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ABSTRACT

In this paper is studied the behavior of principal curvature lines near a curve of umbilic points of

a smooth surface.
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1 INTRODUCTION

The study of umbilic points on surfaces and the patterns of principal curvature lines around them

has attracted the attention of generation of mathematicians among whom can be named Monge,

Darboux and Carathéodory. One aspect – concerning isolated umbilics – of the contributions of

these authors, departing from Darboux (Darboux 1896), has been elaborated and extended in several

directions by Garcia, Sotomayor and Gutierrez, among others. See (Gutierrez and Sotomayor, 1982,

1991, 1998), (Garcia and Sotomayor, 1997, 2000) and (Garcia et al. 2000, 2004) where additional

references can be found.

In (Carathéodory 1935) Carathéodory mentioned the interest of non isolated umbilics in generic

surfaces pertinent to Geometric Optics. In a remarkably concise study he established that any local

analytic regular arc of curve in R
3 is a curve of umbilic points of a piece of analytic surface. In

some cases he also determined the patterns of behavior of principal curvature lines near the curve

of umbilic points.

In the present paper will be performed an analytic, explicit and constructive study of umbilic

curves and of the simplest patterns for their neighboring principal curvature lines, that holds also
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14 R. GARCIA and J. SOTOMAYOR

for smooth curves and surfaces. A comparison of results of this work with those of Carathéodory

(Carathéodory 1935) is attempted in section 6.

2 PRELIMINARIES

Let c : [0, l] → R
3 be a regular curve parametrized by arc length u contained in a regular smooth

surface M, which is oriented by the once for all given positive unit normal vector field N .

Let T ◦c = c′. According to (Spivak 1980), the Darboux frame {T , N ∧T , N} along c satisfies

the following system of differential equations:

T ′ = kgN ∧ T + knN

(N ∧ T )′ = −kgT + τgN

N ′ = −knT − τg(N ∧ T )

(1)

where kn is the normal curvature, kg is the geodesic curvature and τg is the geodesic torsion of the

curve c.

Proposition 1. Let c : [0, l] → M be a regular arc length parametrization of a curve of umbilic

points, such that {T , N ∧ T , N} is a positive frame of R
3. Then the expression

α(u, v) = c(u) + v(N ∧ T )(u) +
[

1

2
k(u)v2 + 1

6
a(u)v3 + 1

24
b(u)v4 + h.o.t

]
N(u), (2)

where k(u) = kn(c(u), T ) = kn(c(u), N ∧ T ) is the normal curvature of M in the directions T

and N ∧ T , defines a local C∞ chart in a small tubular neighborhood of c. Moreover τg(u) = 0.

Proof. This parametrization, in the case where c is a principal curvature line, was first introduced by

Gutierrez and Sotomayor in (Gutierrez and Sotomayor 1982). In the present case, c being a regular

curve of umbilic points, by the Implicit Function Theorem it follows that the principal curvatures

k1 ≤ k2 restricted to c are also C∞. Also, it follows that kn(c(u), T (u)) = kn(c(u), (N ∧ T )(u))

and in consequence τg(c(u), v) = 0 for any v ∈ Tc(u)M. �

3 FIRST AND SECOND FUNDAMENTAL FORMS

In the chart α in the equation (2) the positive unit normal vector vector field is given by

N = αu ∧ αv

|αu ∧ αv| .

So it follows that,

N(u, v) = − [1

2
k′v2 + 1

6
(a′ + 3k′kg)v

3 + 0(v4)]T (u)

− [kv + 1

2
a(u)v2 + 1

6
(b(u) − 3k3)v3 + 0(v4)](N ∧ T )(u)

+ [1 − 1

2
k2v2 + 1

2
k′kv3 + O(v4)]N(u)
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CURVATURE LINES AROUND UMBILIC CURVES 15

The coefficients of the first and second fundamental forms in the chart α are given by:

