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ABSTRACT
In this paper is studied the relationship between quadratic tangencies of principal lines with the
boundary of a surface and the Darbouxian umbilics of a smooth boundaryless surface which
approximates it through the process of thickening and smoothing defined here.
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1 INTRODUCTION

Consider a smooth i.aC*°, compact, connected, oriented and regular sureéh boundaryB
embedded int®3. Without loss of generality, we can assume Bt contained in a boundaryless
surfaceS defined implicitly by a smooth functiori : R? — R such that

S={peR® f=0}
and thatS andB are given in terms of a smooth function R® — R, by
S={peS:b>0}

and
B={peS: b=0}

with V£ # 0onSand? = V f A Vb # 0 onB.
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2 RONALDO GARCIA and JORGE SOTOMAYOR

The functionf is defined so that the positive orientation i.e. the positive unit normal map of
the surfaceS is given byN = %. The positive orientation oB is defined by the unit tangent

vector fieldT = ‘—;
The principal configuration on the pair(S; B) consisting of the oriented surfa&and the
oriented boundari is defined by the quadruple

P = (Us, Cs, F1s, F2g),

wherels is the set ofumbilic points of S, i.e. points at which the principal curvatures coincide
i.e. dN = —kI for somek, Cg is the set otangential singularitieson B at whichT is a principal
direction, thatis/ N (T) is collinear withT , andF, 5 andJF,g are theminimal andmaximal principal
foliationsonS\UsUCs. The leaves of these foliations are the arcs of minimal and maximal principal
lines onS\ Us U Cs. The points orCs further split intoC1s andC,s according to which foliation
is tangent tdB. The arcs off; g that touchB \ Cg are closed at their extremes locatedBin

Examples can be given easily by choosjfgndb. For instance, iff = 1 — x2 — y2, Sis a
cylinder around the-axis; since the orientation is towards the outside, its minimal principal lines
are the circular parallels and its maximal principal ones are the meridians, which are lines parallel
to thez-axis. Takingh = r? — y2 — 72, for r < 1, get two cylindrical disks. Each one has four
tangential singularities, two minimal and two maximal, all external. /Fer 1, get a cylindrical
surface whose boundary consists of two sinusoidal closed curves, each of which carries two internal
and two external minimal tangencies. Notice that there is no maximal tangential singularities in
this example.

The examples above do not have umbilic points. By talértg be an ellipsoid with three
different axes, examples with umbilic points can be obtained.

The principal configuratioi®sg, carries the extremal — maximal and minimal — bending
structure of a surface. In Surface Theory it is the natural analogous fah#éise portrait which,
in Differential Equations and Dynamical Systems, carries the orbit structure of a vector field or
flow (Melo and Palis 1982). For the case of boundaryless surfaces the principal configuration has
been first studied by (Gutierrez and Sotomayor 1982, 1991) from the point of view of Structural
Stability under small deformations &f It, however, has deep roots that goes back to the classical
works of Monge, Dupin and Darboux, (Darboux 1896) and (Gutierrez and Sotomayor 1991). See
also (Gutierrez and Sotomayor 1998), for a survey on Charathéodory conjecture on umbilic points
on convex surfaces and recent developments on structural stability. For an extension of principal
configurations to surfaces R?, see the paper (Garcia and Sotomayor 2000).

The reader is referred to (Spivak 1980) for the basic general properties of lines of curvature
and umbilic points.

A number of natural mathematical questions could be raised now abggit and its depen-
dence on deformations of the p&8; B), i.e. on deformations of the functiorfsandb. This would
lead to an extension to surfaces with boundary of the structural stability results established for-
boundaryless ones in (Gutierrez and Sotomayor 1982, 1991). Another related sort of deformations
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of a surface with boundary will be considered in this paper.

Here will be given a first step towards the extension to surfaces with bou8aBy of the
analysis and stability properties of principal configurations known for boundaryless surfaces. This
is done by comparison with the principal configuration of a suitable deform&ignobtained
through the operations efthickening and-smoothing applied to the surface with boundary.

