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ABSTRACT
Inthis paper are determined the principal curvatures and principal curvature lioasarsurfaces
which are the envelopes of families of spheres with variable radius and centers moving along a
closed regular curve ifk3. By means of a connection of the differential equations for these
curvature lines and real Riccati equations, it is established that canal surfaces have at most two

isolated periodic principal lines. Examples of canal surfaces with two simple and one double
periodic principal lines are given.
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1. INTRODUCTION

The study of principal curvature lines, along which a surfac®¥nbends extremely and their
umbilic singularities was founded by Monge, Dupin and Darboux. See (Gray 1998) and (Soto-
mayor 2003) for references. For the basic facts about principal curvature lines on surfaces the
reader is addressed to (do Carmo 1976), (Spivak 1979) and (Struik 1988).

As a consequence of the work of Monge and Dupin the lines of curvature on quadrics and
toroidal — Dupin Cyclides — surfaces were determined. See (Fischer 1986, Chap. 3), for an outline
of the theory and for a collection of remarkable illustrations.
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In (Gutierrez and Sotomayor 1982, 1991, 1998) ideas originating in the Qualitative Theory of
Differential Equations and Dynamical Systems, such as Structural Stability and Genericity, were
incorporated into the subject; see also (Garcia and Sotomayor 2002). Historical comments, going
up to some recent developments on principal curvature lines, can be found in (Sotomayor 2003).

The global dynamic complexity of principal curvature in simple smooth surfaces was illus-
trated in (Gutierrez and Sotomayor 1991, 1998). This includes examples of recurrent (dense)
principal curvature lines on spheroidal surfaces, which are small perturbations of ellipsoids of
revolution and canal surfaces with constant radial functions. The methods established in these
works show how to make hyperbolic a principal cycle by means of a small smooth perturbation.
This leads to smooth toroidal immersions with arbitrary large number of principal isolated princi-
pal cycles.

In this paper is improved and reproved a result that goes back to Vessiot, establishing that
principal curvature lines on canal surfaces immerse®3r{see Section 2, Definition 2 verify a
Riccati equation (see Section 3, Remark 7). In fact, (Vessiot 1919) is the first source known by
the authors for the connection between Riccati equations and principal curvature lines on canal
surfaces. The improvement consists in the formulation of precise conditions for canal surfaces
be regular immersions and also to have umbilic points (see Section 3, Theorem 4 and Remark 5).
A consequence of the Riccati structure for principal curvature lines on canal immersed surfaces
implies that the maximal number of isolated periodic principal linesis 2. Examples of canal surfaces
with two (simple i.e. hyperbolic) and one (double i.e. semi-stable) principal periodic lines, absent
in (Vessiot 1919) and also in later references, are given in this paper (see Section 4, Proposition 8).

2. REGULAR CANAL SURFACES

Consider the spadk® endowed with the Euclidean inner product > and norm| | =<, >1/2
as well as with a canonical orientation. The wedge produaf vectors is defined relative to this
orientation.
Let c be a smooth regular closed curve immerselinparametrized by arc lengghe [0, L].
This means that
c(s) =t(9), It(s)| =1, c(L) =c(0) . 1)

Assume also that the curvebsregular. That is:
Kk(s) = |t'(s)| > 0. (2)

Along c is defined its movind-renet frame{t, n, b}. Following (Spivak 1979) and (Struik
1988), this frame ipositive orthonormaland verifiedrenet equatiors

t'(s) = k(S)N(S), N'(s) = —k (S)t(S) + t(S)b(s), b'(S) = —T(S)N(9). (3)
Equations (1) to (3) define thenit tangentt, principal normal n, curvature «, binormal

b =t A n, andtorsion ¢, of the immersed curve.
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PROPOSITIONL. Letr(s) > 0andd(s) € 10, =[ be smooth functions of peridd The mapping
o T? =St x ST — R3, defined orR? moduloL x 27 by
a(S, ) = C(S) +r(S) cosO(S)t(S) + r (s) sind(s)[cosy n(S) + sing b(s)], 4)
is tangent to the sphere of centds) and radiusr (s) if and only if
cosé(s) = —r'(s). (5)

