Acessibilidade / Reportar erro

Composition and structure of a stretch of tropical forest in the Eastern Amazon

Composição e estrutura de um trecho de floresta tropical na Amazônia Oriental

ABSTRACT:

The aim of this study was to determine the diversity. composition. forest structure of a stretch of dense ombrophilous forest in the state of Amapá. The area is located in the east of the state of Amapá. in the Eastern Amazon. at the following coordinates: 2º 0’0.00 ’’ N. 14º 0’0.00’’O. The sampling process used was systematic. where nine plots of 1 ha (100 m x 100 m) were allocated. 0.5 km apart. within a 13 km long and 0.03 km wide transect. The horizontal structure of the forest was evaluated using phytosociological parameters. One thousand seven hundred and ninety trees were sampled in this study. they were distributed in 131 species. 69 genera and 48 families. The species that presented more individuals were Pouteria guianensis Aubl. (136). Eschweilera coriacea (DC.) S.A.Mori (78). Inga paraensis Ducke (45). Licania paraensis Prance (38). The area is highly diverse and dissimilar with great variability and complexity in vegetable formation.

Key words:
Diversity; Diametric distribution; Similarity

RESUMO:

O objetivo deste estudo foi determinar a diversidade, composição e estrutura florestal de um trecho de floresta ombrófila densa do estado do Amapá. A área está localizada a leste do Estado do Amapá, Amazônia Oriental. Nas seguintes coordenadas: 2º 0’0,00’’ N. 14º 0’0.00’’O. O processo de amostragem utilizado foi o sistemático em que foram alocadas nove parcelas de 1 ha (100 m x 100 m), distanciadas em 0.5 km entre si, dentro de um transecto de 13 km de comprimento por 0.03 km de largura. A estrutura horizontal da floresta foi avaliada por meio de parâmetros fitossociológicos. 1790 árvores foram amostradas neste estudo. Elas estão distribuídas em 131 espécies, 69 gêneros e 48 famílias. As espécies que apresentaram mais indivíduos foram Pouteria guianensis Aubl. (136), Eschweilera coriacea (DC.) S.A.Mori (78), Inga paraensis Ducke (45), Licania paraensis Prance (38). A área é altamente diversa e dissimilar com grande variabilidade e complexidade na formação vegetal.

Palavras-chave:
Diversidade; Distribuição diamétrica; Similaridade

INTRODUCTION:

The Amazon forest is composed of vegetal mosaics formed by several species. including trees, palms and vines. It covers more than 70% of the mainland areas of the Amazon, so it is called the Terra Firme Ombrophilous Forest. Among its characteristics are: the high richness and diversity of species. The high structural variability and dissimilarity between stands (LIMA, 2015LIMA, R. C. Equações para estimativas de biomassa de uma Floresta tropical úmida do Amapá. 2015. 48 p. Dissertação (Mestrado em Ciências Florestais) - Programa de Pós-Graduação em Ciências Florestais Universidade Federal Rural de Pernambuco. Recife. 2015.; CORDEIRO et al., 2020CORDEIRO. A. G. M. et al. Diversidade genética entre cupuízeiros nativos do Portal da Amazônia. Mato Grosso. Brasil. Scientific Electronic Archives. Vol. 13 (3) 2020.).

The Amazon is the largest natural reservoir in diversity of terrestrial flora. According to OLIVEIRA & AMARAL (2004OLIVEIRA, A.N.; AMARAL, I.L. 2004. Florística e fitossociologia de uma floresta de vertente na Amazônia Central. Amazonas. Brasil. Acta Amazonica. 34:21-34. ) the floristic composition is extremely rich and strongly influenced by environmental factors such as soil, relief and climate. However, few studies have been carried out seeking to describe and record the characteristics of the forests of Amapá (SOUZA & EISENLOHR, 2020SOUZA, L. A; EISENLOHR, P.V. Drivers of floristic variation in biogeographic transitions: insights from the ecotone between the largest biogeographic domains of South America.Acta Botanica Brasilica - 34(1): 155-166. 2020.).

