the assai palm (Euterpe oleracea Mart.) during seed germination and seedling growth under aerobic and anaerobic conditions. Revista Árvore 34: 1045-4053. DOI: <https://doi.org/10.1590/S0100-67622010000600010>.
https://doi.org/10.1590/S0100-6762201000...
), previous works have not provided detailed descriptions of seed and zygotic embryo development. Thus, we offer here a morphoanatomical and histochemical analysis of seed development of E. oleracea.

Materials and Methods

Flowers and fruits at different development stages were collected from a commercial orchard at the municipality of Sao Gonçalo do Amarante - Ceará state, Brazil (3°36′26″S, 38°58′14″W). A morphological characterization of flowers and fruits based on flower length, stigma color, pericarp diameter and pericarp color was carried out to establish the developmental stages used in the anatomical study of the seed development. A refence color chart was created to illustrate the colors being used on the description of flowers and fruits (Fig. 1).

Figure 1
Reference color chart for colors being used on the description of flowers and fruits of Euterpe oleracea.

For structural characterization, calyx and corolla were removed from flowers as well as the pericarp from fruits in order to isolate pistils and seeds, respectively. Pistils and seeds from five individuals were fixed in a solution of 1% glutaraldehy de and 4% formaldehyde in phosphate buffer (Karnovsky 1965Karnovsky MJJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. The Journal of Cell Biology 27: 137-138.). After fixation (48h), samples were washed in 0.2 M phosphate buffer at pH 7.2, dehydrated though a crescent ethanol series and embedded in hydroxyethyl methacrylate resin (Historesin, Leica) according to the manufacturer’s recommendations, modified. Before embedding, samples were immersed in resin for 30 consecutive days. Each day, the flasks with samples immersed in resin were placed under vacuum during the day and in the fridge at night. The embedded material was then cross and longitudinally sectioned (5 μm thick) with the aid of an automated rotary microtome (Leica® RM 2065) equipped with tungsten carbide knives. Sections were stained with 0.05 % toluidine blue in 0.12 % borax for 10 min followed by 0.05 % basic fuchsin for 1 min (Junqueira 1990Junqueira CUO (1990) O uso de cortes finos de tecidos na Medicina e Biologia. Meios e Métodos 66:167-171.).

Sections of embedded material were used in the following histochemical tests carried out to study seed reserves: xylidine Ponceau, to detect total proteins (O’Brien & McCully 1981O’Brien TP & McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Ptey, Melbourne. 357p.); ruthenium red, for pectins (Johansen 1940Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York. 523p.); lugol, for starch (Johansen 1940Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York. 523p.); Sudan III, for total lipids (Pearse 1980); Nadi reagent, for essential oils and oil/resins (David & Carde 1964David R & Carde JPJ-D (1964) Coloration différentielle des inclusions lipidiques et terpéniques des pseudophylles du Pin maritime au moyen du réactif nadi. Comptes Rendus de l’Académie des Sciences Paris 258: 1338-1340.) and periodic acid-Schiff (PAS), for total polysaccharides (O’Brien & McCully 1981O’Brien TP & McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Ptey, Melbourne. 357p.), toluidine blue O at pH 4.4, for phenolic compounds (Ramalingam & Ravindranath 1970Ramalingam K & Ravindranath M (1970) Histochemical significance of green metachromasia to Toluidine Blue. Histochemie 24: 322-327. DOI: <https://doi.org/10.1007/BF00278217>.
https://doi.org/10.1007/BF00278217...
; Retamales & Scharaschkin 2014Retamales HA & Scharaschkin T (2014) A staining protocol for identifying secondary compounds in Myrtaceae. Applications in Plant Sciences 2: 1400063. DOI: <https://doi.org/10.3732/apps.l400063>.
https://doi.org/10.3732/apps.l400063...
). Sections subjected to Sudan III, Nadi reagent were hand sectioned from fresh material only for stage S8.

Permanent slides were mounted with Tissue Mount (Tissue-TEK) and results were recorded with a digital camera (HP Photosmart R967) attached to a light microscope (Leica® DM4000) equipped with a digital system for image captures.

Results

Characterization of the flowers and definition of the seed development stages

Eight distinct colors were found to illustrate the flowers and the fruit development stages (Fig. 1). Flowers characterization and the seeds development stages are summarized in Table 1. Flower buds at pre-anthesis already present the gynoecium with reddish gynoecium at upper half of the gynoecium. The only remarkable morphological difference from flowers buds at pre-anthesis to flower at anthesis is the average length of flowers, 2 mm and 4 mm, respectively. S1 is the stage at which fruit is at the beginning of its development, the average diameter is 2 mm and gynoecium has black dry stigma and swollen ovary after fertilization. The upper half of the gynoecium is reddish, the middle portion is opaque yellow and lower portion is dark brown. At S2 and S3 stages, fruits present 4.5 mm and 9 mm diameter, respectively, and yellow-green pericarp. At S4, fruit is 10 mm wide and pericarp is shiny green. S5 presents fruits with 11 mm wide, opaque green pericarp and soft developing seed while at S6 the size of fruit and pericarp color are the same as the previous stage, but the developing endocarp and seed begin hardening. At S7, the fruit become a little larger and the pericarp begins to turn purple in a way that the fruit is green-purple while the endocarp and seed becomes even harder. At the last stage, S8, the fruit ripens, the pericarp becomes black-purple and a hard fully developed endocarp and seed are found.

Table 1
Description of flower and developing fruits selected for the developmental study of Euterpe oleracea seeds. F = flower at anthesis; FB = flower bud; S = stage of seed development.

Anatomy of ovule during pre-anthesis

Ovules in Euterpe oleracea are bitegmic, hemianatropous with axile placentation and occupy almost the whole cavity of the locule (Fig. 2a). The funiculus is short and readily distinguished between the placentation area and the chalazal region (Fig. 2a). Tannin-containing idioblasts are found in the chalazal area opposite to the placentation (Fig. 2a). The vascular bundle penetrates through the funiculus and spreads from the massive chalaza, forming a pachychalaza (Fig. 2a). The hypostase accumulating phenolic compounds is found in the chalazal region above the embryo sac (Fig. 2a). The straight micropyle, opposite to the chalaza, is composed of the opening of both inner (endostome) and outer (exostome) integuments (Fig. 2b).

Figure 2
a-c. Anatomy of Euterpe oleracea ovule during pre-anthesis in longitudinal sections – a. general aspects of the fully formed ovule [note the idioblasts with phenolic compounds (arrows)]; b. detail of the micropyle (dashed line), particularly of the outer integument; c. detail of the micropyle (dashed line), particularly of the inner integument. Cz = Chalaza; Fu = Funiculus; VB = Vascular bundle; Hp = Hypostase; Nu = Nucellus; Mi = Micropyle; OI = Outer integument; II = Inner integument.

The inner and outer integuments are distinguished only at the micropylar area because of the presence of a pachychalaza (Fig. 2c). The inner integument is made up by 3–4 layers of small cells with densely stained cytoplasm and conspicuous bulky nuclei (Fig. 2b-c). On the other hand, the outer integument presents about 20 layers of larger and more vacuolated cells (Fig. 2b-c).

Fruit and seed development

After the fertiization, during the seed development stage S1 (Tab. 1, Fig. 3), the young fruit of about 2 mm holds a developing seed with the seed coat occupying most of the seed volume (Fig. 3a-b). The seed coat cells present phenolic compounds while the raphe does not bear such substances (Fig. 3b). At stage S1, seed coat ingrowths have already begun to develop. Both the zygote (Fig. 3c) and a nuclear endosperm (Fig. 3d) are observed. At this stage, the zygote undergoes its first periclinal division.