Assuming5b), withr’(s) < 1, « is an immersion provided

1—r'(9)2—=r(S)r’(s)

k(S) < (6)
r¢s)y/1—r/(s)?
PrRoOF Calculations using equations (3) give
dar 1 2 3p
g = T = at(s) + aZn(s) + ab(s),

where

al =1+r1'cosd —ré’sind — r sind cosy,

a2 =r’sinf cosp + o’ cosh cosg — I t Siné sing + rk cosh, )

a =r'sing sing 4 ré’ cosd sing + r t sind cosgp.

Here, of course,, 9, T, k are functions o6. Also,

o, = 2—2 =r(s) sinf(s)[— sing n(s) + cospb(s)].

The unit normal vector pointing inward the sphepe— c(s)| = r(s) with centerc(s) and
radiusr (s) at p = a(s, ) is N, = (c(s) — a(s, ¢))/r (s), which is given by:

N, = — cosf(s) t(s) — sind(s)[cosy n(s) + Sing b(s)]. (8)

Clearly (a,, Ny) = 0. Calculation givegas, N,) = —(cost +r’). Therefore, the condition of
tangency ats, ¢) of « to the spherép — c(s)| =r(s) is cost(s) = —r'(S).
Additional calculation gives:

F(S, ¢) = (as, &) = Tr2sinf @ + k(s)r'rsind sing,

9
G(s. ¢) = (o, ) =r2siP O =r31—r'%). ®)

Atthis pointitis appropriate to write the mappiagnd its derivatives involving only functions
of r (s) rather than o (s), replacing the expressions @s) = —r’(s), sinf(s) = (1 — (r')?)/?

in equations (4) and (7).
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The expression foE is as follows:
E(s, @) = (as, as) = k2r2(L—r1"*)co ¢
+ 2«r [rr/ —@-r?H/1- r’2] CoSp

+ 2ctrr’y1—r2sing + QL —r'%+2rr"
2

* (1—r'?)

(10)
|:f2(1 _ r/2)2 + r/ZK_Z(l _ r/z) + r//Z] )

Additional calculation and simplification using equations (9), with the tangency condition (5)
imposed, and (10) gives
2

EG— F2=r(s)* [\/1 “1()2(S) cosg +17(S) — (1 —r/(8)?)/r (s)] (11)

This expression, which is equal [@w/3s A da/d¢|?, vanishes if and only if

/()2 "
cosp = 1—-r'(s)c—r(s)yr’(s) (12)

VI=1(S)2k(S)r (s)
Condition (6) states that the absolute value of the right-hand member of (12) is larger than 1,
which by (11) implies the linear independencexgfande,, at every poings, ¢), namely thatr is
an immersion. O

DEFINITION 2. A mapping such ag, of T? into R3, satisfying conditiong5) and (6) will be
called an immersed canal surface with center alarig) and radial functionr (s). Whenr is
constant, it is called an immersed tube. Due to the tangency condBiorhe immersed canal
surfacea is the envelope of the family of spheres of radi¢® whose centers range along the
curvec(s).

REMARK 3. Proposition 1 is partially found in (Messiot 1919). There, however, the regular-
ity condition (6) was overlooked. Other references for canal surfaces are (Blaschke 1929) and
(Gray 1998).