Sustainable development in the Amazon and specifically in Amapá aiming rational use of forest resources is dramatically affected by the lack of knowledge about the floristic composition, forest structure, volume and biomass, making difficult to use sustainable forest management techniques. The expansion of local environmental information is very important, since Amazonian forests help with essential environmental services, such as carbon stocks and the maintenance of the genetic heritage of at least one third of the world’s forest biodiversity (KULEVICZ et al., 2020KULEVICZ, R. A. et al. Sanalysis of forests’ genetic vulnerability and arguments to reduce deforestation. Ambiente & Sociedade. São Paulo. Vol. 23. 2020. ). The lack of knowledge favours the loss of vegetation cover and the loss of species diversity (ANDRADE et al., 2020ANDRADE. D. F. C. et al. Composição e estrutura de uma floresta primária atingida por incêndio florestal na Amazônia Oriental. Ciência Florestal. Santa Maria. v.30. n.1. p.145-160. jan./mar. 2020.).

Therefore, it is necessary to answer the following question: what are the most important families and species in the population, how are they organized and what is their contribution in volume and biomass to the forest?

Therefore, the objective of this study was to determine the diversity, composition and structure of a stretch of dense ombrophilous forest in the state of Amapá, Eastern Amazon, to contribute with essential information for the conservation and sustainable use of the forest.

MATERIALS AND METHODS:

Characterization of the study area

The study area is located in the northern portion of the Eastern Amazon, east of the state of Amapá more specifically in the municipality of Pedra Branca do Amapari, has the following coordinates: 2º 0’0.00 ‘’ N. 14º 0’0.00 ‘ ‘O (Figure 1).

Figure 1
Location of the study area. state of Amapá. Northern Eastern Amazon.

The climate of the region, according to Köppen, is Amw’ (Moçonic tropical climate with summer-autumn rains). The average annual rainfall is approximately 3.225 ± 138 mm. The temperature has a low thermal amplitude that varies from 24.8 ± 0.15 °C in the coldest month, to 26.9 ± 0.10 °C in the hottest month (GOMES SOBRINHO & SOTTA, 2011GOMES SOBRINHO, T. R.; SOTTA, E. D. Caracterização climatológica do Módulo 4 da floresta estadual do Amapá - FLOTA/AP: dados preliminares. Macapá-AP. 2011.).

The vegetation is made up of mainly forests, Rainforest Dense motana (APARÍCIO, 2013APARÍCIO P. S. Subsídios para o manejo sustentável na Floresta Estadual do Amapá: estrutura e dinâmica. 2013. 138 p. Tese (Doutorado em Biodiversidade Tropical) - Programa de Pós-Graduação em Biodiversidade Tropical. Universidade Federal do Amapá. Macapá. 2013.). The predominant soil is the dystrophic red-yellow latosol. This soil is deep and has low fertility. it occurs in dense forests of firm ground (IEPA, 2008INSTITUTO DE PESQUISAS CIENTÍFICAS E TECNOLOGICAS DO ESTADO DO AMAPÁ (IEPA). Macrodiagnóstico do estado do Amapá. primeira aproximação do ZEE. 3. ed. Revisada e Ampliada. Macapá-AP. 139 p. 2008.).

Sampling of vegetation

The sampling was carried out considering the slope and the altitude of the land to represent the vegetation that occurs along the morphometry of the area under study. The sampling system was systematic sampling, nine plots of 1 hectare each (1 ha = 100 m x 100 m) were plotted. 0.5 km apart in a 13 km long transect by 0.03 km long width. The inclusion level adopted was DBH ≥ 20 cm (DBH - Diameter at Chest height). The measured variables were: DBH, total height (HT), commercial height (HC).

Floristic composition, structure, volume and forest biomass

To verify the similarity in the floristic composition, the Jaccad Floristic Similarity Index was applied, Subsequently, to analyze the floristic diversity between the plots, the Shannon Diversity Index (H ‘) was applied to verify the distribution of individuals, the Pielou Equability Index (J) was used.

The horizontal structure was evaluated using the phytosociological parameters described by SOARES et al., (2011SOARES, C. P. B.; NETO, F. P.; SOUZA, A. L. Dendrometria e Inventário Florestal. Editora UFV. Viçosa-MG. 272p. 2011. ): Density. Dominance. Frequency and Value of Importance. The diametric distribution was performed by grouping individuals into size classes using the Sturges rule and distribution graphs.

