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ABSTRACT

In this paper are determined the principal curvatures and principal curvature lines oncanal surfaces

which are the envelopes of families of spheres with variable radius and centers moving along a

closed regular curve inR3. By means of a connection of the differential equations for these

curvature lines and real Riccati equations, it is established that canal surfaces have at most two

isolated periodic principal lines. Examples of canal surfaces with two simple and one double

periodic principal lines are given.
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1. INTRODUCTION

The study of principal curvature lines, along which a surface inR3 bends extremely and their

umbilic singularities was founded by Monge, Dupin and Darboux. See (Gray 1998) and (Soto-

mayor 2003) for references. For the basic facts about principal curvature lines on surfaces the

reader is addressed to (do Carmo 1976), (Spivak 1979) and (Struik 1988).

As a consequence of the work of Monge and Dupin the lines of curvature on quadrics and

toroidal – Dupin Cyclides – surfaces were determined. See (Fischer 1986, Chap. 3), for an outline

of the theory and for a collection of remarkable illustrations.
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In (Gutierrez and Sotomayor 1982, 1991, 1998) ideas originating in the Qualitative Theory of

Differential Equations and Dynamical Systems, such as Structural Stability and Genericity, were

incorporated into the subject; see also (Garcia and Sotomayor 2002). Historical comments, going

up to some recent developments on principal curvature lines, can be found in (Sotomayor 2003).

The global dynamic complexity of principal curvature in simple smooth surfaces was illus-

trated in (Gutierrez and Sotomayor 1991, 1998). This includes examples of recurrent (dense)

principal curvature lines on spheroidal surfaces, which are small perturbations of ellipsoids of

revolution and canal surfaces with constant radial functions. The methods established in these

works show how to make hyperbolic a principal cycle by means of a small smooth perturbation.

This leads to smooth toroidal immersions with arbitrary large number of principal isolated princi-

pal cycles.

In this paper is improved and reproved a result that goes back to Vessiot, establishing that

principal curvature lines on canal surfaces immersed inR3 (see Section 2, Definition 2 verify a

Riccati equation (see Section 3, Remark 7). In fact, (Vessiot 1919) is the first source known by

the authors for the connection between Riccati equations and principal curvature lines on canal

surfaces. The improvement consists in the formulation of precise conditions for canal surfaces

be regular immersions and also to have umbilic points (see Section 3, Theorem 4 and Remark 5).

A consequence of the Riccati structure for principal curvature lines on canal immersed surfaces

implies that the maximal number of isolated periodic principal lines is 2. Examples of canal surfaces

with two (simple i.e. hyperbolic) and one (double i.e. semi-stable) principal periodic lines, absent

in (Vessiot 1919) and also in later references, are given in this paper (see Section 4, Proposition 8).

2. REGULAR CANAL SURFACES

Consider the spaceR3 endowed with the Euclidean inner product<, > and norm| | =<, >1/2

as well as with a canonical orientation. The wedge product∧ of vectors is defined relative to this

orientation.

Let c be a smooth regular closed curve immersed inR3, parametrized by arc lengths ∈ [0, L].

This means that

c′(s) = t(s), |t(s)| = 1, c(L) = c(0) . (1)

Assume also that the curve isbi-regular. That is:

κ(s) = |t ′(s)| > 0. (2)

Along c is defined its movingFrenet frame{t, n, b}. Following (Spivak 1979) and (Struik

1988), this frame ispositive, orthonormaland verifiesFrenet equations:

t ′(s) = κ(s)n(s), n′(s) = −κ(s)t(s) + τ(s)b(s), b′(s) = −τ(s)n(s). (3)

Equations (1) to (3) define theunit tangent, t , principal normal, n, curvature, κ, binormal,

b = t ∧ n, andtorsion, τ , of the immersed curvec.
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PROPOSITION1. Let r (s) > 0 andθ(s) ∈ ]0, π [ be smooth functions of periodL. The mapping