Figure 3
a-p. Fruit and seed development of Euterpe oleracea in longitudinal sections, stages S1-S4 – a-d. stage SI – a. developing fruit and seed (2 mm); b. general anatomical view of the seed; c. detail of zygote; d. free nuclear endosperm (note the free nucleus); e-h. stage S2 – e. developing fruit and seed (4.5 mm); f. initial development of the ruminate endosperm; g. pro-embryo made up by three cells; h. free nuclear endosperm; i-1. stage S3 – i. developing fruit and seed (9 mm); j. note the ruminate endosperm; k. early globular embryo; 1. cellular endosperm [note that some cells are still dividing (asterisk)]; m-p. stage S4 – m. developing fruit and seed (> 10 mm); n. note the ruminate endosperm and thin seed coat; o. late globular embryo (note the expansion of the future cotyledon); p. endosperm with thickened cell walls and peripheral nuclei. C = cotyledon; Cc = central cavity; GE = globular embryo; En = endosperm; FN = free nucleus; Mi = micropyle; Nu = nucellus; Pc = pericap; Pe = pro-embryo; Ra = raphe; SC = seed coat; SCI = seed coat ingrowths; Sd = seed; Su = suspensor; VB = vascular bundles; Z = zygote.

At stage S2 (Tab. 1), the pericarp is shiny and yellow-green while the seed coat greatly develops, and its ingrowths reach the central cavity (Fig. 3e-f). The pro-embryo is composed of three cells (Fig. 3g), as the basal cell already went through an anticlinal division. The free nuclei of the endosperm are more evident (Fig. 3h).

At stage S3 (Tab. 1), there is an increase in the fruit diameter (Fig. 3i). In longitudinal sections it is possible to observe prominent ingrowths of the seed coat which correspond to the endosperm ruminations towards the central cavity (Fig. 3j). The pro-embryo displays the suspensor attached to a thin layer of nucellar cells (Fig. 3k). At this time, the endosperm has a jelly-like appearance in seeds longitudinally sectioned and it is possible to anatomically observe the beginning of the cellularization process (Fig. 3l). Such cells present thin walls and show active division (Fig. 3l). At stage S4 (Tab. 1), the pericarp structure is similar to S3 (Fig. 3m) while the seed coat becomes thinner (Fig. 3n) as a result of the endosperm cells enlargement. A remarkable difference at this stage is the embryo with initial organization of a lateral cotyledon and a shoot apex (Fig. 3o). Moreover, the endosperm presents thickened-wall cells with large peripheral nuclei (Fig. 3p).

Fruits with opaque green pericarps are observed at stage S5 (Fig. 4a). The layers of seed coat ingrowths are slightly thinner than in the former stage (Fig. 4b). The embryo shows a cotyledonary primordium expanding around the shoot apex (Fig. 4c). At this point, the endosperm has cells with thicker cell walls, where several primary pit fields are observed (Fig. 4d).

Figure 4
a-p. Fruit and seed development of Euterpe oleracea in longitudinal sections, stages S5-S8 – a-d. stage S5 – a. developing fruit and seed (11 mm, opaque green pericarp and soft seed); b. general view of an anatomical section from the developing seed; c. young embryo showing the cotyledonary base and the upper part of the cotyledon; d. endosperm with thickened cell walls (black arrowheads) [note the primary pit fields (black arrow)]; e-h. stage S6 – e. developing fruit and seed (11 mm, opaque green pericarp and hard seed); f. general view of seed anatomy; g. detail of the embryo; h. endosperm with thickened cell walls (black arrowheads) and cytoplasmic inclusions (white arrows) [note the primary pit fields (black arrow)]; i-l. stage S7 – i. developing fruit and seed (12 mm, green-purple pericarp and hard seed); j. general view of seed anatomy with ruminate endosperm (note the development of the upper side of the cotyledon); k. detail of cotyledonal embryo; 1. detail of endosperm cells with cytoplasmic inclusions, thickened cell walls (black arrowheads), and primary pit fields (black arrow); m-p. stage S8 – m. fruit and seed (12 mm, purple pericarp and hard fully developed seed); n. mature seed (note the ruminate endosperm); o. mature embryo; p. detail of endosperm with thickened cell walls (black arrowheads), primary pit fields (black arrow), and cytoplasmic inclusions (white arrows). CB = Cotyledonary base; CE = cotyledonary edge; DR = distal region; E = embryo; EC = embryo cavity; En = endosperm; Mi = micropyle; PC = procambium strands; Pc = pericarp; PR = proximal region; PS = procambium strand; Ra = raphe; RAM = root apical meristem; S = suspensor; SAM = shoot apical meristem; SC = seed coat; SCI = seed coat ingrowths; UC = upper cotyledon.

The fruits still have opaque green pericarps at stage S6 (Fig. 4e), while the seed is hard. The seed coat is similar to the previous stage (Fig. 4f). In the embryo, the shoot apical meristem is observed within the cotyledonal cavity, which forms because of growth of the upper side of the cotyledon. The root apical meristem is also differentiated (Fig. 4g). The endosperm cells display thicker walls and cytoplasmic inclusions (Fig. 4h).

At stage S7 (Fig. 4i), the embryo presents greater development of the upper side of the cotyledon (Fig. 4j-k), which occupies most of the embryonic cavity. The endosperm is well developed, the cell walls become thicker and cytoplasmic inclusions are still persistent (Fig. 4l). Finally, at stage S8, the fruit shows a purple pericarp and fully developed seed (Fig. 4m-n). The minute conic and linear embryo (Fig. 4o) occupies the whole embryonic cavity. Radicle and shoot apical meristems are fully developed. The proximal region of the embryo, at the cotyledon base, corresponds to the cotyledonary petiole. The upper side of the cotyledon, at the distal region, is richly vascularized by procambial strands (Fig. 4o), corresponding to the haustorium. The endosperm displays irregular-shaped cells with thickened walls full of primary pit fields and cytoplasmic inclusions (Fig. 4p).

Apart from the endosperm ruminations, the outer layers of the seed coat form a homogeneous tissue that becomes thinner during seed development (Fig. 3b, 3f, 3j, 3n, 4b, 4f). Only at the raphe-hilar region does the seed coat homogeneity change and the slight mound formed by the raphe and hilar wound can be readily distinguished (Fig. 3n, 4b, 4f).

Histochemical study of the seed reserves

The histochemical analysis showed that protein accumulation is gradual during endosperm development. Protein bodies are well observed in the endosperm cells (Fig. 5a) and embryo (Fig. 5b). The presence of pectin is observed within the cytoplasm of the endosperm cells (Fig. 5c) and embryo (Fig. 5d). The thickening in the cell walls of the endosperm is not due to pectin depositions, as the ruthenium red dye did not bind to the wall. Starch is only found in the embryo (Fig. 5e) near the shoot and radicle apical meristems. Total lipids (Fig. 5f) and a mixture of essential oils/resins (Fig. 5g) are detected only within the endosperm cells.

Figure 5
a-g. Histochemical study of the seed reserves of Euterpe oleracea at stage S8 when fruit has black-purple pericarp and hard fully developed endocarp and seed – a-b. total proteins indicated by the orange/red color of cytoplasmatic contents stained with xylidine Ponceau (white arrows = protein bodies) – a. endosperm in fully developed seed (12 mm fruit with purple pericarp); b. embryo; c-d. pectins as indicated by the pink color when stained with ruthenium red (black arrows = pectin); c. endosperm cells; d. embryo; e. starch grains within the embryo as indicated by the black color when stained with lugol (red arrowheads = starch); f. total lipids in the endosperm as indicated by the orange/red color when stained with Sudan III (black arrowheads = lipids); g. oils in the endosperm as indicated by the purple color when stained with NADI reagent (white arrowheads = oil droplet). CW = cell wall.