The e-thickening of Sis the tubular neighborhodtS, of S:

TS€:{q6R3: lg—pl<e pes

Fore small,S, = dTS, is the envelope of the family of spheres of radiuand center ranging on
S, itis aC! compact boundaryless surface oriented towards the exterfr of

This surface is smooth on the complement of the clye which is the inverse image &
by the tubular projectiorr: S. — S. In fact B, + is the common border of the two connected
smooth surfaces with bounda8/ . = S+ ¢N (with a connected component for each sign) and
half of the tube centered alofdjand radius, defined parametrically by

T.=B+€cosON +€SinON AT, 0<6 <.

See Figure 1 for an illustration of the surfe®e

Fig. 1 — Thickening of the surfacg

Thes—smoothing ofS, is an embedding db. into R® whose image is a smooth surfa@e;
which coincides with the identity outsidea-tubular neighborhood . ..
This surfaces, ; is (not uniquely) defined by averaging the functions

P. = (x —mg(x))?— €%, forxon bomg>0,

and

pe=(x —mp(x)?—€2, forxon bo g <0,

by means of a smootiansition function /s . = h(5/€).
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More precisely, take
P€,6 = hé,ePe + (1 - hS,e)pe

and S.; = P;}(O) whereh is a smooth decreasing function in the interv@, §] such that
h™©0) =h™ (@) =0foralln € N, h(t) = Lfort < 0andh(t) =0 fort > 6.

The principal configuration of the surfa& outsideB, . is known. On one portion it is
provided by that of th@ube (Gutierrez and Sotomayor 1991); on the other, i.e.SeneN and
S+ €N, it is obtained from that of by translation alongN and —eN. Notice that sinces, is
oriented by its outward normal, the minimal and maximal principal foliation are exchanged in the
transition fromS — €N to S 4 €N. For the sake of completeness, the principal configurations on
the Tube and translated surfac&st e N are reviewed and established in Section 2.

In this paper it will be proved that, with specific restrictions on the type of transition function
h (see section 3), from points @fs of quadratic tangencies of principal lines wi) bifurcate
only Darbouxian umbilic points of type®; andD; on S, s, for e ands small. See (Gutierrez and
Sotomayor 1982, 1991) and Section 4 for the basic properties of Darbouxian Umbilics.

The main result is the following.

THEOREM 1. Consider a point pg of Cs such that the minimal (or maximal) principal foliation has
guadratic contact (internal or external cases) with the boundary at thispoint. Then, for appropriate
transition function %, there exists a regular curve of umbilics, tangent to N (pg) and intersecting
transversally the surface S, ; at a point p, for ¢ > 0 (or € < 0) and § small. This point is a
Darbouxian umbilic point for the surface S, ;s and it is of type D; (external tangency case) or Ds
(internal tangency case). See Figure 2.

Fig. 2 — Minimal principal foliation ofS s: external and internal tangency.

This result expresses the bifurcation phenomenon of transition of tangencies into umbilics
on principal configurations, under thickening and smoothing. For simatids, tangencies are
transferred into umbilics, froiSto S, ;.

Together with umbilics, periodic lines of principal curvature, which are the compact leaves
of the principal foliations, are of great relevance for the understanding of the global structure of
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principal configurations. In the forthcoming paper (Garcia and Sotomayor 2001), is pursued the
study of the transition frorPs g, into periodic principal lines o ;.

From the geometric point of view this work represents a contribution to the analysis of the
smooth transition between the two possible principal configurations (one for each orientation) on
surfaces with boundary, when passing from one orientation to the other. Itis also related to the study
of the transition on the phase portrait of a discontinuous differential equation (that of the maximal
and minimal curvature lines, one on each side of the surface with boundary), when crossing a
line of discontinuity (represented here by the boundary c&\veSee the paper by (Sotomayor
and Teixeira 1998) dealing with the regularization, i.e. the smoothing, of general discontinuous
differential equations.

The fact that the differential equations of principal lines have a geometric realization, one on
each side of the surface that carries them, makes it natural to express geometrically the smooth
transition between them by means of the surface obtained with the operations of thickening and
smoothing defined here.