The vertical structure was analyzed through the distribution of individuals according to their HT. The volume was obtained using the equation: Ln (Vol) = -8.889 + 1.881.Ln (DAP) + 0.875.Ln (Ht) + ε, where Ln (Vol) = natural log of the volume. Ln DAP = natural log DAP. Ln Ht = natural height log. For biomass, the equation was used: Ln (BFAS) = - 2.01747 + 1.99172. LnDAP + 0.071282 LnHt + ε, in Ln (BFAS) = natural log of fresh biomass above ground, natural log of Ln DAP; Ln Ht natural log = total height of the individual, both equations were provided by LIMA (2015LIMA, R. C. Equações para estimativas de biomassa de uma Floresta tropical úmida do Amapá. 2015. 48 p. Dissertação (Mestrado em Ciências Florestais) - Programa de Pós-Graduação em Ciências Florestais Universidade Federal Rural de Pernambuco. Recife. 2015.). All data for analysis of forest structures were tabulated in Microsoft Excel spreadsheets, and analyzed with the aid of the R statistical package and the Rstudio platform.

RESULTS AND DISCUSSION:

Floristic composition, structure, volume and forest biomass

The sampling effort of this study was satisfactory, since the observed sampling error was 6.926%, less than the 10% applied in the Amazon rainforest. However, the species accumulation curve did not stabilize, this result indicated that the diversity and richness of the studied site are quite high and suggested the need for a larger number of sample units.

CONDÉ & TONINI (2013CONDÉ. T. M.; TONINI. H. Fitossociologia de uma floresta ombrófila densa na Amazônia setentrional. Roraima. Brasil. Acta Amazônica. v. 43. n. 3. p. 247-260. 2013.), when studying tropical forests, concluded that the area species curve does not stabilize even with large sampled areas, due to the high richness. SCHILLING et al. (2012SCHILLING, A. C. et al. Ausência de estabilização da curva de acumulação de espécies em florestas tropicais. Ciência Florestal. Santa Maria-RS. v.22. n.1. p.101-111. jan./mar.. 2012. ) says that the curve is inappropriate to measure sample sufficiency in tropical forests, as it does not stabilize easily, even if sampling is sufficient. Therefore, the sampling effort was considered sufficient for this research.

1790 trees were sampled in this study, they are distributed in 131 species, 69 genera and 48 families. This sampling result is similar to that other studies carried out in tropical forests in the Amazon (OLIVEIRA. 2016OLIVEIRA, W. L. Estrutura. regras de montagem e dinâmica de florestas de terra firme. várzea e campinaranas: respostas ao gradiente ambiental e reservatório de uma hidrelétrica na Amazônia. bacia do alto Rio Madeira-RO. Tese de doutorado. Brasília-DF. 2016.). With the same level of inclusion as the current research. SANTOS (2017SANTOS, K. P. C. Detecção da estrutura florestal aplicando o método foto em ecossistema de terra firme na Amazônia Oriental: primeiros resultados. Dissertação. Macapá-AP. 2017.) studied an area of five hectares of forest in the municipality of Porto Grande / AP, sampled 1.041 trees.

The species that presented more individuals were Pouteria guianensis Aubl. (136), Eschweilera coriacea (DC.) S.A.Mori (78), Inga paraensis Ducke (45), Licania paraensis Prance (38) and Virola michelii Heckel (33), which represent 40% of the total sample (Figure 2a). The families: Fabaceae (20 species), Lauraceae (7 species), Apocynaceae, Lecythidaceae and Sapotaceae (6 species each); had 49.44% of the wealth, 53.1% of families contributed with one species. The most abundant families: Fabaceae (205 individuals), Sapotaceae (150 individuals), Lecythidaceae (120 individuals), Lauraceae (43 individuals) and Chrysobalanaceae (42 individuals), of 67.88% of the sampled individuals (FIGURE 2b).

Figure 2
a) Number of individuals per species for the nine plots in the study area. b) Number of individuals per family for the nine plots in the study area. Baixa resolução enviar .tiff com pelo menos 300 dpi.

The Shannon diversity index (H ‘) was equal to 3.57 nats/ind. SILVA et al, (2008SILVA, K. E. et al. Composição florística e fitossociologia de espécies arbóreas do Parque Fenológico da Embrapa Amazônia Ocidental. Acta Amazônia. v.38. n.2. p.213-222. 2008. ) studying an area of firm ground in Manaus/AM, with inclusion level DAP ≥ 20cm. obtained 2.71 nats/ind. Results above 3.11 nats/ind., indicated a well-preserved plant formation (FERREIRA JUNIOR et al., 2008FERREIRA JUNIOR. E. V. et al. Composição. diversidade e similaridade florística de uma floresta tropical semidecídua submontana em Marcelândia-MT. Acta Amazonica. v.38. n.4. p.673-680. 2008.). Therefore, it can be said that the forest under study has high local floristic diversity.

