Acessibilidade / Reportar erro

Floristic Composition of Restored Atlantic Riparian Forests on The Coast of São Paulo State, Brazil

Abstract

Studies on floristic composition are important to evaluate the effectiveness of forest restoration and to support conservation of tropical forests. Presence of planted exotic species and low species richness in several riparian forests in Brazil led us to analyze the floristic composition of restored riparian areas in a region with one of the highest levels of vegetation cover in the Atlantic Forest and immersed in one of the largest centers of endemism in this hotspot. Restored areas were identified through consultation of licensing processes at the environmental agencies and field visits were carried out in these areas to identify planted species. Most restorations involved the planting of exotic species, low species richness and an inadequate proportion of native species, which can be harmful to the conservation and restoration of the Atlantic Forest. Dissemination of these results may alert the environmental agencies in order to avoid the approval of ineffective restorations.

Keywords:
Biodiversity; conservation; endemism; native vegetation; planting of seedlings

1. INTRODUCTION AND OBJECTIVES

Forest restoration is a global priority to increase forest cover and connect remnants (Banks-Leite et al., 2014Banks-Leite C, Pardini R, Tambosi LR, Pearse W D, Bueno AA, Bruscagin RT et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspots. Science 2014, 345: 1041. https://doi.org/10.1126/science.1255768.
https://doi.org/https://doi.org/10.1126/...
) in areas degraded by adverse impacts of human development (Crouzeilles et al., 2016Crouzeilles R, Curran M, Ferreira MS, Lindenmayer DB, Grelle CEV, Benayas JMR. A global meta‐analysis on the ecological drivers of forest restoration success. Nature Communications 2016, 7: 11666. https://doi.org/10.1038/ncomms11666.
https://doi.org/https://doi.org/10.1038/...
). In Brazil, more than one million ha of riparian forest have been deforested in the São Paulo State, making forest restoration urgently needed to mitigate this environmental impact (Rodrigues et al., 2009Rodrigues RR, Lima RAF, Gandolfi S, Nave, AG. On the restoration of high diversity forests: 30 years of experiences in the Brazilian Atlantic Forest. Biological Conservation 2009, 142: 1242-1251. https://doi.org/10.1016/j.biocon.2008.12.008.
https://doi.org/https://doi.org/10.1016/...
). Riparian forests are fundamental for the formation of ecological corridors, as they perform several ecosystem services (Giannini et al., 2017Giannini TC, Giulietti AM, Harley RM, Viana PL, Jaffe R, Alves R et al. Selecting plant species for practical restoration of degraded lands using a multiple-trait approach. Austral Ecology 2017, 42: 510-521. https://doi.org/10.1111/aec.12470.
https://doi.org/https://doi.org/10.1111/...
) and contribute to plant dispersion throughout the landscape (Lima & Zakia, 2004Lima WP, Zakia MJB. Hidrologia de matas Ciliares. In: Rodrigues RR, Leitão-Filho HF (eds.). Matas Ciliares: Conservação e Recuperação, São Paulo: Edusp: Fapesp, 33-44; 2004.). Therefore, the restoration of riparian forests should be executed in case of deforestation to comply with the Native Vegetation Protection Law - NVPL (Law No 12.651/2012, known as the new Forest Code) (Brasil, 2012).

Forest restoration is the intentional reintroduction of native plant species that were eliminated from a degraded environment to initiate or accelerate the recovery of such ecosystem (SER, 2004). This practice is essential to minimize species extinction (Chazdon, 2008Chazdon RL. Beyond Deforestation: Restoring Forests and Ecosystem Services on Degraded Lands. Science 2008, 320: 1458. https://doi.org/10.1126/science.1155365.
https://doi.org/https://doi.org/10.1126/...
), to increase the functional connectivity of the landscape (Banks-Leite et al., 2014Banks-Leite C, Pardini R, Tambosi LR, Pearse W D, Bueno AA, Bruscagin RT et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspots. Science 2014, 345: 1041. https://doi.org/10.1126/science.1255768.
https://doi.org/https://doi.org/10.1126/...
), and to subsidize the biodiversity conservation on a regional scale (Crouzeilles et al., 2016Crouzeilles R, Curran M, Ferreira MS, Lindenmayer DB, Grelle CEV, Benayas JMR. A global meta‐analysis on the ecological drivers of forest restoration success. Nature Communications 2016, 7: 11666. https://doi.org/10.1038/ncomms11666.
https://doi.org/https://doi.org/10.1038/...
). Thereby, interactions essential for the functioning of the ecosystem (e.g., pollination and dispersion of seeds) and the provision of ecological processes can be restored (Menz et al., 2010).

Nevertheless, forest restoration through planting of seedlings has introduced over the years exotic species into riparian forests (Durigan et al., 2010Durigan G, Engel VL, Torezan JM, de Melo ACG, Marques MCM, Martins SV et al. Normas jurídicas para a restauração ecológica: uma barreira a mais a dificultar o êxito das iniciativas? Revista Árvore 2010, 34(3): 471-485. http://doi.org/10.1590/S0100-67622010000300011.
https://doi.org/http://doi.org/10.1590/S...
; Brancalion et al., 2010Brancalion PHS, Rodrigues RR, Gandolfi S, Kageyama PY, Nave AG, Gandara FB et al. Instrumentos legais podem contribuir para a restauração de florestas tropicais biodiversas. Revista Árvore 2010, 34(3): 455-470. https://doi.org/10.1590/S0100-67622010000300010.
https://doi.org/https://doi.org/10.1590/...
), causing a significant loss of biological diversity in several restored riparian areas due to low species richness (Barbosa & Potomati, 2003Barbosa LM, Martins SE. Diversificando o reflorestamento no estado de São Paulo: espécies disponíveis por região e ecossistema. Instituto de Botânica; 2003.). The lack of evaluation of restoration projects by trained professionals (Durigan et al., 2010Durigan G, Engel VL, Torezan JM, de Melo ACG, Marques MCM, Martins SV et al. Normas jurídicas para a restauração ecológica: uma barreira a mais a dificultar o êxito das iniciativas? Revista Árvore 2010, 34(3): 471-485. http://doi.org/10.1590/S0100-67622010000300011.
https://doi.org/http://doi.org/10.1590/S...
) and the intense demand from environmental agencies can result in unsuccessful and ineffective forest restoration measures (Brancalion et al., 2010Brancalion PHS, Rodrigues RR, Gandolfi S, Kageyama PY, Nave AG, Gandara FB et al. Instrumentos legais podem contribuir para a restauração de florestas tropicais biodiversas. Revista Árvore 2010, 34(3): 455-470. https://doi.org/10.1590/S0100-67622010000300010.
https://doi.org/https://doi.org/10.1590/...
). For such reasons, the development of studies in restored areas is important to evaluate the effectiveness of forest restoration (Massi et al., 2022Massi KM, Chaves RB, Tambosi LR. Simple indicators are good proxies for ecological complexity when assessing Atlantic Forest restoration success. Restoration Ecology 2022, 30(3): e12520. https://doi/10.1111/rec.13520/suppinf.
https://doi.org/https://doi/10.1111/rec....
) and to provide insights on how to avoid or overcome failures (Campoe et al., 2014Campoe OC, Ianneli C, Stape JL, Cook RL, Mendes JCT, Vivian R. Atlantic forest tree species responses to silvicultural practices in a degraded pasture restoration plantation: from leaf physiology to survival and initial growth. Forest Ecology and Management 2014, 313: 233-243. https://doi.org/10.1016/j.foreco.2013.11.016.
https://doi.org/https://doi.org/10.1016/...
). The composition and structure of restored forest should be used as indicators for an effective analysis of the possibility of perpetuating the area (Bellotto et al., 2009Bellotto A, Viani RAG, Nave AG, Gandolfi S, Rodrigues RR. Monitoramento das áreas restauradas como ferramenta para avaliação da efetividade das ações de restauração e para redefinição metodológica. In: Rodrigues RR, Brancalion PHS, Isernhagen I. Pacto pela restauração da Mata Atlântica: referencial dos conceitos e ações de restauração florestal. São Paulo: Instituto BioAtlântica, 128-147; 2009.). Frequency, density, and species richness are some key indicators used to evaluate vegetation structure and its composition in restored tropical forests (Ruiz-Jaen & Aide, 2005Ruiz-Jaen MC, TM. Restoration Success: How Is It Being Measured? Restoration Ecology 2005, 13(3): 569-577. https://doi.org/10.1111/j.1526-100X.2005.00072.x.
https://doi.org/https://doi.org/10.1111/...
; Campoe et al., 2014Campoe OC, Ianneli C, Stape JL, Cook RL, Mendes JCT, Vivian R. Atlantic forest tree species responses to silvicultural practices in a degraded pasture restoration plantation: from leaf physiology to survival and initial growth. Forest Ecology and Management 2014, 313: 233-243. https://doi.org/10.1016/j.foreco.2013.11.016.
https://doi.org/https://doi.org/10.1016/...
).