3. PRINCIPAL LINES ON REGULAR CANAL SURFACES

In this work the positive orientation on the torli$ = S* x St is defined by the ordered tangent
frame{d/ds, d/d¢}. Therefore theositive unit normator Gaussian mapN, of the immersion
a is defined bylda/0s A 0 /0@ |N, = da/dS A da/d¢. By the tangency condition (5) this unit
vector is given by (8), which can be written as follows:

Ny, =r'(s)t(s) — (1 — (r'(s)»)Y?[cosp n(s) + sing b(s)]. (13)

It points inwards the toroidal surface definedday
Below will be studied the global behavior of the principal curvature linas.of
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THEOREM 4. Leta : S* x St — R2 be a smooth immersion expressed(8y. Assume the
regularity conditiong5) and (6) as in Propositionl and also that
1—r/(s)2—=2r(S)r’(s)

2r(s)y/1—r/(s)?

The maximal principal curvature lines are the circles tangendtég. The maximal principal
curvature is

K(s) < | (14)

ko(s) = 1/r(s).

The minimal principal curvature lines are the curves tangent to

9 ' ng) 2
V(s ¢) = < <r(s) + 1 r’(s)2)1/2K(S) Slngo) b0 (15)

The expression
r(s)(L—r'(9)*)Y2c(s) cosp +r(s)r’(s) — (L —r'(s)? (16)

is negative, and the minimal principal curvature is given by

k(S)(L—r'(8)®)Y2cosp + 1" (s)
r(s)(L—r'(s)?)Y2k(s)cosp +r(s)r’(s) — (1 —r'(s)?)’

There are no umbilic points far: ki(s, ¢) < ka(S).

(17)

kl (S’ gD) =

PrROOF Direct calculation gives:

O N, o
ko(s)— = 0.
39 + ko )B(p
By Rodrigues equatignsee (do Carmo 1976) and (Struik 1988), the cirdes constant are
principal curvature lines af, with principal curvaturdk,(s).
Denoting the metric of by Eds’ + 2Fdsdyp + Gdg?, it follows that the direction orthogonal

to d/0¢, giving the other principal direction, is defined by the vector field

9 9
G— —F—,

as ap
which by equation (9) is collinear witki (s, ¢) in (15).
Differentiation of (13) using Frenet equations (3) gives

dN,
ds

— [r”+/<(1—r’z)l/z)cosw]t(s)
+ [(r’r” cosg + t(1 —r'?) sing +r'k(1 —1r'»Y2) /(1 — r’z)l/z] n(s) (18)
+ [(—r(l —r'HY2cosp +r't" sing) /(1 — r/2)1/2] b(s),

and

aaljoa =+v/1-r'(9)? [sing n(s) — cosp b(s)] .
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Substitution, taking into account equation (15), leads to

aNa(S ) = 0Ny . r’ sin 0N, (19)
ov P T s TN T = N e
Similarly for «, calculation of its derivativéa /dV, gives
a—O[(s ) = A(s )[t(s)+r/(—s)(co n(s) + sin b(s))]
O A T o

A, v) = 1—r1'(5% = r(S)Ir'(s) — k(S)r(s) cosp(l —r'(s)>)Y?

Further calculation using equations (18), (19), (20) and the expressida(®i) given in
equation (17), follows that

o N, o
S, ki(s, )—(s, ¢) = 0.
av( @) + ka( (p)av( ®)

This is Rodrigues equation, which establishes that, in kad§ a principal curvature.
From (6) it follows that (16), the denominator kf, is always negative. This implies that
ki < 1/r(s) = ky. Otherwisek; > k;, and, after direct manipulation, by (14) this would lead to

(21)

’1— r'(s)? — 2r(s)r’(s) 1
2 (S)r (s)y/1 — /()2 '

This prevents the existence of umbilic points and justifies the namaggnal for subscript 2, and
minimal for subscript 1, given in the statement. O

‘COS(p‘ >

REMARK 5 [Umbilic Points in Canal Immersions]. The calculatiorkgfand the condition for the
appearance of umbilic points for regular canal surfaces has not been considered in previous works
on the subject. The discussion leading to (21) leads to the following equation for umbilic points:

1—r/(s)2—=2r(S)r’(s

CoSp = )
> 2 (S)r (s)y/1 —r'(s)?