2 PRINCIPAL CONFIGURATION OF S¢

This section provides a self sufficient presentation of the elementary properties of principal con-
figurations on surfaces obtained through the thickening procedure from one with boundary.

Let (S, B) be a given surface with boundary, positively oriented by the normal unitaryNield
as above. Consider the family of parallel surfaBegiven byS,: S+ eN.

Near a connected component of the bofglgre consider a tube of radigswith center ranging
alongs, as in Figure 1. This procedure defines a boundaryless su8faafeclass onlyC?.

PropPoSITION 1. Let c¢: [0,1] — R® be aregular arclength parametrization of a connected com-
ponent of B, such that {T, N A T, N} is a positive frame of R3. Then the expression

1, 2 2
a(u,v) =clu) +v(NAT)(u)+ [Ek" w)v°+o(v )} Nu), -d<v<id (1)

where knL isthe normal curvature of Sin the direction of N A T, definesalocal C* chart on the
surface S defined in a small tubular neighborhood of c.

Proor. The mapo(u, v, w) = c(u) + v(N A T)(u) + wN(u) is a local diffeomorphism in a
neighborhood of the: axis. For each:, the curvev — v(N A T)(u) + w(u, v)N(u) is the
intersection of the surface with the plane spanned QyN A T)(u), N(u)}. Using Hadamard’s
lemma it follows that

w(u, v) = Ek;(u)vz + v A, v)i| N (u)

whereA(u, 0) = 0 andk;- is the (plane) curvature of the curve in the plane spanndd/byT, N},
that cuts the surfac®. This ends the proof. O
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REMARK 1. A similar chart has proved to be useful in (Gutierrez and Sotomayor 1982), for the
study of periodic principal lines, and in (Garcia and Sotomayor 1997), for the analysis of asymptotic
lines near parabolic curves.

According to (Spivak 1980), the Darboux frad®® N A T, N} alongB satisfies the following
system of differential equations:

T' = kN AT +k,N
(NATY = —k,T +1,N )
N' = —kyT —1,(N A T)

wherek, is thenormal curvature, &, is thegeodesic curvature andz, is thegeodesic torsion of the
boundary curve.

ProrosiTION 2. Consider a surface Sand a connected component of the boundary B parametrized
by c. Then the principal lines of S are transversal to ¢ at a point c(uo) if and only if 7, (1) # O.
Assumingthat (k- —k, ) (uo) = (ko —k1)(uo) > 0, aminimal principal curvaturelinehasquadratic
contact with ¢ at a point c(uo) if and only if 7, (o) = O and r;,(uo) # 0.

The contact isinternal (respectively external) if 7, (uo) > O (respectively 7, (uo) < 0).
Proor. Using the parametrization defined by equation 1 and the Darboux frame given by equation
2, it follows that:

Ew,0 = 1, F(u,0 =0, Gu,0)=1
ew,0) = k,(u), f@,0)=r1,(u), gu,0) =k (u)

Therefore the tangent vect®r(x) is a principal direction if and only if, (1) = 0.
From the differential equation of curvature lines

(Fg — Gf)dv?+ (Eg — Ge)dudv + (Ef — Fe)du® = 0,

see (Gutierrez and Sotomayor 1991) and (Spivak 1980), it follows that near a point of tangency the
minimal principal curvature lines are the solutions of the following differential equation:

' = —(ky — k) (o) + - -
v = 1 (uo)(u — ug) + - - -
Thereforep(u) = —%réﬁ(O)(kni — k)X O)(u — ug)? + - - - m

REMARK 2. For the maximal principal lines the contact is internal (respectively external) if
(k- — ko) (u0) < O (respectivelyk, — k,)t;(uo) > 0).

ProposiTION 3. Consider a surface S parametrized near a connected component of the boundary
by « asin equation (1). Let S, , be the parallel surface defined by

e =o + €N, 3)
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Then the principal configurations of Sand S, ; are the same, i.e., by a parallel displacement
the principal curvature lines, the umbilic points and the tangencies are preserved.