α : T2 = S1 × S1 → R3, defined onR2 moduloL × 2π by

α(s, ϕ) = c(s) + r (s) cosθ(s)t(s) + r (s) sinθ(s)[cosϕ n(s) + sinϕ b(s)], (4)

is tangent to the sphere of centerc(s) and radiusr (s) if and only if

cosθ(s) = −r ′(s). (5)

Assuming(5), with r ′(s) < 1, α is an immersion provided

κ(s) <
1 − r ′(s)2 − r (s)r ′′(s)

r (s)
√

1 − r ′(s)2
. (6)

PROOF. Calculations using equations (3) give

αs =
∂α

∂s
= α1

s t(s) + α2
sn(s) + α3

sb(s),

where
α1

s = 1 + r ′ cosθ − r θ ′ sinθ − r κ sinθ cosϕ,

α2
s = r ′ sinθ cosϕ + r θ ′ cosθ cosϕ − r τ sinθ sinϕ + r κ cosθ,

α3
s = r ′ sinθ sinϕ + r θ ′ cosθ sinϕ + r τ sinθ cosϕ.

(7)

Here, of course,r , θ , τ , κ are functions ofs. Also,

αϕ =
∂α

∂ϕ
= r (s) sinθ(s)[− sinϕ n(s) + cosϕb(s)].

The unit normal vector pointing inward the sphere|p − c(s)| = r (s) with centerc(s) and

radiusr (s) at p = α(s, ϕ) is Nα = (c(s) − α(s, ϕ))/r (s), which is given by:

Nα = − cosθ(s) t(s) − sinθ(s)[cosϕ n(s) + sinϕ b(s)]. (8)

Clearly 〈αϕ, Nα〉 = 0. Calculation gives〈αs, Nα〉 = −(cosθ + r ′). Therefore, the condition of

tangency at(s, ϕ) of α to the sphere|p − c(s)| = r (s) is cosθ(s) = −r ′(s).

Additional calculation gives:

F(s, ϕ) = 〈αs, αϕ〉 = τ r 2 sin2 θ + κ(s)r ′r 2 sinθ sinϕ,

G(s, ϕ) = 〈αϕ, αϕ〉 = r 2 sin2 θ = r 2(1 − r ′2).
(9)

At this point it is appropriate to write the mappingα and its derivatives involving only functions

of r (s) rather than ofθ(s), replacing the expressions cosθ(s) = −r ′(s), sinθ(s) = (1 − (r ′)2)1/2

in equations (4) and (7).
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The expression forE is as follows:

E(s, ϕ) = 〈αs, αs〉 = κ2r 2(1 − r ′2) cos2 ϕ

+ 2κr
[
rr ′ − (1 − r ′2)/

√
1 − r ′2

]
cosϕ

+ 2κτ r 2r ′
√

1 − r ′2 sinϕ + (1 − r ′2) + 2rr ′′

+
r 2

(1 − r ′2)

[
τ 2(1 − r ′2)2 + r ′2κ2(1 − r ′2) + r ′′2

]
.

(10)

Additional calculation and simplification using equations (9), with the tangency condition (5)

imposed, and (10) gives

EG − F2 = r (s)4
[√

1 − r ′(s)2κ(s) cosϕ + r ′′(s) − (1 − r ′(s)2)/r (s)
]2

. (11)

This expression, which is equal to|∂α/∂s ∧ ∂α/∂ϕ|2, vanishes if and only if

cosϕ =
1 − r ′(s)2 − r (s)r ′′(s)
√

1 − r ′(s)2κ(s)r (s)
. (12)

Condition (6) states that the absolute value of the right-hand member of (12) is larger than 1,

which by (11) implies the linear independence ofαs andαϕ at every point(s, ϕ), namely thatα is

an immersion. �

DEFINITION 2. A mapping such asα, of T2 into R3, satisfying conditions(5) and (6) will be

called an immersed canal surface with center alongc(s) and radial functionr (s). Whenr is

constant, it is called an immersed tube. Due to the tangency condition(5), the immersed canal

surfaceα is the envelope of the family of spheres of radiusr (s) whose centers range along the

curvec(s).