It gives a non-empty curve if condition (14) is not imposed. This curve however consists of
removable singularities for the principal line fields which have smooth extensions to the whole
torus, given byp/d¢ andV. Under generic conditions on the radial functiofs), and curvature,

k (s), functions it will be expected to appear curves of umbilic points as those studied in Proposi-
tion 2 of (Garcia and Sotomayor 2005).

REMARK 6 [Minimal Principal Foliation in terms of Differential Forms]. Written as a differential
form, the vector field (15) becomes:

r'es)

a)1=dg0+ |:T(S)+W

K (S) singo] ds. (22)
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When another parameteiis used, sayl -periodic, related with the arc length of ¢ in the form
s = s(t), with $ = (¢, ¢)¥/2, the form in (22) can be written as:

r(t)
(8(H)2 —r (1)?)1/2

wy =do + [t(t) + k(1) Sin<p:| S(t)dt. (23)

REMARK 7 [Vessiot]. By the change of coordinates t@y2) = z, equation (22) is transformed
into theL-periodic Riccati equation

/ 1 2
Z = —Er(s)(l + z°) + cotf(s)x (S)zZ (24)

Therefore, the solutions of equation (15) can be obtained from the solutions of equation (22)
contained iN0, T] x [—m, ].

4. CANAL SURFACES WITH ONE AND TWO PRINCIPAL CYCLES

In this section is carried out a discussion on the qualitative properties of equation (15), or of its
equivalent form (23), absent in (Vessiot 1919).

Being equivalent to a periodic Riccati equation, this equation Hdéebius transformation
asreturn map(see Hille 1976) and therefore can have either:

(a) all its solutions periodic,
(b) all its solutions dense,
(c) two hyperbolic (simple) periodic solutions or

(d) one semi-hyperbolic (double or semi-stable) periodic solution.

An example of situation (a) is exhibited by the standard torus of revolution. An example of
(b) is given in (Gutierrez and Sotomayor 1991, 1998), for a canal surface of constant radius
(atubg around a curve that is not bi-regular. Below will be given examples of cases (c) and
(d). This will also provide examples of case (b) for bi-regular curves. The cost of this is heavier
calculation which, nevertheless, is easy to corroborate with Computer Algebra.

The example consists in a deformation of the= 2z -periodicplane elliptic curve

c(t) = (2cost, sint, 0),

whose curvature (t) = «(t, 0) is« (t) = 2/(4 — 3cogt)%/?,
PropPoOsITION8. Consider the three parameter family of canal surfags, around the curve
c.(t) = (2cost, sint, gk (1)), with radial function

—18co4 sint

rit,w)=p+pkl), <) = @4—3cog)s2’

There are two smooth curves = g1(n) = —u + O1(n?) ande = ex(n) = p + Ox(u?),
such that for any, © small and positive, the canal surfa& , , has two hyperbolic principal
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cycles fore €le1(w), e2()[ and has one double principal cycle along the curyes ¢;(x) and
e = &a(1).

PrROOF Standard calculation gives:
8(t, &) = (4sirft + coSt + (i (1))>)Y? = (—=3cogt + 42 + O(e?),

for the element of arc length af.
Also, the curvature of, is

1458 co¥?t + 486 codt — 4671 co8t
(4 — 3 cost)192

K(t,e) = Ka,®-+64&2[

432 co8t + 4296 coét — 2016 codt + 16
(4 — 3 cost)192

:| + O(ed).

Here will be needed only(t, 0) = «(t) as given above and(t) in the integral

7o o _ [*36(9cost—4co$t—4) 8829
/0 S(t, 0)i () (H)dt = /0 (3co2t 1 45 dt = —mn. (25)

The torsion ofc, is
d
t(t,e) =t(t,0) + sa—Z(t, 0) + 0(82).