At stage S4, the PAS reaction shows the development of the endosperm cell wall thickening (Fig. 6a-c). Cells adjacent to the inner integument have thin walls (Fig. 6a-b). The farther the endosperm cells are from the inner integument (i. e. closer to the central cavity), the thicker they become (Fig. 6a, 6c). These cell wall thickenings display a more homogenous thickness at stage S7 (Fig. 6d). At stage S8, the endosperm cells are homogenously stained with PAS (Fig. 6e) and cells bordering the embryonic cavity start to be digested (Fig. 6e).

Figure 6
a-e. Centrifugal maturation of the endosperm in the seeds of Euterpe oleracea. Total polysaccharides stained in shades of purple by periodic acid Schiff- a-c. stage S4 – a. general view of the endosperm showing two distinct areas (B and C); b. cells near the seed coat with thin cell walls; c. cells with thickened cell walls at innermost areas of the endosperm; d. stage S7. Fully developed endosperm (note that all cells present thickened walls); e. stage S8. Degradation of endosperm cells bordering the embryonic cavity. CW = cell wall; EC = embryonic cavity; En = endosperm; ML = middle layer; SC = seed coat; black arrowhead = digestion zone.

Discussion

The ovules in Euterpe oleracea are hemianatropous. But this is a variable condition in members of Arecaceae, which may also exhibit anatropous, campylotropous and orthotropous ovules (Uhl & Moore 1971Uhl NW & Moore HE (1971) The palm gynoecium. American Journal of Botany 58: 945-992. DOI: <https://doi.org/10.1002/j.1537-2197.1971.tb10050.x>.
https://doi.org/10.1002/j.1537-2197.1971...
; Genovese-Marcomini et al. 2013Genovese-Marcomini P, Mendonça M & Carmello-Guerreiro S (2013) Morphoanatomy of the flower of Syagrus inajai (Spruce) Becc. (Arecaceae-Arecoideae- Attaleinae), Amazon. Brazilian Journal of Biology 73: 649-661. DOI: <https://doi.org/10.1590/S1519-69842013000300025>.
https://doi.org/10.1590/S1519-6984201300...
; Mazzottini-dos-Santos et al. 2015Mazzottini-dos-Santos HC, Ribeiro LM, Mercadante-Sirnões MO & Sant’Anna-Santos BF (2015) Ontogenesis of the pseudomonomerous fruits of Acrocomia aculeata (Arecaceae): a new approach to the development of pyrenarium fruits. Trees 29: 199-214. DOI: <https://doi.org/10.1007/s00468-014-1104-0>.
https://doi.org/10.1007/s00468-014-1104-...
; Castaño et al. 2016Castaño F, Marquínez X, Crèvecoeur M, Collin M, Stauffer FW & Tregear JW (2016) Comparison of floral structure and ontogeny in monoecious and dioecious species of the palm tribe Chamaedoreeae (Arecaceae; Arecoideae). International Journal of Plant Sciences 177: 247-262. DOI: <https://doi.org/10.1086/684262>
https://doi.org/10.1086/684262...
). Moreover, although bitegmic ovules are widely distributed in the family, the micropyle may be formed by both the integuments, as observed in E. oleracea, by the inner integument, or by the outer integument (Genovese-Marcomini et al. 2013Genovese-Marcomini P, Mendonça M & Carmello-Guerreiro S (2013) Morphoanatomy of the flower of Syagrus inajai (Spruce) Becc. (Arecaceae-Arecoideae- Attaleinae), Amazon. Brazilian Journal of Biology 73: 649-661. DOI: <https://doi.org/10.1590/S1519-69842013000300025>.
https://doi.org/10.1590/S1519-6984201300...
; Mazzottini-dos-Santos et al. 2015Mazzottini-dos-Santos HC, Ribeiro LM, Mercadante-Sirnões MO & Sant’Anna-Santos BF (2015) Ontogenesis of the pseudomonomerous fruits of Acrocomia aculeata (Arecaceae): a new approach to the development of pyrenarium fruits. Trees 29: 199-214. DOI: <https://doi.org/10.1007/s00468-014-1104-0>.
https://doi.org/10.1007/s00468-014-1104-...
) (Johri et al. 1992Johri BM, Ambegaokar KB & Srivastava PS (1992) Comparative embryology of angiosperms. Vol. 2. Springer-Verlag, Berlin. 1221p.). The pachychalaza, as reported in E. oleracea, is formed by intercalary growth of chalaza, which becomes massive and well-vascularized (Boesewinkel & Bouman 1984Boesewinkel FD & Bouman F (1984) The seed: structure. In: Johri BM (ed.) Embryology of Angiosperms. Springer, Berlin, Heidelberg. Pp. 567-610. DOI: <https://doi.org/10.1007/978-3-642-69302-l_12>
https://doi.org/10.1007/978-3-642-69302-...
). It has been proposed that this allows a more efficient transfer of nutrients to the embryo (von Teichman & van Wyk 1994von Teichman I & van Wyk AE (1994) Structural aspects and trends in the evolution of recalcitrant seeds in dicotyledons. Seed Science Research 4: 225-239. DOI: <https://doi.org/10.1017/S096025850000221X>.
https://doi.org/10.1017/S096025850000221...
). However, the presence of a minute embryo does agree with such proposition. Interestingly, the presence of a conspicuous well-developed endosperm full of reserves in the seeds would agree with the pachychalaza playing a role in a more efficient transfer of nutrients to the endosperms instead. Pachychalazal ovules/ seeds were previously described in Arecaceae only in Syagrus inajai (Genovese-Marcomini et al. 2013Genovese-Marcomini P, Mendonça M & Carmello-Guerreiro S (2013) Morphoanatomy of the flower of Syagrus inajai (Spruce) Becc. (Arecaceae-Arecoideae- Attaleinae), Amazon. Brazilian Journal of Biology 73: 649-661. DOI: <https://doi.org/10.1590/S1519-69842013000300025>.
https://doi.org/10.1590/S1519-6984201300...
) and Acrocomia aculeata Lodd. ex Mart. (Mazzottini-dos-Santos et al. 2015Mazzottini-dos-Santos HC, Ribeiro LM, Mercadante-Sirnões MO & Sant’Anna-Santos BF (2015) Ontogenesis of the pseudomonomerous fruits of Acrocomia aculeata (Arecaceae): a new approach to the development of pyrenarium fruits. Trees 29: 199-214. DOI: <https://doi.org/10.1007/s00468-014-1104-0>.
https://doi.org/10.1007/s00468-014-1104-...
). It is likely that pachychalaza has been overlooked in the family due to lack of embryological studies.