E =< αu, αu >, F =< αu, αv >, G =< αv, αv >, e =< αuu, N >, f =< αuv, N > and

g =< αvv, N > . Therefore,

E(u, v) =1 − 2kgv + (k2
g − k2)v2 + 1

6
(6kgk

2 − 2ka(u))v3 + O(v4)

F (u, v) =1

2
k′kv3 + O(v4)

G(u, v) =1 + k2v2 + ka(u)v3 + O(v4)

e(u, v) =k − 2kgkv + 1

2
(2kk2

g − kga(u) − 2k3 + k′′)v2

+1

6
[ a′′ + kg(9k3 − b(u)) + (3k2

g − k2)a(u)

+3k′(k′
g + k2) ]v3 + O(v4)

f (u, v) =k′v + 1

2
(kgk

′ + a′)v2 + 1

6
(kga

′ + 3k′k2
g + b′)v3 + O(v4)

g(u, v) =k + a(u)v + 1

2
(b(u) − k3)v2 − 1

2
k2(a(u) − k′)v3 + O(v4)

(3)

The Mean and Gauss curvatures in the chart α are given by:

H =k + 1

2
a(u)v + 1

4
(b(u) + k′′ − 3k3 − kga(u))v2 + O(v3)

K =k2 + ka(u)v + 1

2
(−kgka(u) − 3k4 + kk′′ + kb(u) − 2k′′)v2 + O(v3)

(4)

According to (Spivak 1980) the differential equation of curvature lines in the chart α is given

by

(Fg − Gf )dv2 + (Eg − Ge)dudv + (Ef − Fe)du2 =
=Ldv2 + Mdvdu + Ndu2 = 0; where

L = − [k′v + 1

2
(kgk

′ + a′)v2 + 1

6
(kga

′ + 3k′k2
g + b′ + 3k2k′)v3 + O(v4)]

M = a(u)v + 1

2
[b(u) − 3k3 − k′′ − 3kga(u)]v2

+1

6
[15k3kg − 3k′

gk
′ + (3k2

g − 16k2)a(u) − a′′ − 5kgb(u)]v3 + O(v4)

N = k′v + 1

2
(a′ − 3kgk

′)v2 + 1

6
(3k′k2

g − 9k2k′ − 5kga
′ + b′)v3 + O(v4)

(5)

4 PRINCIPAL CONFIGURATIONS NEAR AN UMBILIC CURVE

Proposition 2. Suppose that ∇H(u, 0) = (k′, a(u)/2) is not zero at a point u0. Then the principal

foliations near the point c(u0)) of the curve are as follows.

i) If k′(u0) 	= 0 then both principal foliations are transversal to the curve of umbilic points. See

Fig. 1, left.
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16 R. GARCIA and J. SOTOMAYOR

ii) If k′(u0) = 0, k′′(u0) 	= 0 and a(u0) 	= 0, then one principal foliation is transversal to c and

the other foliation has quadratic contact with the curve c at the point c(u0). See Fig. 1, center

and right.

Fig. 1 – Principal curvature lines near an umbilic curve: transversal case, left, and tangential case, center and right.

Proof. After division by v, the implicit differential equation of curvature lines is given by:

F(u, v, [du : dv]) = −[k′ + 1

2
(kgk

′ + a′)v + O(v2)]dv2

+[a(u) + 1

2
(b(u) − 3k3 − k′′ − 3kga(u))v + O(v2)]dudv

+[k′ + 1

2
(a′ − 3kgk

′)v + O(v2)]du2 = 0,

(6)

Consider the Lie-Cartan line field X = (Fp, pFp, −(Fu+pFv)) where F = Lp2+Mp+N =
0, p = dv/du. It follows thatF(u, 0, p) = k′(1−p2)+a(u)p and so when k′ 	= 0, F(u, v, p) = 0

is a regular surface near v = 0 and has two connected components containing the points (u, 0, p±),

where p± = [a(u)±√
a2 + 4(k′)2 ]/(2k′) 	= 0. Clearly the Lie-Cartan line field field X is regular

at (0, 0, p±) and so the configuration of principal lines is as shown in Fig. 1, left.