Proor. Direct calculation in any chafi, v) shows that the coefficients of the first and second
fundamental forms o andS, ., are expressed as follows:
E. = (1—eX)E + (¢*H — 2¢)e
F. = (1—€X)F + (2H —2¢) f
G = (1—€X)G + (?H — 2¢)g
ec = (L—eH)e+eXKE
fe = L—€eH)f +eXF
ge = 1—eH)g+eXG
HereX andX are respectively the Gaussian and Mean Curvature of the siBfadeerefore,
Fege —Gefe = (1+€*K —eH)(Fg — Gf)
Ege—Geec = (14 €K — eH)(Eg — Ge)
E.f. —Fe. = (14+€?K —eH)(Ef — Fe)

Therefore, differential equations of the principal curvature lineS ahdS, . are the same.
This ends the proof. O

REMARK 3. As above, analogous identification of principal configurations, but taking into account
the exchange of maximal into minimal and vise-versa, holds for the susfaod that defined by
negative translatione, = o — e N. This is due to the orientation convention assumed.

PrOPOSITION 4. Letc: [0, 1] — R® beaparametrization by arclength u of a connected component
of B suchthat {T, N A T, N} isa positive basis of R3. Then the expression below

Bu,0) =c(u) + ecosON (u) + esinf(N A T)(u) (4)

isaregular parametrization of the tube T, of radius e centered at the curve c.
The differential equation of the principal curvature linesis given by

du(df — t,(u)du) = 0.

At the points where 7, (uo) = 0 and 7,(uo) # O the contact between the maximal principal lines
and the curves defined by 6 = 0 and 6 = = is of quadratic type.

Proor. The tube centered atand of constant radiusis clearly a regular surface fer> 0 small.
Using the Darboux frame given by equation (2) and the parametrization (4), it follows that

Bu = (L—€k,cost —esinO)T — €1, COSYN AT — €7, SINON
Bo = —€SINON + € COSON AT
BuNBs = €(1l— €k, c0s8 —esSing)[SINON AT + COSON]
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So the coefficients of the first fundamental form are given by:

E = (1— €k, COSH — €SiNB)? + (e7,)?
F = —ezrg

G = ¢

As the tube is the envelope of an one parameter family of spheres of eactuered along
the circles parametrized by= cte are the minimal principal lines, see (Gutierrez and Sotomayor
1991) and (Spivak 1980). Here the positive orientation of the tube is defined by the exterior
normal, having the circles = cte principal curvaturé; = —%. Therefore, the orthogonal family
of curves, the other family of principal lines, is defined by the integral curves of the vector field
X = G% — F% or equivalently by the differential equati(%é = —g = 7,(u). A solution of the
equation above has the following Taylor expansion

1
O(u) = 6o + Et‘;(u())(u —ug)’ .
This ends the proof. -

ProrosiTioN 5. Consider the boundaryless surface S, obtained from a surface S by a parallel
displacement of distance ¢ in both normal directions, glued to each other by the half tubes T, of
radiuse > 0O centered alongtheboundary B of S. Thenfor small €, thesurfaceS, = S, ; UT US, _
is smooth outside the curves B 4 € N and regular of class C* along these curves.

The principal foliations lines of S, are as follows:

1. The minimal principal lines of S., away from tangencies, are the minimal principal lines of
S+, together with the minimal principal lines of the tubes T, (semi circles) and the minimal
principal lines of the surface S . These last mentioned curves are the parallel translation of
the maximal principal ones of S.

2. The maximal principal lines of S,, away from tangencies, are the maximal principal lines
of S+, together with the maximal principal lines of the tubes T, (curves defined by the
differential equation d6é — t,du = 0) and the maximal principal lines of the surface S, _.
These last mentioned curves are the parallel trandation of the minimal principal ones of S.
See Figure 3.