The accumulation of phenolic compounds throughout the chalaza, hypostase and seed coat may be a functional adaptation to protect the embryo during its development, as these compounds are usually related to protection against pathogens because of their antimicrobial activity (Roshchina & Roshchina 1993Roshchina VV & Roshchina VD (1993) The excretory function of higher plants. Springer-Verlag, Berlin. 314p. DOI: <https://doi.org/10.1007/978-3-642-78130-8>.
https://doi.org/10.1007/978-3-642-78130-...
; Bhattacharya et al. 2010Bhattacharya A, Sood P & Citovsky V (2010) The roles of plant phenolics in defence and communication during agrobacterium and rhizobium infection. Molecular Plant Pathology 11: 705-719. DOI: <https://doi.org/10.1111/j.l364-3703.2010.00625.x>
<https://doi.org/10.1111/j.l364-3703.201...
). Moreover, the hypostase is important for the stabilizing the water balance of resting seeds during the dormancy, on facilitating the rapid transport of nutrients to the embryo sac or even on producing enzymes or hormones that may play a protective role in mature seeds (Bhojwani & Bhatnagar 2008Bhojwani SS & Bhatnagar SP (2008) The Embryology of Angiosperms. 5th ed. Vikas Publishing House, Noida, New Delhi. 368p.).

The seed morphoanatomy of Euterpe species has been described in previous reports (Aguiar & Mendonça 2002Aguiar MO & Mendonça MS (2002) Aspectos morfoanatômicos do embrião de Euterpe precatoria Mart. durante o processo germinativo. Acta Botanica Brasilica 16: 241-249. DOI: <https://doi.org/10.1590/S0102-33062002000300001>.
<https://doi.org/10.1590/S0102-330620020...
, 2003Aguiar MO & Mendonça MS (2003) Morfo-anatomia da semente de Euterpe precatoria Mart. (Palmae). Revista Brasileña de Sementes 25: 37-42. DOI: <https://doi.org/10.1590/S0101-31222003000100007>.
<https://doi.org/10.1590/S0101-312220030...
; Panza et al. 2004; Araújo 2005Araujo MGP (2005) Morfo-anatomia e desenvolvimento dos frutos e sementes de três especies da subfamilia Arecoideae (Arecaceae). INPA - Instituto Nacional de Pesquisas da Amazonia, Manaus. 189p.), but we highlight this is the first study to describe both the embryo and endosperm development in the açaí genus. The embryogenesis of E. oleracea, as in other palm species, results in a linear embryo, surrounded by the abundant endosperm. The embryo axis is microscopic and inserted within the cotyledonary petiole (Haccius & Philip 1979Haccius B & Philip VJ (1979) Embryo development in Cocos nueifera L.: a critical contribution to a general understanding of palm embryogenesis. Plant Systematics and Evolution 132: 91-106.; Genovese-Marcomini et al. 2013Genovese-Marcomini P, Mendonça M & Carmello-Guerreiro S (2013) Morphoanatomy of the flower of Syagrus inajai (Spruce) Becc. (Arecaceae-Arecoideae- Attaleinae), Amazon. Brazilian Journal of Biology 73: 649-661. DOI: <https://doi.org/10.1590/S1519-69842013000300025>.
https://doi.org/10.1590/S1519-6984201300...
; Mazzottini-dos-Santos et al. 2015Mazzottini-dos-Santos HC, Ribeiro LM, Mercadante-Sirnões MO & Sant’Anna-Santos BF (2015) Ontogenesis of the pseudomonomerous fruits of Acrocomia aculeata (Arecaceae): a new approach to the development of pyrenarium fruits. Trees 29: 199-214. DOI: <https://doi.org/10.1007/s00468-014-1104-0>.
https://doi.org/10.1007/s00468-014-1104-...
). Although embryo development seems to be uniform throughout the family (Haccius & Philip 1979Haccius B & Philip VJ (1979) Embryo development in Cocos nueifera L.: a critical contribution to a general understanding of palm embryogenesis. Plant Systematics and Evolution 132: 91-106.; Genovese-Marcomini et al. 2013Genovese-Marcomini P, Mendonça M & Carmello-Guerreiro S (2013) Morphoanatomy of the flower of Syagrus inajai (Spruce) Becc. (Arecaceae-Arecoideae- Attaleinae), Amazon. Brazilian Journal of Biology 73: 649-661. DOI: <https://doi.org/10.1590/S1519-69842013000300025>.
https://doi.org/10.1590/S1519-6984201300...
), more studies are needed for verification. In this sense, our results bring novel information about the embryo development of Arecaceae, and such data is a starting point to improve our understanding about the germinative process, the establishment, and propagation of palms.

The ruminate endosperm observed in E. oleracea have also been reported in other species of Arecaceae (Paula 1975Paula JE (1975) Anatomia de Euterpe oleracea Mart. (Palmae da Amazônia). Acta Amazónica 5: 265-278. DOI: <https://doi.org/10.1590/1809-43921975053265>.
https://doi.org/10.1590/1809-43921975053...
; Reddy & Kulkarni 1985Reddy GN & Kulkarni AR (1985) Contribution to the anatomy of palm fruits-Cocosoid palms. Proceedings: Plant Sciences 95: 153-165.; Zona 1992Zona S (1992) Endosperm condition and the paradox of Ptychococcus paradoxus. Telopea 10: 179-186.; Charlo et al. 2006Charlo HCO, Môro FV, Silva VL, Silva BMS, Bianco S & Môro JR (2006) Aspectos morfológicos, germinação e desenvolvimento inicial de plântulas de Archontophoenix alexandrae (F. Mueller) H. Wendl. e Drude (Arecaceae) em diferentes substratos. Revista Árvore 30: 933-940. DOI: <https://doi.org/10.1590/S0100-67622006000600008>
https://doi.org/10.1590/S0100-6762200600...
). It seems to occur in at least 51 genera within the family and may have evolved independently many times in the evolutionary history of the group (Zona 1992Zona S (1992) Endosperm condition and the paradox of Ptychococcus paradoxus. Telopea 10: 179-186.). It is characterized by an uneven endosperm surface, due to ingrowths or infoldings of the seed coat (Bayer & Appel 1996Bayer C & Appel O (1996) Occurrence and taxonomic significance of ruminate endosperm. The Botanical Review 62: 301-310.). These authors summarize several hypotheses that have been given to explain the presence of ruminate endosperm in seeds, such as: less seed palatability due to the presence of phenolic compounds in the seed coat, facilitation of seed imbibition during germination and enlargement of the contact area between storage tissue and seed coat, increasing the nutrient intake, and gases and water for the embryo and endosperm.