To assess the suitability of species used in selected restored areas located on the coast of São Paulo State, we analyzed the floristic composition in riparian areas restored through the planting of seedlings in a region with one of the highest levels of vegetation cover in the Atlantic Forest (São Paulo, 2020São Paulo. Secretaria de Infraestrutura e Meio Ambiente - Sima. Instituto Florestal. Inventário florestal da vegetação natural do Estado de São Paulo: Regiões Administrativas de São José dos Campos (Litoral), Baixada Santista e Registro / Instituto Florestal; coordenação editorial Francisco J. N. Kronka-São Paulo: Secretaria de Estado do Meio Ambiente: Imprensa Oficial do Estado de São Paulo; 2020.). The data can contribute to the analysis of the effectiveness of restoration in the Atlantic Forest and to support the implementation of public policies for conservation of this hotspot.

2. MATERIALS AND METHODS

2.1. Study area

The riparian areas considered in this study are spread out over nine hydrographic sub-basins in the Baixada Santista watershed, central coast of the São Paulo State, southeastern Brazil (Figure 1). This region presents 79.1% of the territory covered by the Atlantic Forest (São Paulo, 2020São Paulo. Secretaria de Infraestrutura e Meio Ambiente - Sima. Instituto Florestal. Inventário florestal da vegetação natural do Estado de São Paulo: Regiões Administrativas de São José dos Campos (Litoral), Baixada Santista e Registro / Instituto Florestal; coordenação editorial Francisco J. N. Kronka-São Paulo: Secretaria de Estado do Meio Ambiente: Imprensa Oficial do Estado de São Paulo; 2020.) which characterizes it as one of the largest centers of endemism in this hotspot (Tabarelli & Mantovani, 1999).

Figure 1
Location of restored riparian areas of study in Baixada Santista region. Supervised classification of satellite image (Landsat 8 Operational Land Imager - OLI/year 2021). Authors’ collection. Remaining Atlantic Forest vegetation cover is represented in green, and the urban occupation is represented in orange.

According to the Atlas dos Remanescentes Florestais da Mata Atlântica (Fundação SOS Mata Atlântica, 2020Fundação SOS Mata Atlântica. Atlas dos remanescentes florestais da Mata Atlântica: período 2019/2020, relatório técnico/Fundação SOS Mata Atlântica/Instituto Nacional de Pesquisas Espaciais - INPE. - São Paulo: Fundação SOS Mata Atlântica; 2021.), the different types of Atlantic Forest present in this region are Dense Ombrophilous Forest (in the coastal plain); Submontane Dense Ombrophilous Forest (present between 50 and 500 m high); Upper Montane Forest (present above 500 m of altitude); restingas and mangroves.

Despite its biological importance, the region is highly susceptible to industrial and commercial expansion of related activities linked to the petrochemical complex industry of Cubatão and the largest port of Latin America located in Santos (Oscar-Júnior et al. 2019Oscar-Júnior AC, Santos BBO, Hosokawa EK, de Araújo PP, Carriço JM. Land Use Change Dynamics in the Metropolitan Region of Baixada Santista MRBS (SP): Between Development and Environmental Impacts. In: Nunes, L. H.; Greco, R.; Marengo, J. A. Climate Change in Santos Brazil: Projections, Impacts and Adaptation Options. Springer; 2019. https://doi.org/10.1007/978-3-319-96535-2.
https://doi.org/https://doi.org/10.1007/...
). Vegetation cover in the Baixada Santista has been replaced by urban settlements in some areas, and a large part of riparian forests in this region is susceptible to degradation due to channeling of rivers and streams by industries and enterprises (Cunha & Oliveira, 2015Cunha CML, Oliveira RC. Baixada Santista: uma contribuição à análise geoambiental [online]. São Paulo: Editora Unesp, 35-60; 2015.).

2.2. Data Collection

Environmental licensing processes of 25 restored riparian areas were consulted between 2019 and 2020 with the Environmental Agency of the São Paulo State (CETESB) to identify the degraded riparian areas that have been restored in the study region. Restoration projects previously elaborated to mitigate the degradation in riparian forests and approved by the environmental agency were analyzed to identify the species planted in each area. Field visits were carried out in nine urban restored riparian areas located on the banks of the Mogi, Córrego do Bugre, Perequê, Cubatão and Santo Amaro rivers (Figure 1 and Table 1).

Table 1
Location, deforested area and year of restoration of urban riparian areas.

We analyzed about seven ha of restored riparian areas in Dense Ombrophilous Forests. All specimens present in the planting lines in each restored riparian area were registered, identified and their height and circumference at breast height (CBH) were measured. Species were identified through examination of specialized literature, herbalized material (Unisanta Herbarium, HUSC), consultation with specialists and comparison with images available in the speciesLink database (CRIA, 2022CRIA. Centro de Referência e Informação Ambiental. Specieslink 2022. Available from: https://specieslink.net/.
https://specieslink.net/...
). The collected material was deposited at HUSC.