REMARK 3. Proposition 1 is partially found in (Vessiot 1919). There, however, the regular-

ity condition (6) was overlooked. Other references for canal surfaces are (Blaschke 1929) and

(Gray 1998).

3. PRINCIPAL LINES ON REGULAR CANAL SURFACES

In this work the positive orientation on the torusT2 = S1 × S1 is defined by the ordered tangent

frame{∂/∂s, ∂/∂ϕ}. Therefore thepositive unit normal–or Gaussian map–Nα of the immersion

α is defined by|∂α/∂s ∧ ∂α/∂ϕ|Nα = ∂α/∂s ∧ ∂α/∂ϕ. By the tangency condition (5) this unit

vector is given by (8), which can be written as follows:

Nα = r ′(s) t(s) − (1 − (r ′(s))2)1/2[cosϕ n(s) + sinϕ b(s)]. (13)

It points inwards the toroidal surface defined byα.

Below will be studied the global behavior of the principal curvature lines ofα.
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THEOREM 4. Let α : S1 × S1 → R3 be a smooth immersion expressed by(4). Assume the

regularity conditions(5) and(6) as in Proposition1 and also that

k(s) <

∣
∣
∣
1 − r ′(s)2 − 2r (s)r ′′(s)

2r (s)
√

1 − r ′(s)2

∣
∣
∣, (14)

The maximal principal curvature lines are the circles tangent to∂/∂ϕ. The maximal principal

curvature is

k2(s) = 1/r (s).

The minimal principal curvature lines are the curves tangent to

V(s, ϕ) =
∂

∂s
−

(
τ(s) +

r ′(s)

(1 − r ′(s)2)1/2
κ(s) sinϕ

)
∂

∂ϕ
. (15)

The expression

r (s)(1 − r ′(s)2)1/2κ(s) cosϕ + r (s)r ′′(s) − (1 − r ′(s)2) (16)

is negative, and the minimal principal curvature is given by

k1(s, ϕ) =
κ(s)(1 − r ′(s)2)1/2 cosϕ + r ′′(s)

r (s)(1 − r ′(s)2)1/2κ(s) cosϕ + r (s)r ′′(s) − (1 − r ′(s)2)
. (17)

There are no umbilic points forα: k1(s, ϕ) < k2(s).

PROOF. Direct calculation gives:

∂Nα

∂ϕ
+ k2(s)

∂α

∂ϕ
= 0.

By Rodrigues equation, see (do Carmo 1976) and (Struik 1988), the circless = constant are

principal curvature lines ofα, with principal curvaturek2(s).

Denoting the metric ofα by Eds2 + 2Fdsdϕ + Gdϕ2, it follows that the direction orthogonal

to ∂/∂ϕ, giving the other principal direction, is defined by the vector field

G
∂

∂s
− F

∂

∂ϕ
,

which by equation (9) is collinear withV(s, ϕ) in (15).

Differentiation of (13) using Frenet equations (3) gives

∂Nα

∂s
=

[
r ′′ + κ(1 − r ′2)1/2) cosϕ

]
t(s)

+
[
(r ′r ′′ cosϕ + τ(1 − r ′2) sinϕ + r ′κ(1 − r ′2)1/2)/(1 − r ′2)1/2

]
n(s)

+
[
(−τ(1 − r ′2)1/2 cosϕ + r ′r ′′ sinϕ)/(1 − r ′2)1/2

]
b(s),

(18)

and
∂Nα

∂ϕ
=

√
1 − r ′(s)2 [sinϕ n(s) − cosϕ b(s)] .
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Substitution, taking into account equation (15), leads to

∂Nα

∂V
(s, ϕ) =

∂Nα

∂s
−

[
τ +

r ′

(1 − r ′2)1/2
κ sinϕ

]
∂Nα

∂ϕ
. (19)