The endosperm in monocots has a fundamental role in embryo development, the germination process and the establishment of seedlings, as it is the main nutritive tissue in seeds (Oliveira et al. 2013Oliveira NCC, Lopes PSN, Ribeiro LM, Mercandante-Simões MO, Oliveira LAA & Silvério FO (2013) Seed structure, germination, and reserve mobilization in Butia capitata (Arecaceae). Trees - structure and function 27: 1633-1645. DOI: <https://doi.org/10.1007/s00468-013-0910-0>.
https://doi.org/10.1007/s00468-013-0910-...
; Mazzottini-dos-Santos et al. 2018Mazzottini-dos-Santos HC, Ribeiro LM & Oliveira DMT (2018) Structural changes in the micropylar region and overcoming dormancy in Cerrado palms seeds. Trees - Structure and Function 32:1415-1428. DOI: <https://doi.org/10.1007/s00468-018-1723-y>.
https://doi.org/10.1007/s00468-018-1723-...
). As for açaí, other palm seeds also bear thickened-wall endosperm cells occupying the entire seed cavity when mature (Belin-Depoux & Queiroz 1971Belin-Depoux M & Queiroz MH (1971) Contribution à l’étude ontogénique des palmiers. Quelques aspects de la germination de Euterpe edulis Mart. Revue Générale de Botanique 8: 339-371.; Henderson et al. 1995Henderson A, Galeano G & Bernai R (1995) Field guide to the palms of the Americas. Princeton University Press, Princeton. 502p. ; Aguiar & Mendonça 2003Aguiar MO & Mendonça MS (2003) Morfo-anatomia da semente de Euterpe precatoria Mart. (Palmae). Revista Brasileña de Sementes 25: 37-42. DOI: <https://doi.org/10.1590/S0101-31222003000100007>.
<https://doi.org/10.1590/S0101-312220030...
; Mendonça et al. 2008Mendonça MS, Oliveira AB, Araújo MGP & Araújo LM (2008) Morfo-anatomia do fruto e sementé de Oenocarpus minor Mart. (Arecaceae). Revista Brasileña de Sementes 30: 90-95. DOI: <https://doi. org/10.1590/S0101-31222008000100012>.
https://doi. org/10.1590/S0101-312220080...
; Moura et al. 2010Moura EF, Ventrella MC & Motoike SY (2010) Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae). Scientia Agricola 67: 399-407. DOI: <https://doi.org/10.1590/S0103-90162010000400004>.
https://doi.org/10.1590/S0103-9016201000...
; Nazário et al. 2013Nazário P, Ferreira SAN, Borges EEL, Genovese-Marcomini PR & Mendonça MS (2013) Anatomical and histochemical aspects of the peach palm (Bactris gasipaes Kunth) seed. Journal of Seed Science 35: 171-178. DOI: <https://doi.org/10.1590/S2317-15372013000200005>
https://doi.org/10.1590/S2317-1537201300...
; Mazzottini-dos-Santos et al. 2017Mazzottini-dos-Santos HC, Ribeiro LM & Oliveira DMT (2017) Roles of the haustorium and endosperm during the development of seedlings of Acrocomia aculeata (Arecaceae): dynamics of reserve mobilization and accumulation. Protoplasma 254: 1563-1578. DOI: <https://doi.org/10.1007/s00709-016-1048-x>.
https://doi.org/10.1007/s00709-016-1048-...
).

Proteins and lipids present in the endosperm of açaí are usually found in the endosperm of other palm trees (Panza et al. 2004Panza V, Láinez V & Maldonado S (2004) Seed structure and histochemistry in the palm Euterpe edulis. Botanical Journal of the Linnean Society 145: 445-453. DOI: <https://doi.org/10.1111/j.l095-8339.2004.00293.x>.
https://doi.org/10.1111/j.l095-8339.2004...
; Gonçalves et al. 2010Gonçalves JFC, Lima RBS, Fernandes AV, Borges EEL & Buckeridge MS (2010) Physiological and biochemical characterization of the assai palm (Euterpe oleracea Mart.) during seed germination and seedling growth under aerobic and anaerobic conditions. Revista Árvore 34: 1045-4053. DOI: <https://doi.org/10.1590/S0100-67622010000600010>.
https://doi.org/10.1590/S0100-6762201000...
; Nazário et al. 2013Nazário P, Ferreira SAN, Borges EEL, Genovese-Marcomini PR & Mendonça MS (2013) Anatomical and histochemical aspects of the peach palm (Bactris gasipaes Kunth) seed. Journal of Seed Science 35: 171-178. DOI: <https://doi.org/10.1590/S2317-15372013000200005>
https://doi.org/10.1590/S2317-1537201300...
), where they are used as sources of carbon and nitrogen for the growing seedling (Gonçalves et al. 2010Gonçalves JFC, Lima RBS, Fernandes AV, Borges EEL & Buckeridge MS (2010) Physiological and biochemical characterization of the assai palm (Euterpe oleracea Mart.) during seed germination and seedling growth under aerobic and anaerobic conditions. Revista Árvore 34: 1045-4053. DOI: <https://doi.org/10.1590/S0100-67622010000600010>.
https://doi.org/10.1590/S0100-6762201000...
; Oliveira et al. 2010Oliveira AB, Mendonça MS & Araújo MGP (2010) Aspectos anatómicos do embrião e desenvolvimento inicial de Oenocarpus minor Mart: uma palmeira da Amazônia. Acta Botanica Brasilica 24: 20-24. DOI: <https://doi.org/10.1590/S0102-33062010000100003>.
https://doi.org/10.1590/S0102-3306201000...
; Bicalho et al. 2016Bicalho EM, Motoike SY, Borges EEL, Ataide GM & Guimarães VM (2016) Enzyme activity and reserve mobilization during Macaw palm (Acrocomia aculeata) seed germination. Acta Botanica Brasilica 30: 438-444. DOI: <https://doi.org/10.1590/0102-33062016abb0181>
<https://doi.org/10.1590/0102-33062016ab...
). The protein bodies found within the endosperm cells of palm trees may be related to the accumulation of hydrolytic proteins, activated during the mobilization of the endosperm reserves. Similarly, the occurrence of pectins within the endosperm cells of açaí have also been reported for other palm species (Moura et al. 2010Moura EF, Ventrella MC & Motoike SY (2010) Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae). Scientia Agricola 67: 399-407. DOI: <https://doi.org/10.1590/S0103-90162010000400004>.
https://doi.org/10.1590/S0103-9016201000...
; Nazário et al. 2013Nazário P, Ferreira SAN, Borges EEL, Genovese-Marcomini PR & Mendonça MS (2013) Anatomical and histochemical aspects of the peach palm (Bactris gasipaes Kunth) seed. Journal of Seed Science 35: 171-178. DOI: <https://doi.org/10.1590/S2317-15372013000200005>
https://doi.org/10.1590/S2317-1537201300...
; Rodrigues et al. 2015Rodrigues JK, Mendonça MS & Gentil DFO (2015) Aspectos biométricos, morfoanatômicos e histoquímicos do pirênio de Bactris maraja (Arecaceae). Rodriguésia66: 75-85. DOI: <https:// doi.org/10.1590/2175-7860201566105>.
https:// doi.org/10.1590/2175-7860201566...
; Mazzottini-dos-Santos et al. 2017Mazzottini-dos-Santos HC, Ribeiro LM & Oliveira DMT (2017) Roles of the haustorium and endosperm during the development of seedlings of Acrocomia aculeata (Arecaceae): dynamics of reserve mobilization and accumulation. Protoplasma 254: 1563-1578. DOI: <https://doi.org/10.1007/s00709-016-1048-x>.
https://doi.org/10.1007/s00709-016-1048-...
, 2018Mazzottini-dos-Santos HC, Ribeiro LM & Oliveira DMT (2018) Structural changes in the micropylar region and overcoming dormancy in Cerrado palms seeds. Trees - Structure and Function 32:1415-1428. DOI: <https://doi.org/10.1007/s00468-018-1723-y>.
https://doi.org/10.1007/s00468-018-1723-...
). Pectins are structural polysaccharides that usually compose the cell wall. When found within the cell they may be the result of structural changes as it is translocated from the cell wall in a way that pectins actually become a gel within the cell that may be metabolized during germination (Rodrigues et al. 2015Rodrigues JK, Mendonça MS & Gentil DFO (2015) Aspectos biométricos, morfoanatômicos e histoquímicos do pirênio de Bactris maraja (Arecaceae). Rodriguésia66: 75-85. DOI: <https:// doi.org/10.1590/2175-7860201566105>.
https:// doi.org/10.1590/2175-7860201566...
; Taiz et al. 2017Taiz L, Zeiger E, Moller EM & Murphy A (2017) Fisiologia e desenvolvimento vegetal. 6ª ed. Artmed Editora, São Paulo. 888p.).