The Pielou Equability Index (J) was 0.79, this value shows that the forest has a good uniformity in the distribution of individuals by species. CONDÉ & TONINI (2013CONDÉ. T. M.; TONINI. H. Fitossociologia de uma floresta ombrófila densa na Amazônia setentrional. Roraima. Brasil. Acta Amazônica. v. 43. n. 3. p. 247-260. 2013.), obtained a value of 0.64 for equability by studying a dense ombrophilous forest in the municipality of Caracaraí/RR, this value is considered low for the Amazon. According to some studies (ANDRADE et al., 2015OLIVEIRA, A.N.; AMARAL, I.L. 2004. Florística e fitossociologia de uma floresta de vertente na Amazônia Central. Amazonas. Brasil. Acta Amazonica. 34:21-34. ; BATISTA et al., 2015BATISTA. A. P. Caracterização estrutural em uma floresta de terra firme no estado do Amapá. Brasil. PFB. Colombo. v.35. n.81. p.21-33. jan./mar.. 2015. ), the levels of uniformity considered high vary between 0.75 and 0.92.

For similarity, the lowest value obtained occurred when comparing plots P2 and P8 (0.16), corresponding to the high dissimilarity between plots. The average value calculated for similarity was 0.42, indicating that there is low similarity between the plots. The Jaccard similarity index says that there is similarity between plots with values equal to or above 0.5, results with values upcoming to or equal to one, refer to the high similarity between plots (FERREIRA JUNIOR et al., 2008FERREIRA JUNIOR. E. V. et al. Composição. diversidade e similaridade florística de uma floresta tropical semidecídua submontana em Marcelândia-MT. Acta Amazonica. v.38. n.4. p.673-680. 2008.).

The species with the highest Importance Value (VI) were: Pouteria guianensis Aubl. (37.7), Eschweilera coriacea (DC.) S.A.Mori (24.9), Inga paraensis Ducke (15.5), Licania paraensis Prance (12.6), representing 52.13% of the VI (Table 1). CARIM et al. (2013CARIM. M. J. V. et al. Composição e estrutura de floresta ombrófila densa do extremo norte do Estado do Amapá. Brasil. Biota Amazônia . Macapá-AP. v.3. n.2. p.1-10. 2013.) identified the Fabaceae family as having the highest specific richness, density and relative dominance, followed by Sapotaceae by the size of its species. Similar results to those of PEREIRA et al. (2011PEREIRA, L. A. et al. S. V da. Florística e estrutura de uma mata de terra firme na Reserva de Desenvolvimento Sustentável Rio Iratapuru. Amapá. Amazônia Oriental. Brasil. FLORESTA. Curitiba. PR. v.41. n.1. p.113-122. jan./mar. 2011.), who indicated Fabaceae at the top of importance for dryland forests, followed by Lauraceae and Sapotaceae. The families Lecythidaceae. Lauraceae and Vochysiaceae, also appear in studies carried out in the Amazon (CARIM et al., 2013; CONDÉ & TONINI, 2013CONDÉ. T. M.; TONINI. H. Fitossociologia de uma floresta ombrófila densa na Amazônia setentrional. Roraima. Brasil. Acta Amazônica. v. 43. n. 3. p. 247-260. 2013.; ANDRADE et al., 2017ANDRADE. R. T. G.et al. Fitossociologia de uma floresta de terra firma na Amazônia Sul-Ocidental. Rondônia. Brasil. Biota Amazônia . Macapá-AP. v.7. n.2. p.36-43. 2017.).

The diametric distribution of the forest was in the form of an “inverted J”. with a greater number of young individuals in the smaller diameter classes. and a smaller number of large individuals in the larger diameter classes (Figure 3). This behaviour is reported in balanced forests. that is. forests that are in balance; therefore. the studied forest is framed as a well-preserved forest. Similar results were reported by SANTOS (2017SANTOS, K. P. C. Detecção da estrutura florestal aplicando o método foto em ecossistema de terra firme na Amazônia Oriental: primeiros resultados. Dissertação. Macapá-AP. 2017.) who used the inclusion level DBH ≥ 20 cm. The area is highly diverse and dissimilar with great variability and complexity in vegetable formation.

Table 1
Phytosociological parameters of the inventoried forest stretch where IVI = Importance Value Index; FA = Absolute Frequency; DA = Absolute Density; DoA = Absolute Dominance; FR = Relative Frequency; DR = Relative Density; DoR = Relative Dominance.