Suppose for simplicity that at u = 0 it holds that k′(0) = 0. By hypothesis, we have that

a(0) = a0 	= 0. Then, after division by v, it follows that the implicit differential equation of

principal curvature lines is given by:

F = − [k′′(0)u + 1

2
a′(0)v + · · · ]dv2

+ [a0 + a′(0)u + (b(0) − 3k(0)3 − k′′ − 3kg(0)a0)v + · · · ]dvdu

+ [k′′(0)u + 1

2
a′(0)v + · · · ]du2 = 0

Therefore the directions defined by F(u, v, [du : dv]) = 0 are p = 0 and q = 0 where

p = dv/du and q = du/dv. Therefore one direction is tangent to c and the other is orthogonal

to c.

By the conditions imposed, one foliation is orthogonal to, and the other has quadratic contact

with, the umbilic curve at c(0).
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CURVATURE LINES AROUND UMBILIC CURVES 17

In fact, Fp(0, 0, 0) = a0 	= 0 and it follows that the integral curve of the Lie-Cartan line field

X = (Fp, pFp, −(Fu + pFv)) passing through (0, 0, 0) is given by:

u(t) = a0t + · · ·
v(t) = − 1

2
k′′(0)a0t

2 + · · ·
p(t) = − k′′(0)t + . . .

The curve (u(t), v(t)) has quadratic contact with the line v = 0, provided k′′(0)a0 	= 0.

Eliminating t it follows that v = − k′′
2a0

u2 + · · · .

To describe the other principal foliation near (0, 0, 0) it is convenient to consider the Lie-Cartan

line field Y = (qFq, Fq, −(qFu + Fv)) with q = du/dv. It is clear that this principal foliation

is transversal to c in a neighborhood of c(0). Therefore the principal configuration is as shown in

Fig. 1, center and right. This ends the proof. �

Proposition 3. Suppose that k′(0) = a(0) = 0, a′(0)k′′(0) 	= 0, at the point c(0) of a regular

curve c of umbilic points. Let A := −2k′′(0)/a′(0) 	= 0 and B := [b(0) − 3k(0)3 − k′′(0)]/a′(0).

Let � and δ be defined by

� = −4A4 + 12BA3 − (36 + 12B2)A2 + (4B3 + 72B)A − 9B2 − 108; δ = 2 − AB.

Then the principal foliations at this point are as follows.

i) If δ < 0 and � < 0 then 0 is topologically equivalent to a Darbouxian umbilic of type D1,

through which the umbilic curve is adjoined transversally to the separatrices. See Fig. 2 left.

ii) If δ < 0 and � > 0 then 0 is topologically equivalent to a Darbouxian umbilic of type

D2, through which the umbilic curve is adjoined, on the interior of the parabolic sectors,

transversally to the separatrices and to the nodal central line. See Fig. 2 center.

iii) If δ > 0 then 0 is topologically a Darbouxian umbilic of type D3, through which the umbilic

curve is adjoined transversally to the separatrices. See Fig. 2 right.

Fig. 2 – Principal curvature lines near a Darbouxian-like point on an umbilic curve, dotted.
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18 R. GARCIA and J. SOTOMAYOR

Proof. After division by v, the first order terms of differential equation of curvature lines, see

equation (6), is given by:

F(u, v, [du : dv]) = − (Au + v + O1(2))dv2 + (2u + Bv + O2(2))dudv

+ (Au + v + O3(2))du2.

Consider the Lie-Cartan line field X = (Fp, pFp, −(Fu + pFv)), where p = dv/du. The

singular points of X along the projective line – represented by the p axis – are defined by the

cubic equation R(p) = p3 + (A − B)p2 − 3p − A = 0. The condition � 	= 0 means that R

has no multiple roots and consequently the singularities of X restricted to the projective line are

hyperbolic. The linear part of X along the axis p is given by:

DX(0, 0, p) =
⎛
⎜⎝

2 − 2Ap B − 2p 0

(2 − 2Ap)p (B − 2p)p 0

0 0 3p2 + 2(A − B)p − 3

⎞
⎟⎠

The non vanishing eigenvalues of DX(0, 0, p) are

λ1 = 2 + (B − 2A)p − 2p2, λ2 = 3p2 + 2(A − B)p − 3.