Similarly for α, calculation of its derivative∂α/∂V , gives

∂α

∂V
(s, ϕ) = A(s, ϕ)

[
t(s) +

r ′(s)

(1 − r ′(s)2)1/2
(cosϕn(s) + sinϕb(s))

]
,

A(s, v) = 1 − r ′(s)2 − r (s)r ′′(s) − κ(s)r (s) cosϕ(1 − r ′(s)2
)1/2

(20)

Further calculation using equations (18), (19), (20) and the expression fork1(s, ϕ) given in

equation (17), follows that

∂Nα

∂V
(s, ϕ) + k1(s, ϕ)

∂α

∂V
(s, ϕ) = 0.

This is Rodrigues equation, which establishes that, in fact,k1 is a principal curvature.

From (6) it follows that (16), the denominator ofk1, is always negative. This implies that

k1 < 1/r (s) = k2. Otherwise,k1 ≥ k2 and, after direct manipulation, by (14) this would lead to

∣
∣
∣ cosϕ

∣
∣
∣ ≥

∣
∣
∣
1 − r ′(s)2 − 2r (s)r ′′(s)

2κ(s)r (s)
√

1 − r ′(s)2

∣
∣
∣ > 1. (21)

This prevents the existence of umbilic points and justifies the namesmaximal, for subscript 2, and

minimal, for subscript 1, given in the statement. �

REMARK 5 [Umbilic Points in Canal Immersions]. The calculation ofk1 and the condition for the

appearance of umbilic points for regular canal surfaces has not been considered in previous works

on the subject. The discussion leading to (21) leads to the following equation for umbilic points:

cosϕ =
1 − r ′(s)2 − 2r (s)r ′′(s)

2κ(s)r (s)
√

1 − r ′(s)2
.

It gives a non-empty curve if condition (14) is not imposed. This curve however consists of

removable singularities for the principal line fields which have smooth extensions to the whole

torus, given by∂/∂ϕ andV . Under generic conditions on the radial function,r (s), and curvature,

κ(s), functions it will be expected to appear curves of umbilic points as those studied in Proposi-

tion 2 of (Garcia and Sotomayor 2005).

REMARK 6 [Minimal Principal Foliation in terms of Differential Forms]. Written as a differential

form, the vector field (15) becomes:

ω1 = dϕ +
[
τ(s) +

r ′(s)

(1 − r ′(s)2)1/2
κ(s) sinϕ

]
ds. (22)
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When another parametert is used, sayT-periodic, related with the arc lengths of c in the form

s = s(t), with ṡ = 〈ċ, ċ〉1/2, the form in (22) can be written as:

ω1 = dϕ +
[
τ(t) +

ṙ (t)

(ṡ(t)2 − ṙ (t)2)1/2
κ(t) sinϕ

]
ṡ(t)dt. (23)

REMARK 7 [Vessiot]. By the change of coordinates tan(ϕ/2) = z, equation (22) is transformed

into theL-periodic Riccati equation

z′ = −
1

2
τ(s)(1 + z2) + cotθ(s)κ(s)z. (24)

Therefore, the solutions of equation (15) can be obtained from the solutions of equation (22)

contained in[0, T] × [−π, π ].

4. CANAL SURFACES WITH ONE AND TWO PRINCIPAL CYCLES

In this section is carried out a discussion on the qualitative properties of equation (15), or of its

equivalent form (23), absent in (Vessiot 1919).

Being equivalent to a periodic Riccati equation, this equation has aMöebius transformation

asreturn map(see Hille 1976) and therefore can have either:

(a) all its solutions periodic,

(b) all its solutions dense,

(c) two hyperbolic (simple) periodic solutions or

(d) one semi-hyperbolic (double or semi-stable) periodic solution.