ProoF. In this situation the tub&. is glued toS, ; até = 0 and toS, _ até = x. The tube is
oriented positively with normal exterior arf] _ has orientation opposite & ... The minimal
(respectively maximal) principal lines 8f _ are obtained by parallel displacement of the maximal
(respectively minimal) principal lines &. . O

The considerations above allow us to define the principal configuratiéh as a pair of
piecewise smooth foliations with singularities located at umbilicsSpR B, and the minimal
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Fig. 3 — Piecewise Smooth Principal configuratiorSef internal and external tangency.

(resp. maximal) tangencies wit, whene > 0 (resp. where < 0). The piecewise smooth
leaves are defined by continuation of the principal lines on the tube and parallel surfaces, crossing
throughS, .. In this context the externak], and internal/, minimal tangencies give rise to local
configurations topologically equivalent to those arodndand D3 umbilics.

Recall that the main result of this paper establishes that by a suitable smoothing the piecewise
smooth principal configuration is deformed into a smooth one for which curves of “new” umbilics
appear along arcs which are tangenktand/. Furthermore, the umbilics are Darbouxian of types
D; and D3, respectively. See Figures 2 and 3 for an illustration of the principal configuration in
S.s andS,.

3 SMOOTHING OF S¢ INA LOCAL CHART

In this section will be studied the principal configurations of the smoothing of the susfdog
the operation 08— smoothing. To this end consider an appropriate local alaaut).

PROPOSITION 6. Letc: [0, /] — R3bea parametrization by arclength u of a connected component
of B, suchthat {T, N A T, N} is a positive frame of R3. Then the expression

Bu, v) = c(u) + v(N A T)(u) + (—e ez U2) Nw) (5)

defines a regular parametrization of the tube T, of radius € centered at the curvec — eN.

Proor. Direct by the parametrization of the circle in the pldnen 7', N}. d

ProposiTION 7. Consider the surface S, with boundary B,.. Then the surface S, hasthe following
parametrization

Be(u,v) = c(u) +v(N AT)(u) + R(u,v,e)Nm), 0<v <,

6
ac(u,v) = clu)+v(NAT)w)+ Su,v,e)Nu), —-5<v=<0, ©)
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where,
Ru,v,€) = —e++e€2—12, O<v<$
1)2 U3
S(u, v, €) =kj5+a(u,e)g+.--, —8§<v<0.

Herekl: = k1 (u, €) isthe normal curvature of B, = B + e N and u isthe arc length of c.

Proor. Similar to that of proposition 1. O

REMARK 4. The principal curvatures &andS, are related by:

k2 k1
, ki(e) =
1+ €k 14+ €k

ka(e) =

The extensions g8, ande., given by equation 6, in a neighborhoodof.e., for —§ < v < 4,
it will be supposed in the following.

Let 2 be a smooth function defined & satisfying the propertied,|_«0 =1, hlso) =0
andh decreasing in the intervl, §1.

An example of suclk is given by the following.

Let

0, for v<0O
Y(v) = .

e v, for O<v<$§
Defineh by,

Y —v)

= ()
v +v¥ @6 —v)

h(v)

Also consider the function
1, v2
H(v):—l+h+2vhv+§v hvv=_ (1_h)_2

that will appear in the proof of Theorem 1. See section 4 and equation 13.

ProrosiTiON 8. Consider the function H (v) = -1+ h + 2vh, + %vzhvv defined in the interval
[0, 8]. Then for an appropriate transition function # it followsthat H (v) < Ofor all v € (0, §].

0, for v<0
ww—[ \

Proor. Let

e v, for O<wv<$é
Define
B LC))
YW+ Y6 —v)
Thenh is a C* function having all derivatives equal to zerowat= 0 andv = §, with
h(0) =1, h(8) = 0 andh being decreasing in the intervd, 1.

h(v)
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Plotting the graphs ot and H it follows that fora > 0 small enougth has the properties
mentioned above and | o 5 is negative. See Figure 4. This numerical assertion can be corroborated
by an asymptotic analysis in> 0.

In fact, ash is strictly decreasing in the intervf, §] and is concave near 0, i.é.,,(v) < 0,
it follows that H is strictly decreasing in an intervé, p(a, §)] with H(0) = 0 and having all
derivatives equal to zero at= 0.