The resultant between R and λ2 = R′ is exactly � 	= 0, while the resultant between R and λ1 is

(2 − AB)(16 + (2a − b)2) = δ(16 + (2a − b)2) 	= 0.

Therefore in the hypothesis considered all the singular points of X are hyperbolic. In the chart

(u, v, q = du/dv) the Lie-Cartan line field Z = (qFq, Fq, −(qFu + Fv)) is regular at 0.

Now consider the vector field Y = (Au + v + O1(2), −u − B
2 v − O2(2)). By properties of

the index of umbilic points, see (Gutierrez and Sotomayor 1998), (Hopf 1979) and (Spivak 1980),

it follows that Ind(Y, 0) = −2Ind(Fi , 0), where Fi , (i = 1, 2) denotes the principal foliations.

As det (DY(0)) = (2 − AB)/2 = δ/2, it follows that Ind(Y, 0) = 1 provided δ > 0, and that

Ind(Y, 0) = −1 when δ < 0. Therefore, Ind(Fi , 0) = ±1/2.

In the hypothesis of item i), � < 0 and δ < 0, the field X has only one hyperbolic saddle

point and the index of the principal foliations is 1/2 and so they define topologically a Darbouxian

umbilic D1, with one separatrix approaching the umbilic point and one hyperbolic sector for each

principal foliation.

In the hypothesis of item ii), � > 0 and δ < 0, the field X has two hyperbolic saddle points and

one hyperbolic node. In this case the index of the principal foliations is 1/2 and so is topologically

a Darbouxian umbilic D2, with two separatrices approaching the umbilic point, one hyperbolic

sector and one parabolic sector for each principal foliation.

In the hypothesis of item iii), � > 0 and δ > 0, the field X has three hyperbolic saddle points

and the index of the principal foliations is −1/2 and they define topologically a Darbouxian umbilic

D3, with three separatrices approaching to the umbilic point and three hyperbolic sectors for each

principal foliation.
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CURVATURE LINES AROUND UMBILIC CURVES 19

Figure 3 shows the behavior of X near the projective line and the blowing down of the integral

curves.

Clearly when A 	= 0 the umbilic separatrices are transversal to the curve of umbilic points

which is parametrized by v = 0.

Fig. 3 – Behavior of X in a neighborhood of the projective line and projection of the integral curves.

�

5 SPHERICAL AND PLANAR UMBILIC CURVES

In the previous sections have been studied a sample of the most generic situations, under the

restriction on the surface of having an umbilic curve. Below will be considered the case where k

is a constant which implies the additional constrain that the umbilic curve be spherical or planar, a

case also partially considered in (Carathéodory 1935). Under this double imposition the simplest

patterns of principal curvature lines are analyzed in what follows.

Proposition 4. Let c be a regular closed spherical or planar curve. Suppose that c is a regular

curve of umbilic points on a smooth surface. Then the principal foliations near the curve are as

follows.

i) If Hv(u, 0) = a(u)/2 	= 0 and a(u) > 0 for definiteness, then one principal foliation is

transversal to the curve c of umbilic points.

The other foliation defines a first return map (holonomy) π along the oriented umbilic curve

c, with first derivative π ′ = 1 and second derivative given by a positive multiple of
∫ l

0
kg(u)

a′(u)

a(u)
3
2

du.

When the above integral is non zero the principal lines spiral towards or away from c, depending

on their side relative to c.

ii) If a(u) has only transversal zeros, near them the principal foliations have the topological

behavior of a Darbouxian umbilic point D3 at which a separatrix has been replaced with the

umbilic curve. See Fig. 4.
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20 R. GARCIA and J. SOTOMAYOR

Fig. 4 – Curvature lines near a spherical umbilic curve.