In line with observations on other palm trees, no significant amount of starch was found during the endosperm development of E. oleracea seeds, thus confirming the notion that starch is not the nutritive reserve of the endosperm in the Arecaceae (Panza et al. 2004Panza V, Láinez V & Maldonado S (2004) Seed structure and histochemistry in the palm Euterpe edulis. Botanical Journal of the Linnean Society 145: 445-453. DOI: <https://doi.org/10.1111/j.l095-8339.2004.00293.x>.
https://doi.org/10.1111/j.l095-8339.2004...
; Gonçalves et al. 2010Gonçalves JFC, Lima RBS, Fernandes AV, Borges EEL & Buckeridge MS (2010) Physiological and biochemical characterization of the assai palm (Euterpe oleracea Mart.) during seed germination and seedling growth under aerobic and anaerobic conditions. Revista Árvore 34: 1045-4053. DOI: <https://doi.org/10.1590/S0100-67622010000600010>.
https://doi.org/10.1590/S0100-6762201000...
; Moura et al. 2010Moura EF, Ventrella MC & Motoike SY (2010) Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae). Scientia Agricola 67: 399-407. DOI: <https://doi.org/10.1590/S0103-90162010000400004>.
https://doi.org/10.1590/S0103-9016201000...
; Nazário et al. 2013Nazário P, Ferreira SAN, Borges EEL, Genovese-Marcomini PR & Mendonça MS (2013) Anatomical and histochemical aspects of the peach palm (Bactris gasipaes Kunth) seed. Journal of Seed Science 35: 171-178. DOI: <https://doi.org/10.1590/S2317-15372013000200005>
https://doi.org/10.1590/S2317-1537201300...
). Starch was observed near the embryo axis at the radicle area however, as has been reported in palms (Nazário et al. 2013Nazário P, Ferreira SAN, Borges EEL, Genovese-Marcomini PR & Mendonça MS (2013) Anatomical and histochemical aspects of the peach palm (Bactris gasipaes Kunth) seed. Journal of Seed Science 35: 171-178. DOI: <https://doi.org/10.1590/S2317-15372013000200005>
https://doi.org/10.1590/S2317-1537201300...
; Rodrigues et al. 2015Rodrigues JK, Mendonça MS & Gentil DFO (2015) Aspectos biométricos, morfoanatômicos e histoquímicos do pirênio de Bactris maraja (Arecaceae). Rodriguésia66: 75-85. DOI: <https:// doi.org/10.1590/2175-7860201566105>.
https:// doi.org/10.1590/2175-7860201566...
). Starch is one of the first molecules to be catabolized in order to provide energy for the most common anabolic reactions during germination (Nelson et al. 2013Nelson DL, Cox MM & Lehninger AL (2013) Lehninger principles of biochemistry. W H Freema, New York. 1340p.). This starch also plays an important role in the control of geotropism within the root cap (Taiz et al. 2017Taiz L, Zeiger E, Moller EM & Murphy A (2017) Fisiologia e desenvolvimento vegetal. 6ª ed. Artmed Editora, São Paulo. 888p.).

Our results indicate the nutritive reserve of the açaí is located in the thickened cell walls. Reserve polysaccharides in the cell wall of the endosperm are common among the Arecaceae (Panza et al. 2004Panza V, Láinez V & Maldonado S (2004) Seed structure and histochemistry in the palm Euterpe edulis. Botanical Journal of the Linnean Society 145: 445-453. DOI: <https://doi.org/10.1111/j.l095-8339.2004.00293.x>.
https://doi.org/10.1111/j.l095-8339.2004...
; Moura et al. 2010Moura EF, Ventrella MC & Motoike SY (2010) Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae). Scientia Agricola 67: 399-407. DOI: <https://doi.org/10.1590/S0103-90162010000400004>.
https://doi.org/10.1590/S0103-9016201000...
; Nazário et al. 2013Nazário P, Ferreira SAN, Borges EEL, Genovese-Marcomini PR & Mendonça MS (2013) Anatomical and histochemical aspects of the peach palm (Bactris gasipaes Kunth) seed. Journal of Seed Science 35: 171-178. DOI: <https://doi.org/10.1590/S2317-15372013000200005>
https://doi.org/10.1590/S2317-1537201300...
; Oliveira et al. 2013Oliveira NCC, Lopes PSN, Ribeiro LM, Mercandante-Simões MO, Oliveira LAA & Silvério FO (2013) Seed structure, germination, and reserve mobilization in Butia capitata (Arecaceae). Trees - structure and function 27: 1633-1645. DOI: <https://doi.org/10.1007/s00468-013-0910-0>.
https://doi.org/10.1007/s00468-013-0910-...
; Pinho et al. 2014Pinho GP, Matoso JRM, Silvério FO, Mota WC, Lopes PSN & Ribeiro LM (2014) A new spectrophotometric method for determining the enzymatic activity of endo-β-mannanase in seeds. Journal of the Brazilian Chemical Society 25: 1246-1252. DOI: <https://doi.org/10.5935/0103-5053.20140102>.
https://doi.org/10.5935/0103-5053.201401...
). During seed germination, the presence of enzyme endo-β-mannanase near the area where the endosperm is being consumed (i.e. adjacent to the embryo/ haustorium) has already been reported (Mazzottini-dos-Santos et al. 2017Mazzottini-dos-Santos HC, Ribeiro LM & Oliveira DMT (2017) Roles of the haustorium and endosperm during the development of seedlings of Acrocomia aculeata (Arecaceae): dynamics of reserve mobilization and accumulation. Protoplasma 254: 1563-1578. DOI: <https://doi.org/10.1007/s00709-016-1048-x>.
https://doi.org/10.1007/s00709-016-1048-...
). In addition to being one of the reserves for the developing embryo, mannans may provide mechanical resistance as the embryo is protected from damage during the long germination of palm seeds (Buckeridge et al. 2000Buckeridge MS, Tiné MAS & Santos HP (2000) Polissacarídeos de reserva de parede celular em sementes. Estrutura, metabolismo, funções e aspectos ecológicos. Revista Brasileira de Fisiologia Vegetal 12: 137-162.; Mazzottinidos-Santos et al. 2018Mazzottini-dos-Santos HC, Ribeiro LM & Oliveira DMT (2018) Structural changes in the micropylar region and overcoming dormancy in Cerrado palms seeds. Trees - Structure and Function 32:1415-1428. DOI: <https://doi.org/10.1007/s00468-018-1723-y>.
https://doi.org/10.1007/s00468-018-1723-...
).

Conclusions

In this study, we presented a detailed analysis of the development of açaí seeds and highlighted defining characteristics of the seed coat, embryo, and endosperm, relating them to fruit development. Our data show that the nutritive reserves of açaí seeds are found in the thickened cell walls as reserve polysaccharides. This analysis will help in defining the seed tissues to be analyzed in order to obtain transcriptomic and proteomic data to assess the feasibility of using the seeds as a source of raw material to produce second-generation ethanol.

Acknowledgements

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior - Brazil (CAPES) - Finance Code 001. We also thank the Brazilian National Research Council (CNPq) for financial support.