An example of situation (a) is exhibited by the standard torus of revolution. An example of

(b) is given in (Gutierrez and Sotomayor 1991, 1998), for a canal surface of constant radius

(a tube) around a curve that is not bi-regular. Below will be given examples of cases (c) and

(d). This will also provide examples of case (b) for bi-regular curves. The cost of this is heavier

calculation which, nevertheless, is easy to corroborate with Computer Algebra.

The example consists in a deformation of theT = 2π -periodicplane elliptic curve

c(t) = (2 cost, sint, 0),

whose curvatureκ(t) = κ(t, 0) is κ(t) = 2/(4 − 3 cos2 t)3/2.

PROPOSITION8. Consider the three parameter family of canal surfacesSε,ρ,μ around the curve

cε(t) = (2 cost, sint, εκ̇(t)), with radial function

r (t, μ) = ρ + μ κ̇(t), κ̇(t) =
−18 cost sint

(4 − 3 cos2 t)5/2
.

There are two smooth curvesε = ε1(μ) = −μ + O1(μ
2) and ε = ε2(μ) = μ + O2(μ

2),

such that for anyρ, μ small and positive, the canal surfaceSε,ρ,μ has two hyperbolic principal
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cycles forε ∈]ε1(μ), ε2(μ)[ and has one double principal cycle along the curvesε = ε1(μ) and

ε = ε2(μ).

PROOF. Standard calculation gives:

ṡ(t, ε) = (4 sin2 t + cos2 t + (εκ̈(t))2)1/2 = (−3 cos2 t + 4)1/2 + O(ε2),

for the element of arc length ofcε.

Also, the curvature ofcε is

κ(t, ε) = κ(t, 0) + 648ε2

[
1458 cos12 t + 486 cos10 t − 4671 cos8 t

(4 − 3 cos2t)19/2

+
432 cos6 t + 4296 cos4 t − 2016 cos2 t + 16

(4 − 3 cos2t)19/2

]
+ O(ε3).

Here will be needed onlẏκ(t, 0) = κ̇(t) as given above and̈κ(t) in the integral

∫ 2π

0
ṡ(t, 0)κ̈(t)κ(t)dt =

∫ 2π

0

36(9 cos4 t − 4 cos2 t − 4)

(−3 cos2 t + 4)5
dt = −

8829

2048
π. (25)

The torsion ofcε is

τ(t, ε) = τ(t, 0) + ε
∂τ

∂ε
(t, 0) + O(ε2).

Here will only be needed that the expressions forτ(t, 0) = 0 andτ1(t) = ∂τ/∂ε(t, 0).

From direct calculations follows that

τ1(t) =
108(54 cos8t + 207 cos6t − 369 cos4t + 68 cos2t + 44)

(4 − 3 cos2t)11/2
,

C = −
∫ 2π

0
ṡ(t, 0)τ1(t)dt =

8829

2048
π.

(26)

The differential equation corresponding to (23) for the 2π -periodic canal surfaceSε,ρ,μ is

dϕ

dt
= W(t, ϕ, ε, μ) := ṡ(t, ε)

(

−τ(t, ε) −
μκ̈(t)κ(t, ε) sinϕ
√

ṡ(t)2 − μ2κ̈(t)2

)

. (27)

Denote by5(ϕ0, ε, μ) the return map for equation (27). It is given by5(ϕ0, ε, μ) =

8(2π, ϕ0, ε, μ), where8(t, ϕ0, ε, μ) is the solution of (27) such that8(0, ϕ0, ε, μ) = ϕ0. There-

fore, the 2π–periodic solutions are given by the implicit surface5(ϕ0, ε, μ) − ϕ0 = 0. Since

5(ϕ0, 0, 0) = ϕ0, the Fundamental Theorem of Calculus (Hadamard’s Formula) implies that

5(ϕ0, ε, μ) − ϕ0 = ε

∫ 1

0

∂5

∂ε
(ϕ0, uε, uμ)du + μ

∫ 1

0

∂5

∂μ
(ϕ0, uε, uμ)du. (28)
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Write
∂5