Figure 3
Diametric distribution for all individuals inventoried in the sampling. Baixa resolução enviar .tiff com pelo menos 300 dpi.

The lowest height sampled was equal to 9 m. and the highest height was 39 m. the average overall height was 18.5 m. Most individuals are between 10 m and 20 m height. From 20 m. as the height increases. there is a decrease in the number of individuals in the classes.

The height range of the tree strata depends on the development of the forest (LUANA. 2017LUANA, F. B. P. Análise da fitossociologia de uma área de terra firme no Rio Maués Mirim. município de Maués-AM. Dissertação. Itacoatiara-AM. 2017.). According to SOUZA et al. (2006). the vertical structure becomes an important sustainability indicator when it comes to phytosociological inventory. The species that are represented in the three tree strata represent the vertical structure well. showing that these species dominate the forest. In the present research. 23 species participated in the three tree strata. which represents 25.84% of the studied population.

SANTOS (2017SANTOS, K. P. C. Detecção da estrutura florestal aplicando o método foto em ecossistema de terra firme na Amazônia Oriental: primeiros resultados. Dissertação. Macapá-AP. 2017.) studying a forest in Porto Grande/AP. using the same level of inclusion as the current research (DBH ≥20cm). concentrated most of its individuals in the range of 11 to 27 meters in height. and the average was 18.7 meters. with trees up to 37 meters high. These values approach to the results reported in the present research. corroborating the fact that the forest under study is in an excellent state of conservation.

Volume and biomass showed low estimates in the lower altitude plots and high estimates in the higher altitude plots. The highest estimates for volume occurred in the P5 (625 m3) and P6 (576 m3) plots. For biomass. the highest estimates were in P5 (73 t) and P6 (66 m3) plots (Figure 4).

Figure 4
a) Estimates of wood volume in plots of 1 (one hactare). in a tropical forest in the Eastern Amazon. b) Estimates of forest biomass in plots of 1 (one hactare). in a tropical forest in the Eastern Amazon.

CONCLUSION:

The studied forest stretch has high diversity. which is mainly composed by the families Fabaceae. Sapotaceae. Lecythidaceae and the species Pouteria guianensis Aubl.. Eschweilera coriacea (DC.) S.A.Mori. Inga paraensis Ducke. Licania paraensis Prance. Dinizia excelsa Ducke. The structure exhibits a pattern with few trees with large diameters and median height of the canopy (35 to 40 m). The vertical structure follows the relief; the volume and the biomass are smaller in low altitude plots and larger in higher altitude plots.

ACKNOWLEDGEMENTS

The work was financed by Research Support Foundation of Amapá - FAPEAP, through the public call GUYAMZON III for study “Integration of multiscale spatial data for mapping forest types and biomass in Amapá and French Guiana - BIOMAP”.