Family names were standardized according to the Angiosperm Phylogeny Group - APG IV (Byng, 2016Byng JW et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. The Linnean Society of London, Botanical Journal of the Linnean Society; 2016.). Validation of species names and information about their origin are in accordance with Flora and Funga do Brasil (2022)Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. 2022. Available from: http://floradobrasil.jbrj.gov.br/.
http://floradobrasil.jbrj.gov.br/...
and Tropicos v. 3.3.2.

2.3. Data analysis

The proportion of native Atlantic Forest species found in the study sites was calculated based on the Plantas da Floresta Atlântica (Stehmann et al., 2009Stehmann JR, Forzza RC, Salino A, Sobral M, da Costa DP, Kamino LHY. Plantas da Floresta Atlântica. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, 515; 2009.), and the proportion of species dispersion syndromes was calculated based on Lista das Espécies Indicadas para a Restauração Ecológica para Diversas Regiões do Estado de São Paulo (Barbosa et al., 2017Barbosa LM, Shirasuna RT, de Lima FC, Ortiz PRT, Barbosa KC, Barbosa TC. Lista de espécies indicadas para restauração ecológica para diversas regiões do Estado de São Paulo. Luiz Mauro Barbosa - São Paulo: Instituto de Botânica; 2017.).

Relative Density (RelDe), Relative Frequency (RelFr), Relative Dominance (RelDo) and Importance Value Index (IVI) were calculated for each species (Mueller-Dombois & Ellenberg, 1974Mueller-Dombois D, Ellenberg H. Aims and methods of vegetation ecology. New York: John Wiley e Sons; 1974.) using the Fitopac 2.1 software (Shepherd, 2010Shepherd GJ. Fitopac. Versão 2.1. Campinas, SP: Departamento de Botânica, Universidade Estadual de Campinas - Unicamp; 2010.). To verify the degree of threat faced by species planted in restoration areas, official lists of endangered species were consulted (São Paulo, 2016São Paulo. Secretaria do Estado de Meio Ambiente. Resolução SMA n° 57, de 05 de junho de 2016. Publica a segunda revisão da lista oficial das espécies da flora ameaçadas de extinção no Estado de São Paulo. Diário Oficial do Estado de São Paulo , São Paulo (07 jun. 2016); Sec. 1: 69-71. ; Brasil, 2022Brasil. Ministério do Meio Ambiente. Portaria n° 148, de 07 de junho de 2022. Altera os Anexos da Portaria nº 443, de 17 de dezembro de 2014, da Portaria nº 444, de 17 de dezembro de 2014, e da Portaria nº 445, de 17 de dezembro de 2014, referentes à atualização da Lista Nacional de Espécies Ameaçadas de Extinção. Diário Oficial da União, Brasil, Brasília, DF (07 jun. 2022); Sec.: 1: 1.).

3. RESULTS

We identified 98 species distributed in 31 families. The highest Importance Value Indexes (IVI) were obtained for Guarea guidonia, Citharexylum myrianthum, Talipariti pernambucense, Inga sessilis, Cecropia pachystachya, Croton urucurana and Syagrus romanzoffiana (Table 2).

Table 2
Species identified in restored areas. NInd = number of individuals, RelDen = relative frequency (ind./ha-1), RelFr = relative frequency, RelDo = relative dominance, IVI = importance value index.

The most representative families were Fabaceae (23 species) and Bignoniaceae (10 species). Regarding the number of individuals, Fabaceae is represented mainly by I. sessilis (81 individuals); Bignoniaceae is mainly represented by the exotic species T. pentaphylla (18 individuals) originally from Central America. Other species exotic to Brazil identified in the study areas, but with less ecological importance, are A. humilis, H. actinophyllum, M. paniculata and P. cf. roebelenii.

Among the planted species identified in the evaluated riparian areas, 71.42% (n=70) occur in Ombrophilous Forests. According to Flora e Funga do Brasil (2022)Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. 2022. Available from: http://floradobrasil.jbrj.gov.br/.
http://floradobrasil.jbrj.gov.br/...
, T. cassinoides, H. umbellatus and C. robustum are endemic to Ombrophilous Forests in the Atlantic complex. However, this species occur in other regions and vegetation types of Brazil (CRIA, 2022CRIA. Centro de Referência e Informação Ambiental. Specieslink 2022. Available from: https://specieslink.net/.
https://specieslink.net/...
).

Regarding dispersal groups, 56.12% of the total identified species are zoochoric, 24.5% are anemochoric and 14.7% are autochoric. We could not identify 3.06% (n=3) among the total planted species due to the small size of the seedlings (inferior to 0.70 m). Most species (52.04%) are typical of secondary stages, but the proportion of pioneers individuals planted prevailed over secondary individuals in most restored riparian areas when each area was analyzed singly.

Distribution of number of species and number of individuals are very uneven between the riparian areas analyzed. Richness values range from nine species in Area 9 to 49 species in Area 1. C. myrianthum (Figure 2-A) was the most abundant species (135 individuals) and showed the highest relative density (9.08%) and relative frequency (3.26%). This species was found in most of restored riparian areas. In contrast, G. guidonia (Figure 2-B) showed the highest relative dominance (16.4%), highest IVI (26.26%) and the second relative density (8.47%). However, this species predominated in Area 1 (123 individuals) and showed relative frequency of 1.4%. T. pernambucense showed the second highest relative dominance (11.14%) due to the presence of 65 individuals planted in a single area (Area 7) (RelFre = 1.4%).

Figure 2
A. Citharexylum myrianthum - most abundant species. B. Guarea guidonia - dominant species.

Among the planted species, 17 stand out for their relative values of density, frequency and dominance (Figure 3).

Figure 3
Relative density, frequency and dominance of the main species identified in restored riparian areas.

The most frequent species were S. terebinthifolia (3.97%), C. pachystachya (3.72%), E. speciosa (3.26%), C. myrianthum (3.26%), I. sessilis (2.79%), S. romanzoffiana (2.79%) and P. cattleyanum (2.79%). These species were identified in almost restored riparian areas, but just only C. pachystachya was planted in all areas. In addition to the presence of many specimens only in one area, 21 species identified in the restored riparian areas were represented by only one individual, as A. tibourbou, E. grandiflora, E. brasiliensis, F. guaranitica, H. umbellatus, P. aquatica, P. peruviana, P. myrtifolia, T. obtusa, T. glabrescens etc.

The majority of restored riparian areas showed a proportion inferior to 0.16% of threatened species. Four native species are vulnerable to extinction in Brazil (Brasil, 2022Brasil. Ministério do Meio Ambiente. Portaria n° 148, de 07 de junho de 2022. Altera os Anexos da Portaria nº 443, de 17 de dezembro de 2014, da Portaria nº 444, de 17 de dezembro de 2014, e da Portaria nº 445, de 17 de dezembro de 2014, referentes à atualização da Lista Nacional de Espécies Ameaçadas de Extinção. Diário Oficial da União, Brasil, Brasília, DF (07 jun. 2022); Sec.: 1: 1.): E. edulis, C. fissilis, C. odorata and T. cassinoides. In São Paulo, E. edulis, C. fissilis, C. odorata are vulnerable to extinction and T. cassinoides is at risk of extinction according to Resolution No 57/2016 (São Paulo, 2016São Paulo. Secretaria do Estado de Meio Ambiente. Resolução SMA n° 57, de 05 de junho de 2016. Publica a segunda revisão da lista oficial das espécies da flora ameaçadas de extinção no Estado de São Paulo. Diário Oficial do Estado de São Paulo , São Paulo (07 jun. 2016); Sec. 1: 69-71. ).