The functionH has the following asymptotic expansiondn

1 168% — 4vs? + 428 — 20°

H ) 78:__
(v.a.8)==5+7 v — v)3

a+ o(a?.

In a compact intervdlp (a, 8), 8] the function

18%— 82+ 4% —20°  1[1  vs—v?— 82
H,(v) == =224+ —
4 v(§ —v)3 4 v 6 —v)3
is negative ifs is small.
Therefore, it follows that for: > 0 ands > 0, both small, the functio# is negative in the

interval[0, §], as asserted. O
A
hw) T HOY)
1 4
[0}
Fig. 4 — Transition functiok and functionH.
REMARK 5. The functiond (v) = — [(1 — h(v))“—zz] is proportional to the curvature of the plane
Vv

curveC(v) = (v, 1- h(v))”—zz). For an appropriated as considered abovH is negative if
a > 0 is sufficiently small.

Consider the parametrization of the surfaSe given by equation 6 and consider the
d—smoothing

y(u,v, €) = a(u, v)h (%) + (1 —h (é)) Bc(u,v), —68<wv<3§. (8)

An. Acad. Bras. Cienc., (2002)74 (1)
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Direct calculation shows that
y(,v,e) =cu)+v(NAT)(u)
"2

(][ v o

Now consider the rescaling= €2v in the expression above and rewriting baek= v), it is
obtained that

v J_UZ U3
+{h(?) |:k —+a(u,€)€+--':| (9)

vy, v, €) =c)~+ev(N AT)u) + A(u, v, €)N (1)
=c(u) + ezv(N A T)Y(u)

+ {e4h(v) [ki%z—l—ea(u,e)vgik'--} (10)
Fell—h@)] [—1 n M] }N(u).
The non unitary normal vector & is given by
N = (N1, N2, N3) = N1T (u) + No(N A T)(u) + N3N (u)

Where,N1 = (a2b3 — asbz)/éz, Ny = (a3b1 — a1b3)/62, N3 = (a1b2 — azbl)/éz and

ap = 1—€%kyv —k,A by = 0,
ay = —‘L’gA, bz = 62,
az = Au—i—ezrgv, b3 = A,.
Let
8a1
2
ayln = a_u _kgaZ_kna3v az = —€ kg _knAvv azy = 0’
das
ap = - - + kya1 — a3, azp = —T.Ay, azx = 0,
86!3 2
a3z = - + kpa1 + T4az, a3y = €Ty + Ay, azz = Ay
Therefore,

Yuu = anul + aioN AT + aizN

Vuv = anT +apN AT + axsN

Yo = azl +azxN AT + azsN
The coefficients of the first fundamental formjofare given by:

E = (Vu, Vi) :a]2_+a§+a§
F = (Vu,Y») = aibi+ azxb; + asbs
G = (vu, V) :b§+b§+b§

An. Acad. Bras. Cienc., (2002)74 (1)
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The coefficients of the second fundamental forny Gfre proportional to the following func-

tions:
e = (Yuus Vu N Vo) = a11N1+ a1oNo + a1aN3

S = (Vuvs Yu N vv) = a21N1+ azN2 + az3N3
g = (Vw» Yu ANVv) = az1N1+ azaNa + azzN3
Direct calculation shows that:
E@,v,€) = 1—2¢%kv+ €%k, (1—h) + (12 + k2 — kky h) + €°(--+)

F(u,v,€) = ief’vz 1'1' (=14 h +vh )+}erkl(h+vh )+ €?v(--+)
T T 12 2°¢ vt v (11)

1
Gu,v,€) = € [l+ ZeZUZ(vhU +2h — 2)? + eM?(- - )}

1
e(u,v,e) =k, +ekgv (1 —h— Evhv>
1
+ éezv [27" — ky(4k, + 2k h + kyvhy) ]+ €3C- )
1 (12)
flu,v,€) =€ty +e*v [(kj)’v (Evhv + h) + tv?(h — 1+ vhv)z] +6€8¢-)
3 1 2 4y 1L 1 2 5

g(u,v,€) =¢ —1+h—|—2vhv+§v hyy | + €7k, h+2vhv+§v hyy | +€20(-+)