REFERENCES

  • ANDRADE. D. F. C. et al. Composição e estrutura de uma floresta primária atingida por incêndio florestal na Amazônia Oriental. Ciência Florestal. Santa Maria. v.30. n.1. p.145-160. jan./mar. 2020.
  • ANDRADE. D. F.; G. et al. Inventário florestal de grandes áreas na Floresta Nacional do Tapajós. Pará. Amazônia. Brasil. Biota Amazônia. Macapá-AP. v.5. n.1. p.109-115. 2015.
  • ANDRADE. R. T. G.et al. Fitossociologia de uma floresta de terra firma na Amazônia Sul-Ocidental. Rondônia. Brasil. Biota Amazônia . Macapá-AP. v.7. n.2. p.36-43. 2017.
  • APARÍCIO P. S. Subsídios para o manejo sustentável na Floresta Estadual do Amapá: estrutura e dinâmica. 2013. 138 p. Tese (Doutorado em Biodiversidade Tropical) - Programa de Pós-Graduação em Biodiversidade Tropical. Universidade Federal do Amapá. Macapá. 2013.
  • BATISTA. A. P. Caracterização estrutural em uma floresta de terra firme no estado do Amapá. Brasil. PFB. Colombo. v.35. n.81. p.21-33. jan./mar.. 2015.
  • CORDEIRO. A. G. M. et al. Diversidade genética entre cupuízeiros nativos do Portal da Amazônia. Mato Grosso. Brasil. Scientific Electronic Archives. Vol. 13 (3) 2020.
  • CARIM. M. J. V. et al. Composição e estrutura de floresta ombrófila densa do extremo norte do Estado do Amapá. Brasil. Biota Amazônia . Macapá-AP. v.3. n.2. p.1-10. 2013.
  • CONDÉ. T. M.; TONINI. H. Fitossociologia de uma floresta ombrófila densa na Amazônia setentrional. Roraima. Brasil. Acta Amazônica. v. 43. n. 3. p. 247-260. 2013.
  • FERREIRA JUNIOR. E. V. et al. Composição. diversidade e similaridade florística de uma floresta tropical semidecídua submontana em Marcelândia-MT. Acta Amazonica. v.38. n.4. p.673-680. 2008.
  • GOMES SOBRINHO, T. R.; SOTTA, E. D. Caracterização climatológica do Módulo 4 da floresta estadual do Amapá - FLOTA/AP: dados preliminares. Macapá-AP. 2011.
  • INSTITUTO DE PESQUISAS CIENTÍFICAS E TECNOLOGICAS DO ESTADO DO AMAPÁ (IEPA). Macrodiagnóstico do estado do Amapá. primeira aproximação do ZEE. 3. ed. Revisada e Ampliada. Macapá-AP. 139 p. 2008.
  • KULEVICZ, R. A. et al. Sanalysis of forests’ genetic vulnerability and arguments to reduce deforestation. Ambiente & Sociedade. São Paulo. Vol. 23. 2020.
  • LIMA, R. C. Equações para estimativas de biomassa de uma Floresta tropical úmida do Amapá. 2015. 48 p. Dissertação (Mestrado em Ciências Florestais) - Programa de Pós-Graduação em Ciências Florestais Universidade Federal Rural de Pernambuco. Recife. 2015.
  • LUANA, F. B. P. Análise da fitossociologia de uma área de terra firme no Rio Maués Mirim. município de Maués-AM. Dissertação. Itacoatiara-AM. 2017.
  • OLIVEIRA, A.N.; AMARAL, I.L. 2004. Florística e fitossociologia de uma floresta de vertente na Amazônia Central. Amazonas. Brasil. Acta Amazonica 34:21-34.
  • OLIVEIRA, W. L. Estrutura. regras de montagem e dinâmica de florestas de terra firme. várzea e campinaranas: respostas ao gradiente ambiental e reservatório de uma hidrelétrica na Amazônia. bacia do alto Rio Madeira-RO. Tese de doutorado. Brasília-DF. 2016.
  • PEREIRA, L. A. et al. S. V da. Florística e estrutura de uma mata de terra firme na Reserva de Desenvolvimento Sustentável Rio Iratapuru. Amapá. Amazônia Oriental. Brasil. FLORESTA. Curitiba. PR. v.41. n.1. p.113-122. jan./mar. 2011.
  • SANTOS, K. P. C. Detecção da estrutura florestal aplicando o método foto em ecossistema de terra firme na Amazônia Oriental: primeiros resultados. Dissertação. Macapá-AP. 2017.
  • SCHILLING, A. C. et al. Ausência de estabilização da curva de acumulação de espécies em florestas tropicais. Ciência Florestal. Santa Maria-RS. v.22. n.1. p.101-111. jan./mar.. 2012.
  • SILVA, K. E. et al. Composição florística e fitossociologia de espécies arbóreas do Parque Fenológico da Embrapa Amazônia Ocidental. Acta Amazônia. v.38. n.2. p.213-222. 2008.
  • SOARES, C. P. B.; NETO, F. P.; SOUZA, A. L. Dendrometria e Inventário Florestal. Editora UFV. Viçosa-MG. 272p. 2011.
  • SOUZA, L. A; EISENLOHR, P.V. Drivers of floristic variation in biogeographic transitions: insights from the ecotone between the largest biogeographic domains of South America.Acta Botanica Brasilica - 34(1): 155-166. 2020.
  • 0
    CR-2020-0312.R1

Publication Dates

  • Publication in this collection
    22 Feb 2021
  • Date of issue
    2021

History

  • Received
    07 Apr 2020
  • Accepted
    18 July 2020
  • Reviewed
    26 Dec 2020
Universidade Federal de Santa Maria Universidade Federal de Santa Maria, Centro de Ciências Rurais , 97105-900 Santa Maria RS Brazil , Tel.: +55 55 3220-8698 , Fax: +55 55 3220-8695 - Santa Maria - RS - Brazil
E-mail: cienciarural@mail.ufsm.br