4. DISCUSSION

Our study showed that species that are exotic to the region and even to the country are being used in restoration projects required by Brazilian legislation. In addition, the low number of threatened species used, and the inadequate distribution of some species are harmful factors to restoration efforts and to the conservation of the Atlantic Forest. Planting of exotic species can cause ecological imbalances in the entire forest community (Brancalion et al., 2007Brancalion PHS, Santin PH, Novembre ADLC, Rodrigues RR, Chamma HMCP. Estabelecimento da temperatura ótima para a germinação das sementes de 272 espécies arbóreas nativas do Brasil. Informativo Abrates 2007, 17(1): 55-68. https://doi.org/10.1590/S0101-31222010000400002.
https://doi.org/https://doi.org/10.1590/...
), leading to local biological degradation (Reis et al., 2003Reis A, Bechara F, Campanhã F, Vieira K, De Souza LL, Neide V. Restoration of damaged land areas: Using nucleation to improve sucessional processes. The Brazilian Journal of Nature Conservation 2003, 1 (1): 85-92.). H. actinophyllum, for example, is considered invasive in Atlantic Forest (Instituto Hórus, 2020Instituto Hórus. I3N-Brasil. 2009. Available from: http://bd.institutohorus.org.br.
http://bd.institutohorus.org.br...
). T. pentaphylla is originally from Central America and is widely planted in urban landscaping; therefore, this species can be easily found in nurseries (Lorenzi, 2018Lorenzi H, Bacher LB, Torres MAV. Árvores e arvoretas exóticas no Brasil: madeireiras, ornamentais e aromáticas. 1.ed. Nova Odessa: Instituto Plantarum ; 2018.).

Assis et al. (2013Assis GB de, Suganuma MS, Melo ACG, Durigan G. Uso de espécies nativas e exóticas na restauração de matas ciliares no Estado de São Paulo (1957 - 2008). Revista Árvore 2013, 37(4): 599-609. https://doi.org/10.1590/S0100-67622013000400003.
https://doi.org/https://doi.org/10.1590/...
) also evidenced the planting of exotic species in 44 restored riparian forests on the central, northwest and southwest regions of the São Paulo State, such as Syzygium cumini (L.) Skeels and Cordia myxa L. (original from other countries). These authors, for instance, cited the planting of Schizolobium parahyba (Vell.) Blake (original from Dense Ombrophilous Forest) in this Seasonal Semideciduous Forest region. The problem is that even native species from Brazil can be considered exotic when planted outside of your extent of occurrence, since each different vegetation types have its own dynamics and floristic composition (Assis et al., 2013Assis GB de, Suganuma MS, Melo ACG, Durigan G. Uso de espécies nativas e exóticas na restauração de matas ciliares no Estado de São Paulo (1957 - 2008). Revista Árvore 2013, 37(4): 599-609. https://doi.org/10.1590/S0100-67622013000400003.
https://doi.org/https://doi.org/10.1590/...
). In this study we found T. pernambucense, a typical species from mangrove areas (Stehmann et al., 2009Stehmann JR, Forzza RC, Salino A, Sobral M, da Costa DP, Kamino LHY. Plantas da Floresta Atlântica. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, 515; 2009.; Lorenzi, 2016Lorenzi H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 7.ed., vol. 1, Nova Odessa: Instituto Plantarum; 2016.) represented by several individuals in Area 7.L. pacari, planted in two riparian areas, is originally from Cerrado (Lorenzi, 2016Lorenzi H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 7.ed., vol. 1, Nova Odessa: Instituto Plantarum; 2016.). For this reason, regional native species, especially ones typical of the local plant physiognomy, should be planted through forest restoration because they are more adapted to such environmental conditions and can contribute to the conservation of the region’s diversity (Meli et al., 2017Meli P, Holl K, Benayas JMR, Jones HP, Jones PC, Montoya D et al. A global review of past land use, climate and active vs. passive restoration effects on forest recovery. Plos One 2017, 12 (2): e0171368. https://doi.org/10.1371/journal.pone.0171368.
https://doi.org/https://doi.org/10.1371/...
). These species have also a greater ability to attract pollinators and dispersers and can contribute to the recovery of the forest (Kageyama & Gandara, 2000Kageyama PY, Gandara FB. Recuperação de áreas ciliares. In: Rodrigues RR, Leitão Filho HF (Eds.). Matas ciliares: conservação e recuperação. São Paulo: Edusp/Fapesp; 2000.).

Some studies have pointed out that achieving the highest possible species richness through planting is essential for a permanent forest restoration (Barbosa et al., 2003Barbosa LM, Martins SE. Diversificando o reflorestamento no estado de São Paulo: espécies disponíveis por região e ecossistema. Instituto de Botânica; 2003.; Ribeiro et al., 2009Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for Conservation. Biological Conservation 2009, 142: 1141-1153. https://doi.org/10.1016/j.biocon.2009.02.021.
https://doi.org/https://doi.org/10.1016/...
), and increase of functional connectivity and for biodiversity conservation on a regional scale (Rodrigues et al., 2009Rodrigues RR, Lima RAF, Gandolfi S, Nave, AG. On the restoration of high diversity forests: 30 years of experiences in the Brazilian Atlantic Forest. Biological Conservation 2009, 142: 1242-1251. https://doi.org/10.1016/j.biocon.2008.12.008.
https://doi.org/https://doi.org/10.1016/...
; Brancalion et al., 2010Brancalion PHS, Rodrigues RR, Gandolfi S, Kageyama PY, Nave AG, Gandara FB et al. Instrumentos legais podem contribuir para a restauração de florestas tropicais biodiversas. Revista Árvore 2010, 34(3): 455-470. https://doi.org/10.1590/S0100-67622010000300010.
https://doi.org/https://doi.org/10.1590/...
). Rodrigues & Gandolfi (2004)Rodrigues RR, Gandolfi S. Conceitos, tendências e ações para recuperação de florestas ciliares. In: Rodrigues, R. R.; Leitão-Filho, H. de F. (eds.). Matas ciliares: conservação e recuperação. São Paulo: EDUSP, 235-247; 2004. also mentioned that high planted species richness in restored areas resulted in the maintenance of diversity, restored ecological processes, and led to the perpetuation of the environment. While the planting of a few species can form a forest cover in two or three years (Brancalion et al., 2019Brancalion PHS, Niamir A, Broadbent E, Crouzeilles R, Barros FSM, Zambrano AMA et al. Global restoration opportunities in tropical rainforest landscape. Science Advances 2019, 5(7): eaav3223. https://doi.org/10.1126/sciadv.aav3223.
https://doi.org/https://doi.org/10.1126/...
), the vegetation may in turn become biologically unviable and decline over the years due to a lesser capacity to offer ecosystem services (Brancalion et al., 2010Brancalion PHS, Rodrigues RR, Gandolfi S, Kageyama PY, Nave AG, Gandara FB et al. Instrumentos legais podem contribuir para a restauração de florestas tropicais biodiversas. Revista Árvore 2010, 34(3): 455-470. https://doi.org/10.1590/S0100-67622010000300010.
https://doi.org/https://doi.org/10.1590/...
).