∂ε
(ϕ0, uε, uμ) =

∂5

∂ε
(ϕ0, 0, 0) + P(ϕ0, u, ε, μ)ε + Q(ϕ0, u, ε, μ)μ, (29)

∂5

∂μ
(ϕ0, uε, uμ) =

∂5

∂μ
(ϕ0, 0, 0) + R(ϕ0, u, ε, μ)ε + S(ϕ0, u, ε, μ)μ. (30)

The expressions for the derivatives of the solutions of the differential equations with respect

to parameters applied to (27), which in the present case, following classical differential equations

results, are the integrals of the non-homogeneous linear – calledvariational– equations. According

to (Sotomayor 1979, page 42), (Chicone 1999, page 337) or (Coddington and Levinson 1955, page

30), where these classical results are proved, these equations and their initial conditions are as

follows:

8̇ε(t, ϕ0, 0, 0) = Wϕ(t, ϕ0, 0, 0)8ε(t, ϕ0, 0, 0) + Wε(t, ϕ0, 0, 0)

= −ṡ(t, 0)τ1(t), 8ε(0, ϕ0, 0, 0) = 0,

8̇μ(t, ϕ0, 0, 0) = Wϕ(t, ϕ0, 0, 0)8μ(t, ϕ0, 0, 0) + Wμ(t, ϕ0, 0, 0)

= −ṡ(t, 0)κ̈(t)κ(t) sinϕ0, 8μ(0, ϕ0, 0, 0) = 0.

Integrating these equations, taking into account equations (25) and (26), leads to

∂5

∂ε
(ϕ0, 0, 0) = 8ε(2π, ϕ0, 0, 0) = −

∫ 2π

0
τ1(v)dv = C, (31)

∂5

∂μ
(ϕ0, 0, 0) = 8μ(2π, ϕ0, 0, 0) = C sinϕ0. (32)

Writing ε = νμ and substituting into (28), taking into consideration the expressions (31) and (32),

we obtain

5(ϕ0, ε, μ) − ϕ0 = Cμ(ν + sinϕ0 + νZ(ν, μ, ϕ0)).

Therefore, the surface of 2π -periodic orbits, in the(ν, μ, ϕ)-space consists of a planeμ = 0

crossing transversally a regular sheetP at the sinusoidal curve of equationν + sinϕ0 = 0. The

critical values of the projection on the(ν, μ)-plane of the surfaceP, coming from double (semi-

stable) periodic solutions, thefold curve, must cross transversally theν-axis at points correspond-

ing to ν = ±1, which are the critical values of the projection of the sinusoidal curve. Going back

to the coordinates(ε, μ) gives the conclusion formulated in the proposition. �

REMARK 9 [Arnold Tongues]. Due to equations(31) and(27), for ρ small, the return map on

the tubeSε,ρ,0 is a rotation with itsrotation numberchanging monotonically withε (taken small).

Therefore, it takes irrational values and the tube presents case (b). It also takes rational values,

q/p, which are the vertices of theArnold Tongues(in the (ε, μ)-plane), corresponding to canal

surfaces with periodic closed principal lines windingp-times around the parallels (t-circles) and

q-times around the meridians (ϕ-circles) of the torus. The sector with vertex at(0, 0) established

in Proposition 8 is the principal tongue, with rotation number 0. See (Chicone 1999, page 372).
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RESUMO

Neste trabalho são determinadas as curvaturas principais e as linhas de curvatura principal das superfícies

canal que são as envoltórias de famílias de esferas com raios variáveis e centros deslocando-se ao longo

de curvas fechadas regulares emR3. A partir de uma conexão com as equações de Riccati mostra-se que

estas superfícies têm no máximo duas curvas principais periódicas isoladas. São dados exemplos com duas

curvas principais periódicas simples e com uma dupla.

Palavras-chave:Equação de Riccati, linha de curvatura principal, superfície canal.
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