Therefore it is obtained:
L(u,0,6) = (Fg—Gf)(u,0,€) = —€°c,
M(u,0,€) = (Eg — Ge)(u,0,¢) = e*(k- —k,)
N(@u,0,€) = (Ef — Fe)(u,0,¢) = €1,

It follows that:

L(u,v,¢e) = 66[—‘Eg + €2v(--- )]

1
Mu,v,e) = el |:—1—|— h + 2vh, + Evzhw}

1
+ € [kj —ky + k- (—1+ h 4 2vh, + Euzh,,vﬂ +e%v(---)  (13)

4
N, v, ¢) = e, + %v[(4h + 20k, (k) + Ty (h20® — 4v2h, + dv2hh,

— 8vh + 4v + 4vh® — 8ky)| +€2(--+)

4 PROOF OF THE MAIN RESULT

Inthis section the proof of Theorem 1 will be given. In what follows the classification of Darbouxian
umbilic points will be reviewed. See (Darboux 1896) and (Gutierrez and Sotomayor 1982, 1991)
for proofs.
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14 RONALDO GARCIA and JORGE SOTOMAYOR

Let 0 be an umbilic point of a* immersiona parametrized in a Monge chait, y) by
alx, y) = (x,y, h(x, y)), where
Moy = Sy + 424 2?4 34 04
’ 2 6 2 6
The differential equation of principal curvature lines is given by:

—[by + P1]dy? + [(b — a)x + cy + Psldxdy + [by 4+ P3)dx*> =0

whereP;, i = 1, 2, 3, represent functions of order(x? + y?).
Let
Ap = 4db(a — 2b)° — ?(a — 2b)?

ProrosiTION 9 (Gutierrez and Sotomayor 1982, 199WUnder the conditions above suppose that
the transversality condition T = b(b — a) # 0 holds and consider the following situations:

Dl) AP>O

D) Ap<0and;—l>l

a
D - <1
3)b<

Then each principal foliation hasin a neighborhood of 0, one hyperbolic sector inthe D, case,
one parabolic and one hyperbolic sector in D, case and three hyperbolic sectorsin the case Ds.
The umbilics are called Darbouxian of types D1, D, and D5.

See Fig. 5 forillustrations ab, and D3. The typeD, does not appear in this work.

D] D,
Fig. 5 — Darbouxian umbilic point®1 and Ds.
Lemma 1. Letuo beapoint of tangency such that 7, (uo) = 0, t;(uo) # Oand (k, —k,)(uo) > O.
Then the set U = {(u,v,¢€): M(u,v,¢) = N(u,v,¢) = 0} isaregular curve. The curve of

umbilic points y (U,) is tangent to the normal vector N (c(ug)) and is transversal to the surface
S:.s in a neighborhood of this point of tangency.
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Proor. Solving the equatioV (u, v, €) = 0 it follows, by Implicit Function Theorem, that there
exists a smooth functiom(v, €) such thatV (u(v, €), v, ¢) = 0 and

u(v, €) = €’6(v, €), £(0) =0.

Therefore the equatiaM (u, v, €) = 0issuchthad (u(v, €), v, €) = M(v, €) = 0. Applying
the Implicit Function Theorem to this equation it follows that there exists a smooth function of the
forme = p(v), where

(1 —h — 2vhy — 1/20%h,,)
(kn — ki) (uo)
with M (v, p(v)) = 0, ¢(0) = 0 and is a flat function at = 0. By the properties of the transition
functionh, it follows thatg is decreasing for > 0 small. So it follows that = ¢~1(e).
Returning to the original coordinatés, v, €), recalling thatv = €2v and sov = ¢~(e), it
follows thatv = €?p1(¢). Therefore the curve of umbilic points is given by

p) = [1+---]

U(e) = (€°E(’p~(e). €). %97 (e). €).
Direct calculation gived(’(0) = (0, 0, 1) = N (c(uo)). O

ProrosiTION 10. Suppose that 7,(0) = 0, ‘E;,(O) # 0and (k;- — k,)(0) > 0. Then the curve of
umbilic paints y (U,) is tangent to the normal vector N (c(ug)) and is transversal to the surface
S:.s in a neighborhood of this point of tangency c(uo). Thisintersection point isan umbilic point
of type Dy or D3 according to 7, (0) < O(external tangency) or 7, (0) > O (internal tangency). The
principal configuration isregular near ¢(0) — eN.