Worldwide, high species richness has been long recognized as typical of riparian ecosystems (Pielech, 2021Pielech R. Plant species richness in riparian forests: Comparison to other forest ecosystems, longitudinal patterns, role of rare species and topographic factors. Forest Ecology and Management 2021, 496: 119400. https://doi.org/10.1016/j.foreco.2021.119400
https://doi.org/https://doi.org/10.1016/...
). Campos et al. (2011Campos MCR, Tamashiro JY, Assis MA, Joly CA. Florística e fitossociologia do componente arbóreo da transição Floresta Ombrófila Densa das Terras Baixas - Floresta Ombrófila Densa Submontana do Núcleo Picinguaba/PESM, Ubatuba, sudeste do Brasil. Biota Neotropica 2011, 11(2): 301-312. https://doi.org/10.1590/S1676-06032011000200030.
https://doi.org/https://doi.org/10.1590/...
) and Joly et al. (2012Joly CA, Assis MA, Bernacci LC, Tamashiro JY, de Campos MCR, Gomes JAMA et al. Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotropica 2012, 12(1): 125-145. https://doi.org/10.1590/S1676-06032012000100012.
https://doi.org/https://doi.org/10.1590/...
) identified more than 130 species distributed in at least 38 families in riparian Atlantic Forest on the north coast of the São Paulo State. Therefore, the low number of species planted in riparian areas over the years may not lead to an increase in species richness. However, we must consider that the highest proportion of zoochory species identified in the analyzed riparian areas can accelerate the restoration processes due to the establishment of a plant-frugivore relationship as suggested by Morellato & Leitão-Filho (1992Morellato LPC, Leitão-Filho HF. Padrões de frutificação e dispersão na Serra do Japi. In: História natural da Serra do Japi: ecologia e preservação de uma área florestal no Sudeste do Brasil (L.P.C. Morellato, org.); 1992.). In order to support ecological succession, the distribution of adequate proportions of pioneers and secondaries species in riparian areas needs to be carried out in compliance with Brazilian guidelines, such as the Resolution SMA No 32 that guide forest restoration in the São Paulo State (São Paulo, 2014São Paulo. Secretaria do Estado de Meio Ambiente. Resolução SMA n° 32, de 03 de abril de 2014. Estabelece as orientações, diretrizes e critérios sobre restauração ecológica no Estado de São Paulo, e dá providências correlatas. Diário Oficial do Estado de São Paulo, São Paulo (05 abr. 2014); Sec. 1: 36-37. ).

Regarding the structure of riparian forests, C. myrianthum is abundant probably due to their availability in forest nurseries (Barbosa & Martins, 2003Barbosa LM, Martins SE. Diversificando o reflorestamento no estado de São Paulo: espécies disponíveis por região e ecossistema. Instituto de Botânica; 2003.; Vidal & Rodrigues, 2019Vidal CY, Rodrigues RR. Restauração da diversidade: Os viveiros do estado de São Paulo [recurso eletrônico] Piracicaba: USP/Esalq; 2019. Available from: https://www.esalq.usp.br/biblioteca/sites/default/files/Restaura%C3%A7%C3%A3o_diversidade.pdf.
https://www.esalq.usp.br/biblioteca/site...
). According to Assis et al. (2013Assis GB de, Suganuma MS, Melo ACG, Durigan G. Uso de espécies nativas e exóticas na restauração de matas ciliares no Estado de São Paulo (1957 - 2008). Revista Árvore 2013, 37(4): 599-609. https://doi.org/10.1590/S0100-67622013000400003.
https://doi.org/https://doi.org/10.1590/...
), C. myrianthum was the most abundant species in the restored riparian areas on the eastern, central, northwest and southwest regions of the São Paulo State. This species is recommended for restoration of riparian forests (Durigan et al., 2002Durigan G, Nishikawa DLL, Rocha E, da Silveira ER, Pulitano FM, Regalado LB et al. Caracterização de dois estrados da vegetação em uma área de Cerrado no município de Brotas, SP, Brasil. Acta Botanica Brasilica 2002, 16(3): 251-262. https://doi.org/10.1590/S0102-33062002000300002.
https://doi.org/https://doi.org/10.1590/...
) because it is typical of humid environments (Lorenzi, 2016Lorenzi H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 7.ed., vol. 1, Nova Odessa: Instituto Plantarum; 2016.). Guarea guidonia is a dominant species in riparian forests and has a lower frequency in dense vegetation cover (Lorenzi, 2016Lorenzi H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 7.ed., vol. 1, Nova Odessa: Instituto Plantarum; 2016.).

The planting of many individuals of G. guidonia and T. pernambucense in only one area can be a hamper to the development of other species. The increase in population growth rates of some native species can be much greater than that of the rest of the plant community and, consequently, this can favor the replacement of other native species. These species are called superdominant and can change vegetation structure, so impeding natural regeneration and allowing invasion of exotic species (Pivello et al., 2018Pivello VR, Vieira MV, Grombone-Guaratini MT, Matos DMS. Thinking about super-dominant populations of native species - Examples from Brazil. Perspectives in Ecology and Conservation 2018, 16 (2): 74-82. https://doi.org/10.1016/j.pecon.2018.04.001.
https://doi.org/https://doi.org/10.1016/...
). Species dominance might, therefore, reflect the environmental quality of restored sites through the years (Massi et al., 2022Massi KM, Chaves RB, Tambosi LR. Simple indicators are good proxies for ecological complexity when assessing Atlantic Forest restoration success. Restoration Ecology 2022, 30(3): e12520. https://doi/10.1111/rec.13520/suppinf.
https://doi.org/https://doi/10.1111/rec....
). However, it is important to highlight that the occurrence of species represented by few individuals is usual in the Atlantic Forest (Caiafa & Martins, 2010Caiafa NA, Martins FR. Forms of rarity of tree species in the southern Brazilian Atlantic Rainforest. Biodiversity and Conservation 2010, 19: 2597-2618. http://doi.org/ 10.1007/s10531-010-9861-6.
https://doi.org/http://doi.org/ 10.1007/...
). Therefore, the reintroduction of species through enrichment plantings can provide intermediate populations and increase the persistence of species in the landscape (Banks-Leite et al., 2014Banks-Leite C, Pardini R, Tambosi LR, Pearse W D, Bueno AA, Bruscagin RT et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspots. Science 2014, 345: 1041. https://doi.org/10.1126/science.1255768.
https://doi.org/https://doi.org/10.1126/...
).