References

  • Aguiar MO & Mendonça MS (2002) Aspectos morfoanatômicos do embrião de Euterpe precatoria Mart. durante o processo germinativo. Acta Botanica Brasilica 16: 241-249. DOI: <https://doi.org/10.1590/S0102-33062002000300001>
    » https://doi.org/10.1590/S0102-33062002000300001
  • Aguiar MO & Mendonça MS (2003) Morfo-anatomia da semente de Euterpe precatoria Mart. (Palmae). Revista Brasileña de Sementes 25: 37-42. DOI: <https://doi.org/10.1590/S0101-31222003000100007>
    » https://doi.org/10.1590/S0101-31222003000100007
  • Araujo MGP (2005) Morfo-anatomia e desenvolvimento dos frutos e sementes de três especies da subfamilia Arecoideae (Arecaceae). INPA - Instituto Nacional de Pesquisas da Amazonia, Manaus. 189p.
  • Bayer C & Appel O (1996) Occurrence and taxonomic significance of ruminate endosperm. The Botanical Review 62: 301-310.
  • Belin-Depoux M & Queiroz MH (1971) Contribution à l’étude ontogénique des palmiers. Quelques aspects de la germination de Euterpe edulis Mart. Revue Générale de Botanique 8: 339-371.
  • Bhattacharya A, Sood P & Citovsky V (2010) The roles of plant phenolics in defence and communication during agrobacterium and rhizobium infection. Molecular Plant Pathology 11: 705-719. DOI: <https://doi.org/10.1111/j.l364-3703.2010.00625.x>
    » https://doi.org/10.1111/j.l364-3703.2010.00625
  • Bhojwani SS & Bhatnagar SP (2008) The Embryology of Angiosperms. 5th ed. Vikas Publishing House, Noida, New Delhi. 368p.
  • Bicalho EM, Motoike SY, Borges EEL, Ataide GM & Guimarães VM (2016) Enzyme activity and reserve mobilization during Macaw palm (Acrocomia aculeata) seed germination. Acta Botanica Brasilica 30: 438-444. DOI: <https://doi.org/10.1590/0102-33062016abb0181>
    » https://doi.org/10.1590/0102-33062016abb0181
  • Bichara CMG & Rogez H (2011) Açai (Euterpe oleracea Martius). In: Yahia EM (ed.) Postharvest Biology and Technology of Tropical and Subtropical Fruits. Woodhead Publishing, Cambridge. Pp. l-27e. DOI: <https://doi.org/10.1533/9780857092762.l>
    » https://doi.org/10.1533/9780857092762.l
  • Boesewinkel FD & Bouman F (1984) The seed: structure. In: Johri BM (ed.) Embryology of Angiosperms. Springer, Berlin, Heidelberg. Pp. 567-610. DOI: <https://doi.org/10.1007/978-3-642-69302-l_12>
    » https://doi.org/10.1007/978-3-642-69302-l_12
  • Buckeridge MS, Tiné MAS & Santos HP (2000) Polissacarídeos de reserva de parede celular em sementes. Estrutura, metabolismo, funções e aspectos ecológicos. Revista Brasileira de Fisiologia Vegetal 12: 137-162.
  • Castaño F, Marquínez X, Crèvecoeur M, Collin M, Stauffer FW & Tregear JW (2016) Comparison of floral structure and ontogeny in monoecious and dioecious species of the palm tribe Chamaedoreeae (Arecaceae; Arecoideae). International Journal of Plant Sciences 177: 247-262. DOI: <https://doi.org/10.1086/684262>
    » https://doi.org/10.1086/684262
  • Charlo HCO, Môro FV, Silva VL, Silva BMS, Bianco S & Môro JR (2006) Aspectos morfológicos, germinação e desenvolvimento inicial de plântulas de Archontophoenix alexandrae (F. Mueller) H. Wendl. e Drude (Arecaceae) em diferentes substratos. Revista Árvore 30: 933-940. DOI: <https://doi.org/10.1590/S0100-67622006000600008>
    » https://doi.org/10.1590/S0100-67622006000600008
  • CONAB (2017) Companhia Nacional de Abastecimento. Açai, Conjuntura semestral, setembro de 2016. Available at <http://www.conab.gov.br/>. Access on 10 December 2019.
    » http://www.conab.gov.br/
  • David R & Carde JPJ-D (1964) Coloration différentielle des inclusions lipidiques et terpéniques des pseudophylles du Pin maritime au moyen du réactif nadi. Comptes Rendus de l’Académie des Sciences Paris 258: 1338-1340.
  • Farinas CS, Santos RRM, Neto VB & Pessoa JDC (2009) Aproveitamento do caroço do açai como substrato para produção de enzimas por fermentação em estado sólido. Boletim de Pesquisa e Desenvolvimento 30. 15p.
  • Genovese-Marcomini P, Mendonça M & Carmello-Guerreiro S (2013) Morphoanatomy of the flower of Syagrus inajai (Spruce) Becc. (Arecaceae-Arecoideae- Attaleinae), Amazon. Brazilian Journal of Biology 73: 649-661. DOI: <https://doi.org/10.1590/S1519-69842013000300025>.
    » https://doi.org/10.1590/S1519-69842013000300025
  • Genovese-Marcomini PR, Mendonça MS & Carmello-Guerreiro SM (2014) Embryonic development of Syagrus inajai (Spruce) Becc. (Arecaceae, Arecoideae), an Amazonian palm. Australian Journal of Botany 61: 611-621. DOI: <https://doi.org/10.1071/BT13162>
    » https://doi.org/10.1071/BT13162
  • Gonçalves JFC, Lima RBS, Fernandes AV, Borges EEL & Buckeridge MS (2010) Physiological and biochemical characterization of the assai palm (Euterpe oleracea Mart.) during seed germination and seedling growth under aerobic and anaerobic conditions. Revista Árvore 34: 1045-4053. DOI: <https://doi.org/10.1590/S0100-67622010000600010>.
    » https://doi.org/10.1590/S0100-67622010000600010
  • Haccius B & Philip VJ (1979) Embryo development in Cocos nueifera L.: a critical contribution to a general understanding of palm embryogenesis. Plant Systematics and Evolution 132: 91-106.
  • Henderson A, Galeano G & Bernai R (1995) Field guide to the palms of the Americas. Princeton University Press, Princeton. 502p.
  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York. 523p.
  • Johri BM, Ambegaokar KB & Srivastava PS (1992) Comparative embryology of angiosperms. Vol. 2. Springer-Verlag, Berlin. 1221p.
  • Junqueira CUO (1990) O uso de cortes finos de tecidos na Medicina e Biologia. Meios e Métodos 66:167-171.
  • Karnovsky MJJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. The Journal of Cell Biology 27: 137-138.
  • Lorenzi H (2008) Arvores brasileiras - manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 5ª ed. Instituto Plantarum de Estudos da Flora, Nova Odessa. PÁGINAS?????.
  • Mazzottini-dos-Santos HC, Ribeiro LM, Mercadante-Sirnões MO & Sant’Anna-Santos BF (2015) Ontogenesis of the pseudomonomerous fruits of Acrocomia aculeata (Arecaceae): a new approach to the development of pyrenarium fruits. Trees 29: 199-214. DOI: <https://doi.org/10.1007/s00468-014-1104-0>.
    » https://doi.org/10.1007/s00468-014-1104-0
  • Mazzottini-dos-Santos HC, Ribeiro LM & Oliveira DMT (2017) Roles of the haustorium and endosperm during the development of seedlings of Acrocomia aculeata (Arecaceae): dynamics of reserve mobilization and accumulation. Protoplasma 254: 1563-1578. DOI: <https://doi.org/10.1007/s00709-016-1048-x>.