Proof. When c is a spherical or planar curve it follows that k(u) = k. In the planar case k = 0

and kg is the curvature of plane curves. In this case the differential equation of principal curvature

lines, see equation (6), after division by v is given by:

−[1

2
a′(u)v + 1

6
(kga

′ + b′)v2 + O(v3)
]
dv2

+[
a(u) + 1

2
(b(u) − 3k3 − 3kga(u))v

+1

6
(15k3kg + (3k2

g − 16k2)a(u) − a′′ − 5kgb(u))v2 + O(v4)
]
dudv

+[1

2
a′(u)v + 1

6
(b′ − 5kga

′)v2 + O(v3)
]
du2 = 0

(7)

The curve v = 0 is a solution of equation (7). As a(u) 	= 0 by hypothesis it follows that v = 0

is a periodic orbit of (7). The Poincaré map is defined by π(v0) = v(l, v0) where v(u, v0) is the

solution of (7) with initial condition v(0, v0) = v0.

By the standard method of differentiation of solutions of differential equations with respect to

initial conditions to obtain the Taylor expansion of π , it follows that dv/dv0(u) =
√

a0
a(u)

, where

a0 = a(0) > 0 for definiteness. Therefore π ′(0) = 1.

Differentiation shows that q(u) = d2v

dv2
0

(u, 0) satisfies the following linear differential equation:

−1

2

a0a
′b(u)

a(u)2
+ 3

2

a0a
′k3

a(u)2
− 1

6

a0a
′kg

a(u)
+ 1

3

a0b
′

a(u)
+ a(u)q ′ + 1

2
a′q(u) = 0.

Integration of the equation above leads to

q(u) = a0

6

1√
a(u)

∫ u

0

[ a′

a5/2
(3b(u) − 9k3) + 1

a3/2
(a′kg − 2b′)

]
du

To obtain the second derivative of π , integration by parts gives:

π ′′(0) = q(l) = 1

6

√
a0

∫ l

0
kg

a′

a3/2
du.

This ends the proof of item i).
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To proceed consider the case where a(u) has a transversal zero say at u = 0. Therefore the

differential equation of curvature lines, equation (7), near (0, 0) can be written as:

F(u, v, [du : dv] = [−v + h.o.t]dv2 + [2u + a1v + h.o.t] + [v + h.o.t]du2 = 0,

where a1 = (b(0)−3k3)/a′(0). Consider the Lie-Cartan line field X = (Fp, pFp, −(Fu +pFv)),

where p = dv/du. The field X has three real singular points along the projective line - axis p-

and its are defined by the polynomial equation p(p2 − a1p − 3) = 0. The linear part of X along

the axis p is given by:

DX(0, 0, p) =
⎛
⎜⎝

2 a1 − 2p 0

2p (a1 − 2p)p 0

0 0 3p2 − 2a1p − 3

⎞
⎟⎠

The eigenvalues of DX(0, 0, p) are λ1 = 2 − 2p2 + a1p and λ2 = 3p2 − 2a1p − 3.

At p = 0 it follows that λ1λ2 = −6 < 0 and so (0, 0, 0) is a hyperbolic saddle point of X.

Evaluating λ1 and λ2 at the other singular points (0, 0, pi) of X it is obtained that λ1 = −(1 + p2
i )

and λ2 = 3 +p2
i . Therefore these two singular points of X are also hyperbolic saddle points. Near

the projective line the phase portrait of X is as illustrated in Fig. 5. Blowing down the phase portrait

of X it follows that the singular point is equivalent to a Darbouxian umbilic point of type D3.

Fig. 5 – Resolution of X near the projective line.

�

Remark 1. By properly choosing functions kg and a(u) = 2Hv it is possible to construct explicit

examples of the spiraling behavior in item i) of Proposition 4.