This study identified only four threatened species in the restored areas: E. edulis, C. fissilis, C. odorata and T. cassinoides. The severity of biodiversity loss in the Atlantic Forest was estimated by Strassgburg et al. (2009) in 27-32% of endemic species threatened to extinction. However, the research conducted by Melo & Duran (2007Melo ACG, Durigan G. Structural evolution of planted riparian forests in the Medium Paranapanema Valley, SP, Brazil. Scientia Florestalis 2007, 73: 101-111.) did not found threatened species in six restored areas in the São Paulo State, concluding then that restoration processes were performed only to recover the forest structure instead of biodiversity. A list prepared by Barbosa et al. (2017Barbosa LM, Shirasuna RT, de Lima FC, Ortiz PRT, Barbosa KC, Barbosa TC. Lista de espécies indicadas para restauração ecológica para diversas regiões do Estado de São Paulo. Luiz Mauro Barbosa - São Paulo: Instituto de Botânica; 2017.) proposes several threatened species that can be planted in Ombrophilous Forests, such as Monteverdia brasiliensis (Mart.) Biral and Virola bicuhyba (Schott ex Spreng) Warb.

The forest structuring phase occurs in up to 15 years, and the consolidation phase starts between 15 and 30 years. Thus, restoration phases should be ensured so that the forest can sustain itself, allowing the formation of communities (Brancalion et al., 2015Brancalion PHS, Viani RAG, Rodrigues RR, Gandolfi S. Avaliação e monitoramento de áreas em processo de restauração. In: Martins SV, editor. Restauração ecológica de ecossistemas degradados, 2. ed., Viçosa: Editora UFV; 2015.). Based on these phases, monitoring is essential for an effective restoration. Furthermore, monitoring is an instrument for governments to decide which projects can be approved when restoration is mandatory to mitigate or compensate environmental impacts (Ruiz-Jaen & Aide, 2005Ruiz-Jaen MC, TM. Restoration Success: How Is It Being Measured? Restoration Ecology 2005, 13(3): 569-577. https://doi.org/10.1111/j.1526-100X.2005.00072.x.
https://doi.org/https://doi.org/10.1111/...
).

The Secretariat for Infrastructure and Environment of the São Paulo State, through Resolution SMA No 32/2014 and Ordinance CBRN No 01/2015, stablishes protocols for analyzing the effectiveness of forest restoration, such as percentage of vegetation cover, richness, and density of regenerating native species (São Paulo, 2014São Paulo. Secretaria do Estado de Meio Ambiente. Resolução SMA n° 32, de 03 de abril de 2014. Estabelece as orientações, diretrizes e critérios sobre restauração ecológica no Estado de São Paulo, e dá providências correlatas. Diário Oficial do Estado de São Paulo, São Paulo (05 abr. 2014); Sec. 1: 36-37. ; São Paulo, 2015São Paulo. 2015. Secretaria do Estado de Meio Ambiente. Portaria CBRN n° 01, de 17 de janeiro de 2015. Estabelece o Protocolo de Monitoramento de Projetos de Restauração Ecológica, considerando o disposto no § 2º do artigo 16 da Resolução SMA 32, de 03 de abril de 2014. Diário Oficial do Estado de São Paulo, São Paulo (17 jan. 2015); Sec. 1: 45-46. ).

5. CONCLUSIONS

Restoration of tropical forests with adequate floristic composition is essential to subsidize conservation of critical biodiversity hotspots such as the Atlantic Forest. Thus, the identification of planted species in restored areas is a necessary tool to promote awareness and to avoid the planting of exotic species in unbalanced proportions, specially of species that do not occur in the Atlantic Forest or in the vegetation physiognomy.

Regional native species should be preferably selected for planting in forest restoration areas to increase the functional connectivity of the landscape, and to contribute to the conservation of regional biodiversity. The restriction to planting native species that may hamper the colonization and development of other species may also contribute to an increase in local diversity, especially considering that some areas have become almost homogeneous forests of G. guidonia and T. pernambucense. For this reason, it is fundamental to adequately plant different native species to maximize the increase in species richness and, consequently, overall diversity.

Findings of this study have the potential to subsidize decision makers in the elaboration and implementation of restoration projects encouraging them to avoid the planting of exotic species, to consider the inadequate proportion of non-endemic species in the Atlantic Forest or the vegetation physiognomy.