    » https://doi.org/10.1007/s00709-016-1048-x
  • Mazzottini-dos-Santos HC, Ribeiro LM & Oliveira DMT (2018) Structural changes in the micropylar region and overcoming dormancy in Cerrado palms seeds. Trees - Structure and Function 32:1415-1428. DOI: <https://doi.org/10.1007/s00468-018-1723-y>.
    » https://doi.org/10.1007/s00468-018-1723-y
  • Mendonça MS, Oliveira AB, Araújo MGP & Araújo LM (2008) Morfo-anatomia do fruto e sementé de Oenocarpus minor Mart. (Arecaceae). Revista Brasileña de Sementes 30: 90-95. DOI: <https://doi. org/10.1590/S0101-31222008000100012>.
    » https://doi. org/10.1590/S0101-31222008000100012
  • Monteiro AF, Miguez IS, Silva JPRB & Silva AS (2019) High concentration and yield production of mannose from açaí (Euterpe oleracea) seeds via diluted-acid and mannanase-catalyzed hydrolysis. Scientific Reports 1-35. DOI: <https://doi.org/10.1038/ s41598-019-47401-3>.
    » https://doi.org/10.1038/ s41598-019-47401-3
  • Moura EF, Ventrella MC & Motoike SY (2010) Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae). Scientia Agricola 67: 399-407. DOI: <https://doi.org/10.1590/S0103-90162010000400004>.
    » https://doi.org/10.1590/S0103-90162010000400004
  • Nazário P, Ferreira SAN, Borges EEL, Genovese-Marcomini PR & Mendonça MS (2013) Anatomical and histochemical aspects of the peach palm (Bactris gasipaes Kunth) seed. Journal of Seed Science 35: 171-178. DOI: <https://doi.org/10.1590/S2317-15372013000200005>
    » https://doi.org/10.1590/S2317-15372013000200005
  • Nelson DL, Cox MM & Lehninger AL (2013) Lehninger principles of biochemistry. W H Freema, New York. 1340p.
  • O’Brien TP & McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Ptey, Melbourne. 357p.
  • Oliveira AB, Mendonça MS & Araújo MGP (2010) Aspectos anatómicos do embrião e desenvolvimento inicial de Oenocarpus minor Mart: uma palmeira da Amazônia. Acta Botanica Brasilica 24: 20-24. DOI: <https://doi.org/10.1590/S0102-33062010000100003>.
    » https://doi.org/10.1590/S0102-33062010000100003
  • Oliveira MSP & Schwartz G (2018) Açaí - Euterpe oleracea. In: Rodrigues S, Silva EO & Brito ES (eds.) Exotic Fruits Reference Guide. Academic Press, London. Pp. 1-5. DOI: <https://doi.org/10.1016/B978-0-12-803138-4.00002-2>.
    » https://doi.org/10.1016/B978-0-12-803138-4.00002-2
  • Oliveira NCC, Lopes PSN, Ribeiro LM, Mercandante-Simões MO, Oliveira LAA & Silvério FO (2013) Seed structure, germination, and reserve mobilization in Butia capitata (Arecaceae). Trees - structure and function 27: 1633-1645. DOI: <https://doi.org/10.1007/s00468-013-0910-0>.
    » https://doi.org/10.1007/s00468-013-0910-0
  • Panza V, Láinez V & Maldonado S (2004) Seed structure and histochemistry in the palm Euterpe edulis. Botanical Journal of the Linnean Society 145: 445-453. DOI: <https://doi.org/10.1111/j.l095-8339.2004.00293.x>.
    » https://doi.org/10.1111/j.l095-8339.2004.00293.x
  • Paula JE (1975) Anatomia de Euterpe oleracea Mart. (Palmae da Amazônia). Acta Amazónica 5: 265-278. DOI: <https://doi.org/10.1590/1809-43921975053265>.
    » https://doi.org/10.1590/1809-43921975053265
  • Pearse AGE (1985) Histochemistry theoretical and applied. 4th ed. Churchill Livingston, Edinburgh. 615p.
  • Pinho GP, Matoso JRM, Silvério FO, Mota WC, Lopes PSN & Ribeiro LM (2014) A new spectrophotometric method for determining the enzymatic activity of endo-β-mannanase in seeds. Journal of the Brazilian Chemical Society 25: 1246-1252. DOI: <https://doi.org/10.5935/0103-5053.20140102>.
    » https://doi.org/10.5935/0103-5053.20140102
  • Ramalingam K & Ravindranath M (1970) Histochemical significance of green metachromasia to Toluidine Blue. Histochemie 24: 322-327. DOI: <https://doi.org/10.1007/BF00278217>.
    » https://doi.org/10.1007/BF00278217
  • Reddy GN & Kulkarni AR (1985) Contribution to the anatomy of palm fruits-Cocosoid palms. Proceedings: Plant Sciences 95: 153-165.
  • Retamales HA & Scharaschkin T (2014) A staining protocol for identifying secondary compounds in Myrtaceae. Applications in Plant Sciences 2: 1400063. DOI: <https://doi.org/10.3732/apps.l400063>.
    » https://doi.org/10.3732/apps.l400063
  • Rodrigues JK, Mendonça MS & Gentil DFO (2015) Aspectos biométricos, morfoanatômicos e histoquímicos do pirênio de Bactris maraja (Arecaceae). Rodriguésia66: 75-85. DOI: <https:// doi.org/10.1590/2175-7860201566105>.
    » https:// doi.org/10.1590/2175-7860201566105
  • Roshchina VV & Roshchina VD (1993) The excretory function of higher plants. Springer-Verlag, Berlin. 314p. DOI: <https://doi.org/10.1007/978-3-642-78130-8>.
    » https://doi.org/10.1007/978-3-642-78130-8
  • Salo M, Sirén A & Kalliola R (2013) Açaí: The forest farms of the Amazon estuary. In: Salo M, Sirén A & Kalliola R (eds.) Diagnosing wild species Harvest. Academic Press, San Diego. Pp. 191-202. DOI: <https://doi.org/10.1016/B978-0-12-397204-0.00011-5>.
    » https://doi.org/10.1016/B978-0-12-397204-0.00011-5
  • Schauss AG (2010) Açaí (Euterpe oleracea Mart.): a macro and nutrient rich palm fruit from the Amazon rain forest with demonstrated bioactivities in vitro and in vivo. In: Watson RR & Preedy VR (eds.) Bioactive foods in promoting health. Academic Press, San Diego. Pp. 479-490. DOI: <https://doi.org/10.1016/B978-0-12-374628-3.00032-3>.
    » https://doi.org/10.1016/B978-0-12-374628-3.00032-3
  • Silva IM, Santana AC & Reis MS (2006) Análise dos retornos sociais oriundos de adoção tecnológica na cultura do açaí no estado do Pará. Amazônia: Ciencia & Desenvimento 2: 25-38.
  • Taiz L, Zeiger E, Moller EM & Murphy A (2017) Fisiologia e desenvolvimento vegetal. 6ª ed. Artmed Editora, São Paulo. 888p.
  • Uhl NW & Moore HE (1971) The palm gynoecium. American Journal of Botany 58: 945-992. DOI: <https://doi.org/10.1002/j.1537-2197.1971.tb10050.x>.
    » https://doi.org/10.1002/j.1537-2197.1971.tb10050.x
  • von Teichman I & van Wyk AE (1994) Structural aspects and trends in the evolution of recalcitrant seeds in dicotyledons. Seed Science Research 4: 225-239. DOI: <https://doi.org/10.1017/S096025850000221X>.
    » https://doi.org/10.1017/S096025850000221X
  • Zona S (1992) Endosperm condition and the paradox of Ptychococcus paradoxus. Telopea 10: 179-186.

Edited by

Area Editor: Dra. Simone Teixeira

Publication Dates

  • Publication in this collection
    11 June 2021
  • Date of issue
    2021

History

  • Received
    06 Nov 2019
  • Accepted
    27 Apr 2020
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br