Proor. The umbilic points of the surface are given by equation 13,(u, v,€) = M(u, v, €) =
N(u,v,e) =0.
By Lemma 1, near an umbilic poiri®, v1), it follows that
L(u,v,e) = —eerg’,(O)u +0(2)
M(u,v,€) = e(ky —k,) (Ou~+b(e)(v—1v1) +0(2), b(0)=by<0
N, v, e) = rg,(O)u +0(2)

oH
wherebg = —(v1) < 0.
v
The differential equation of curvature lines is given by,

[—7,(0)eu + 0(2)]dv® + €*[ekou + b(€)(v — v1) + 0(2)|dudv + [7,(0)u + 0(2) |du® = 0

whereko = (k- — k,)/(0).
By the classification of Darbouxian umbilic points, Proposition 9, it follows that the tangent
to the umbilic separatrices are definedby: Av, where

Mri (A% + €%koh 4 €°(b — 7,(0)e?)] = 0.
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16 RONALDO GARCIA and JORGE SOTOMAYOR

Therefore the discriminant of the equation above is given by
A = €?[—4bT,(0) + 4¢%(1,(0))* + k5.

So, if7,(0) > O it follows thatA > 0 and the umbilic point is of the typPs.

On the other hand, if;(0) < O it follows thatA < 0 and the umbilic point is of the typb;.
Near the point(0) — € N, since the orientation is exchanged it follows that0, €) — &, (0, €) < 0
and thenM (u, v, ¢) # 0 in a neighborhood of this point. Therefore the principal foliations are
regular there. O

REMARK 6. The main result of this paper shows that from a quadratic tangency the Darbouxian
umbilic of type D, does not appear in the process of thickening and smoothing.

5 CONCLUDING REMARKS

A global result, relating quadratic tangencies, Darbouxian umbilic points and the Euler-Poincaré
characteristic of the surface is given by the following proposition.

ProposiTION 11. Consider a compact, oriented surface S with regular boundary B such that all
umbilic points of S are Darbouxian and the tangencies, internal and external, of the principal
foliations F15 and F,5 with the boundary at Cs are quadratic. Then the following expression for
the Euler-Poincaré characteristic for Sand S, ; holds:

#(E) —#(
X (Ses) = 2x(5) = 2 [#(Dl) +#(Dy) — #(D3) + M] ,

2

where #(D;), i = 1, 2, 3, isthe number of umbilic points of type D; and #(E), #(I) are,
respectively, the number of external and internal tangencies of both principal foliations with the
boundary B.

Proor. The proof follows recalling thag (S..s) = x (S¢) = 2x(S) and thaty (S, 5), by Poincaré-

Hopf Theorem, is equal to the sum of the indices of the singularities of principal curvature line field
L1, see (Spivak 1980) and also (Garcia et al. 2000), and that near a point of quadratic tangency
bifurcate a Darbouxian umbilic point of typP; or D3, according the tangency is external or
internal. O
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RESUMO

Neste trabalho sdo estudadas as linhas de curvaturas principais de uma superficie com bordo e da superfici
regular, sem bordo, obtida pelo processo de engrossamento e regulariza¢do. E analisada a relagéo entr
as tangéncias quadraticas das folheag¢8es principais com o bordo e os pontos umbilicos Darbouxianos, da
superficie sem bordo, que bifurcam dos referidos pontos de tangéncias.

Palavras-chave: configuragédo principal, pontos umbilicos, singularidade tangencial.
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