REFERENCES

  • AGEM. Agência Metropolitana da Baixada Santista. Plano Metropolitano de Desenvolvimento Estratégico da Baixada Santista, 2014-2030. Mapa de Uso e Ocupação do Solo - Território. GeoBrasilis. 2013. Available from: http://www.agem.sp.gov.br/pmdebs/
    » http://www.agem.sp.gov.br/pmdebs/
  • Assis GB de, Suganuma MS, Melo ACG, Durigan G. Uso de espécies nativas e exóticas na restauração de matas ciliares no Estado de São Paulo (1957 - 2008). Revista Árvore 2013, 37(4): 599-609. https://doi.org/10.1590/S0100-67622013000400003.
    » https://doi.org/https://doi.org/10.1590/S0100-67622013000400003
  • Banks-Leite C, Pardini R, Tambosi LR, Pearse W D, Bueno AA, Bruscagin RT et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspots. Science 2014, 345: 1041. https://doi.org/10.1126/science.1255768.
    » https://doi.org/https://doi.org/10.1126/science.1255768
  • Barbosa LM, Martins SE. Diversificando o reflorestamento no estado de São Paulo: espécies disponíveis por região e ecossistema. Instituto de Botânica; 2003.
  • Barbosa LM, Shirasuna RT, de Lima FC, Ortiz PRT, Barbosa KC, Barbosa TC. Lista de espécies indicadas para restauração ecológica para diversas regiões do Estado de São Paulo. Luiz Mauro Barbosa - São Paulo: Instituto de Botânica; 2017.
  • Bellotto A, Viani RAG, Nave AG, Gandolfi S, Rodrigues RR. Monitoramento das áreas restauradas como ferramenta para avaliação da efetividade das ações de restauração e para redefinição metodológica. In: Rodrigues RR, Brancalion PHS, Isernhagen I. Pacto pela restauração da Mata Atlântica: referencial dos conceitos e ações de restauração florestal. São Paulo: Instituto BioAtlântica, 128-147; 2009.
  • Brancalion PHS, Niamir A, Broadbent E, Crouzeilles R, Barros FSM, Zambrano AMA et al. Global restoration opportunities in tropical rainforest landscape. Science Advances 2019, 5(7): eaav3223. https://doi.org/10.1126/sciadv.aav3223.
    » https://doi.org/https://doi.org/10.1126/sciadv.aav3223
  • Brancalion PHS, Rodrigues RR, Gandolfi S, Kageyama PY, Nave AG, Gandara FB et al. Instrumentos legais podem contribuir para a restauração de florestas tropicais biodiversas. Revista Árvore 2010, 34(3): 455-470. https://doi.org/10.1590/S0100-67622010000300010.
    » https://doi.org/https://doi.org/10.1590/S0100-67622010000300010
  • Brancalion PHS, Santin PH, Novembre ADLC, Rodrigues RR, Chamma HMCP. Estabelecimento da temperatura ótima para a germinação das sementes de 272 espécies arbóreas nativas do Brasil. Informativo Abrates 2007, 17(1): 55-68. https://doi.org/10.1590/S0101-31222010000400002.
    » https://doi.org/https://doi.org/10.1590/S0101-31222010000400002
  • Brancalion PHS, Viani RAG, Rodrigues RR, Gandolfi S. Avaliação e monitoramento de áreas em processo de restauração. In: Martins SV, editor. Restauração ecológica de ecossistemas degradados, 2. ed., Viçosa: Editora UFV; 2015.
  • Brasil. Ministério do Meio Ambiente. Portaria n° 148, de 07 de junho de 2022. Altera os Anexos da Portaria nº 443, de 17 de dezembro de 2014, da Portaria nº 444, de 17 de dezembro de 2014, e da Portaria nº 445, de 17 de dezembro de 2014, referentes à atualização da Lista Nacional de Espécies Ameaçadas de Extinção. Diário Oficial da União, Brasil, Brasília, DF (07 jun. 2022); Sec.: 1: 1.
  • Byng JW et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. The Linnean Society of London, Botanical Journal of the Linnean Society; 2016.
  • Caiafa NA, Martins FR. Forms of rarity of tree species in the southern Brazilian Atlantic Rainforest. Biodiversity and Conservation 2010, 19: 2597-2618. http://doi.org/ 10.1007/s10531-010-9861-6.
    » https://doi.org/http://doi.org/ 10.1007/s10531-010-9861-6
  • Campoe OC, Ianneli C, Stape JL, Cook RL, Mendes JCT, Vivian R. Atlantic forest tree species responses to silvicultural practices in a degraded pasture restoration plantation: from leaf physiology to survival and initial growth. Forest Ecology and Management 2014, 313: 233-243. https://doi.org/10.1016/j.foreco.2013.11.016.
    » https://doi.org/https://doi.org/10.1016/j.foreco.2013.11.016
  • Campos MCR, Tamashiro JY, Assis MA, Joly CA. Florística e fitossociologia do componente arbóreo da transição Floresta Ombrófila Densa das Terras Baixas - Floresta Ombrófila Densa Submontana do Núcleo Picinguaba/PESM, Ubatuba, sudeste do Brasil. Biota Neotropica 2011, 11(2): 301-312. https://doi.org/10.1590/S1676-06032011000200030.
    » https://doi.org/https://doi.org/10.1590/S1676-06032011000200030
  • Chazdon RL. Beyond Deforestation: Restoring Forests and Ecosystem Services on Degraded Lands. Science 2008, 320: 1458. https://doi.org/10.1126/science.1155365.
    » https://doi.org/https://doi.org/10.1126/science.1155365
  • CRIA. Centro de Referência e Informação Ambiental. Specieslink 2022. Available from: https://specieslink.net/
    » https://specieslink.net/
  • Crouzeilles R, Curran M, Ferreira MS, Lindenmayer DB, Grelle CEV, Benayas JMR. A global meta‐analysis on the ecological drivers of forest restoration success. Nature Communications 2016, 7: 11666. https://doi.org/10.1038/ncomms11666.
    » https://doi.org/https://doi.org/10.1038/ncomms11666
  • Cunha CML, Oliveira RC. Baixada Santista: uma contribuição à análise geoambiental [online]. São Paulo: Editora Unesp, 35-60; 2015.
  • Durigan G, Nishikawa DLL, Rocha E, da Silveira ER, Pulitano FM, Regalado LB et al. Caracterização de dois estrados da vegetação em uma área de Cerrado no município de Brotas, SP, Brasil. Acta Botanica Brasilica 2002, 16(3): 251-262. https://doi.org/10.1590/S0102-33062002000300002.
    » https://doi.org/https://doi.org/10.1590/S0102-33062002000300002
  • Durigan G, Engel VL, Torezan JM, de Melo ACG, Marques MCM, Martins SV et al. Normas jurídicas para a restauração ecológica: uma barreira a mais a dificultar o êxito das iniciativas? Revista Árvore 2010, 34(3): 471-485. http://doi.org/10.1590/S0100-67622010000300011.
    » https://doi.org/http://doi.org/10.1590/S0100-67622010000300011
  • Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. 2022. Available from: http://floradobrasil.jbrj.gov.br/
    » http://floradobrasil.jbrj.gov.br/
  • Fundação SOS Mata Atlântica. Atlas dos remanescentes florestais da Mata Atlântica: período 2019/2020, relatório técnico/Fundação SOS Mata Atlântica/Instituto Nacional de Pesquisas Espaciais - INPE. - São Paulo: Fundação SOS Mata Atlântica; 2021.
  • Giannini TC, Giulietti AM, Harley RM, Viana PL, Jaffe R, Alves R et al. Selecting plant species for practical restoration of degraded lands using a multiple-trait approach. Austral Ecology 2017, 42: 510-521. https://doi.org/10.1111/aec.12470.
    » https://doi.org/https://doi.org/10.1111/aec.12470
  • Instituto Hórus. I3N-Brasil. 2009. Available from: http://bd.institutohorus.org.br
    » http://bd.institutohorus.org.br
  • Joly CA, Assis MA, Bernacci LC, Tamashiro JY, de Campos MCR, Gomes JAMA et al. Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotropica 2012, 12(1): 125-145. https://doi.org/10.1590/S1676-06032012000100012.
    » https://doi.org/https://doi.org/10.1590/S1676-06032012000100012