Proposition 5. A closed regular curve c : [0, l] → R
3 parametrized by arc length u is a curve of

umbilic points of a regular surface containing c if and only if
∫ l

0 τ(u)du ∈ 2kπ, k ∈ Z.
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22 R. GARCIA and J. SOTOMAYOR

Proof. The Frenet frame of c is given by {t, n, b} and the following equations holds:

t ′ =kn

n′ = − kt + τb

b′ = − τn

For any regular surface containing c the Darboux frame {t, N ∧ t, N} and the Frenet frame

{t, n, b} are related by:

N = cos θ(u)n + sin θ(u)b

N ∧ t = − sin θ(u)n + cos θ(u)b.

Direct calculation shows that kn(u) = k(u) cos θ(u), kg(u) = −k(u) sin θ(u) and τg(u) =
−(θ ′(u) + τ(u)).

Supposing that c is a curve of umbilic points it follows, see Proposition 1, that τg = 0 and

kn(c(u), T ) = kn(c(u), N ∧ T ) = k(u) cos θ(u).

Therefore in order to obtain a regular surface containing c (closed curve) it is necessary

that
∫ l

0 τ(u)du be an integer multiple of 2π . Clearly, from equation (2) this condition is also

sufficient. �

The following corollary is the first case discussed in (Carathéodory 1935).

Corollary 1. Any regular spherical closed curve c is a curve of umbilic points of a regular surface

which contains c.

Proof. For any closed spherical curve it follows that τg = 0 and therefore
∫ l

0 τ(u)du =
− ∫ l

0 θ ′(u)du = 0. �

6 CONCLUDING REMARKS

The interest on the structure of principal lines in a neighborhood of a continuum of umbilic points,

forming a curve, in an analytic surface goes back to the work of Carathéodory (Carathéodory 1935).

For previous results related to this subject, Carathéodory refers in his paper to the books of Monge

(Monge 1850) and Dupin (Dupin 1813), reliquae not found by the authors.

In the present work has been carried out an independent, explicit, self sufficient and constructive

study of umbilic curves on smooth surfaces, that holds also for regular closed curves. Here only

the simplest, least degenerate cases, have been considered. A partial comparison of the results of

this paper with those of (Carathéodory 1935) is attempted below.

In (Carathéodory 1935) Carathéodory established that any local analytic regular arc of curve

in R
3 is a curve of umbilic points of a piece of analytic surface. Proposition 5, which also holds in

the analytic case, gives a global independent version.
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CURVATURE LINES AROUND UMBILIC CURVES 23

In some cases Carathéodory also determined the behavior of principal lines near the curve of

umbilic points. The transversal case in Proposition 2 can be found in his paper. The tangential

case is not there.

The cases studied in Proposition 3 are not treated in (Carathéodory 1935).

Concerning Proposition 4, case i), which gives an explicit criterion for quadratic spiraling

approach to the umbilic closed curve, it seems that Carathéodory was aware of the possibility of

spiraling, but gave no criterion or example for this situation. Case ii) in Proposition 4 was not

treated in his paper.

In (Carathéodory 1935) the focal surfaces – caustics – received great attention. In fact Ca-

rathéodory starts his analysis with the focal surfaces from which he obtains the surface with an

umbilic curve. In the present direct approach, the focal surfaces can be obtained from their standard

expression

α + riN,

where ri = (ki)
−1, i = 1, 2 are the curvature radii defined in terms of the principal curvatures

k2,1 = H ± √H2 − K, expressed in function of the Mean and Gaussian curvatures given in

equation (4).

Additional analysis – complemented with some plotting – must be done to fully grasp the

diversity of focal surfaces possible for surfaces with an umbilic curve exhibiting the several points

studied here. In (Carathéodory 1935) only the first cases in Propositions 2 and 4 seem to have been

considered.
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RESUMO

Neste trabalho estuda-se o comportamento das linhas de curvatura principal próximas a uma curva de pontos

umbílicos, numa superfície suave.

Palavras-chave: ponto umbílico, linhas de curvatura principal, ciclos principais.
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