  • Kageyama PY, Gandara FB. Recuperação de áreas ciliares. In: Rodrigues RR, Leitão Filho HF (Eds.). Matas ciliares: conservação e recuperação. São Paulo: Edusp/Fapesp; 2000.
  • Lewis SL, Edwards DP & Galbraith D. Increasing human dominance of tropical forests. Science 2015, 349 (6250): 827-832. https://doi.org/10.1126/science.aaa9932.
    » https://doi.org/https://doi.org/10.1126/science.aaa9932
  • Lima WP, Zakia MJB. Hidrologia de matas Ciliares. In: Rodrigues RR, Leitão-Filho HF (eds.). Matas Ciliares: Conservação e Recuperação, São Paulo: Edusp: Fapesp, 33-44; 2004.
  • Lorenzi H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 7.ed., vol. 1, Nova Odessa: Instituto Plantarum; 2016.
  • Lorenzi H, Bacher LB, Torres MAV. Árvores e arvoretas exóticas no Brasil: madeireiras, ornamentais e aromáticas. 1.ed. Nova Odessa: Instituto Plantarum ; 2018.
  • Massi KM, Chaves RB, Tambosi LR. Simple indicators are good proxies for ecological complexity when assessing Atlantic Forest restoration success. Restoration Ecology 2022, 30(3): e12520. https://doi/10.1111/rec.13520/suppinf.
    » https://doi.org/https://doi/10.1111/rec.13520/suppinf
  • Meli P, Holl K, Benayas JMR, Jones HP, Jones PC, Montoya D et al. A global review of past land use, climate and active vs. passive restoration effects on forest recovery. Plos One 2017, 12 (2): e0171368. https://doi.org/10.1371/journal.pone.0171368.
    » https://doi.org/https://doi.org/10.1371/journal.pone.0171368
  • Melo ACG, Durigan G. Structural evolution of planted riparian forests in the Medium Paranapanema Valley, SP, Brazil. Scientia Florestalis 2007, 73: 101-111.
  • Morellato LPC, Leitão-Filho HF. Padrões de frutificação e dispersão na Serra do Japi. In: História natural da Serra do Japi: ecologia e preservação de uma área florestal no Sudeste do Brasil (L.P.C. Morellato, org.); 1992.
  • Mueller-Dombois D, Ellenberg H. Aims and methods of vegetation ecology. New York: John Wiley e Sons; 1974.
  • Oscar-Júnior AC, Santos BBO, Hosokawa EK, de Araújo PP, Carriço JM. Land Use Change Dynamics in the Metropolitan Region of Baixada Santista MRBS (SP): Between Development and Environmental Impacts. In: Nunes, L. H.; Greco, R.; Marengo, J. A. Climate Change in Santos Brazil: Projections, Impacts and Adaptation Options. Springer; 2019. https://doi.org/10.1007/978-3-319-96535-2.
    » https://doi.org/https://doi.org/10.1007/978-3-319-96535-2
  • Pielech R. Plant species richness in riparian forests: Comparison to other forest ecosystems, longitudinal patterns, role of rare species and topographic factors. Forest Ecology and Management 2021, 496: 119400. https://doi.org/10.1016/j.foreco.2021.119400
    » https://doi.org/https://doi.org/10.1016/j.foreco.2021.119400
  • Pivello VR, Vieira MV, Grombone-Guaratini MT, Matos DMS. Thinking about super-dominant populations of native species - Examples from Brazil. Perspectives in Ecology and Conservation 2018, 16 (2): 74-82. https://doi.org/10.1016/j.pecon.2018.04.001.
    » https://doi.org/https://doi.org/10.1016/j.pecon.2018.04.001
  • Reis A, Bechara F, Campanhã F, Vieira K, De Souza LL, Neide V. Restoration of damaged land areas: Using nucleation to improve sucessional processes. The Brazilian Journal of Nature Conservation 2003, 1 (1): 85-92.
  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for Conservation. Biological Conservation 2009, 142: 1141-1153. https://doi.org/10.1016/j.biocon.2009.02.021.
    » https://doi.org/https://doi.org/10.1016/j.biocon.2009.02.021
  • Rodrigues RR, Lima RAF, Gandolfi S, Nave, AG. On the restoration of high diversity forests: 30 years of experiences in the Brazilian Atlantic Forest. Biological Conservation 2009, 142: 1242-1251. https://doi.org/10.1016/j.biocon.2008.12.008.
    » https://doi.org/https://doi.org/10.1016/j.biocon.2008.12.008
  • Rodrigues RR, Gandolfi S. Conceitos, tendências e ações para recuperação de florestas ciliares. In: Rodrigues, R. R.; Leitão-Filho, H. de F. (eds.). Matas ciliares: conservação e recuperação. São Paulo: EDUSP, 235-247; 2004.
  • Ruiz-Jaen MC, TM. Restoration Success: How Is It Being Measured? Restoration Ecology 2005, 13(3): 569-577. https://doi.org/10.1111/j.1526-100X.2005.00072.x.
    » https://doi.org/https://doi.org/10.1111/j.1526-100X.2005.00072.x
  • São Paulo. Secretaria de Infraestrutura e Meio Ambiente - Sima. Instituto Florestal. Inventário florestal da vegetação natural do Estado de São Paulo: Regiões Administrativas de São José dos Campos (Litoral), Baixada Santista e Registro / Instituto Florestal; coordenação editorial Francisco J. N. Kronka-São Paulo: Secretaria de Estado do Meio Ambiente: Imprensa Oficial do Estado de São Paulo; 2020.
  • São Paulo. 2015. Secretaria do Estado de Meio Ambiente. Portaria CBRN n° 01, de 17 de janeiro de 2015. Estabelece o Protocolo de Monitoramento de Projetos de Restauração Ecológica, considerando o disposto no § 2º do artigo 16 da Resolução SMA 32, de 03 de abril de 2014. Diário Oficial do Estado de São Paulo, São Paulo (17 jan. 2015); Sec. 1: 45-46.
  • São Paulo. Secretaria do Estado de Meio Ambiente. Resolução SMA n° 32, de 03 de abril de 2014. Estabelece as orientações, diretrizes e critérios sobre restauração ecológica no Estado de São Paulo, e dá providências correlatas. Diário Oficial do Estado de São Paulo, São Paulo (05 abr. 2014); Sec. 1: 36-37.
  • São Paulo. Secretaria do Estado de Meio Ambiente. Resolução SMA n° 57, de 05 de junho de 2016. Publica a segunda revisão da lista oficial das espécies da flora ameaçadas de extinção no Estado de São Paulo. Diário Oficial do Estado de São Paulo , São Paulo (07 jun. 2016); Sec. 1: 69-71.
  • Shepherd GJ. Fitopac. Versão 2.1. Campinas, SP: Departamento de Botânica, Universidade Estadual de Campinas - Unicamp; 2010.
  • Stehmann JR, Forzza RC, Salino A, Sobral M, da Costa DP, Kamino LHY. Plantas da Floresta Atlântica. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, 515; 2009.
  • Strassburg BBN, Beyer HL, Crouzeilles R, Iribarrem A, Barros F, Siqueira MF. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nature Ecology & Evolution 2019, 3: 62-70. https://doi.org/10.1038/s41559-018-0743-8.
    » https://doi.org/https://doi.org/10.1038/s41559-018-0743-8
  • Tropicos.org. Missouri Botanical Garden. 2022. Available from: https://tropicos.org
    » https://tropicos.org
  • Vidal CY, Rodrigues RR. Restauração da diversidade: Os viveiros do estado de São Paulo [recurso eletrônico] Piracicaba: USP/Esalq; 2019. Available from: https://www.esalq.usp.br/biblioteca/sites/default/files/Restaura%C3%A7%C3%A3o_diversidade.pdf
    » https://www.esalq.usp.br/biblioteca/sites/default/files/Restaura%C3%A7%C3%A3o_diversidade.pdf

Edited by

Associate editor: Fernando Gomes http://orcid.org/0000-0003-0363-4888

Publication Dates

  • Publication in this collection
    06 Jan 2023
  • Date of issue
    2022

History

  • Received
    21 Apr 2022
  • Accepted
    05 Dec 2022
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro Rodovia BR 465 Km 7, CEP 23897-000, Tel.: (21) 2682 0558 | (21) 3787-4033 - Seropédica - RJ - Brazil
E-mail: floram@ufrrj.br