Here will only be needed that the expressionstfr 0) = 0 andz,(t) = dt/de(t, 0).
From direct calculations follows that

108(54 cost + 207 codt — 369 coét + 68 cost + 44)

u® = (4 — 3codt)ll2
(26)
o 8829
C = —/c; S(t,O)Tl(t)dt = mf[

The differential equation corresponding to (23) for the-@eriodic canal surfacg, , , is

de B e 3 B uik Mk (t, e) sing
a W(t, ¢, e, u) =5, ¢) ( T(t, 8) SO = ,uzic'(t)2> . 27)

Denote byII(go, €, 1) the return map for equation (27). It is given BY(go, &, n) =
®(2r, o, €, 1), Whered (t, ¢g, &, 1) is the solution of (27) such thadt(0, ¢q, €, 1) = ¢o. There-
fore, the Zr—periodic solutions are given by the implicit surfabégo, ¢, ) — ¢o = 0. Since
IT(¢o, 0, 0) = ¢g, the Fundamental Theorem of Calculus (Hadamard’s Formula) implies that

Lan tan
H(QDO, g, /’L) —¢Yo=¢ 8_(()009 ue, U/_L)du + 1% _((p07 ue, U/_L)du (28)
o 9de 0o ou

An Acad Bras Cienf2006)78 (3)



LINES OF CURVATURE ON CANAL SURFACES 413

Write

aIl aTl
5(900, ue, UM) == ¥(¢07 09 O) + P(@Ov u, g, M)g + Q((p01 u, e, M)ﬂ: (29)

ol oTl
W(%’ ue, Up) = @(wo, 0,0) + R(go, u, &, e + S(po, U, &, () 1. (30)

The expressions for the derivatives of the solutions of the differential equations with respect
to parameters applied to (27), which in the present case, following classical differential equations
results, are the integrals of the non-homogeneous linear — ealiedional— equations. According
to (Sotomayor 1979, page 42), (Chicone 1999, page 337) or (Coddington and Levinson 1955, page
30), where these classical results are proved, these equations and their initial conditions are as
follows:

P, (t, 90, 0,0) = W,(t, 9o, 0, )P, (t, 9o, 0, 0) + W, (t, g0, 0, 0)
= —$(t, 0)71(t), @.(0,¢0.0,0) =0,

@, (t, 90.0,0) = W, (t,90,0,0)P,(t, g0, 0,0) + W,(t, ¢, 0, 0)
= —§(t, 0)i (D (t) singy, @,.(0, go, 0,0) = 0.

Integrating these equations, taking into account equations (25) and (26), leads to

2

oIl
8—(<po, 0,0) = ®,(27, ¢9,0,0) = —/ 71(v)dv = C, (31)
) 0

9Tl .
9. (¢0,0,0) = @, (27, @0, 0,0) = C singyp. (32)
w

Writing e = v and substituting into (28), taking into consideration the expressions (31) and (32),
we obtain

(go, &, ) — 9o = Cu(v + singo + vZ(v, i, ¢o))-
Therefore, the surface ofri2periodic orbits, in thev, i, p)-space consists of a plane = 0
crossing transversally a regular sh@edt the sinusoidal curve of equationt+ singg = 0. The
critical values of the projection on the, «)-plane of the surfac®, coming from double (semi-
stable) periodic solutions, tHeld curve, must cross transversally thexis at points correspond-
ing tov = +1, which are the critical values of the projection of the sinusoidal curve. Going back
to the coordinateée, 1) gives the conclusion formulated in the proposition. O

REMARK 9 [Arnold Tongues]. Due to equatiori81) and (27), for p small, the return map on

the tubeS , o is a rotation with itgotation numberchanging monotonically with (taken small).
Therefore, it takes irrational values and the tube presents case (b). It also takes rational values,
g/ p, which are the vertices of th&rnold Tonguegin the (e, ©)-plane), corresponding to canal
surfaces with periodic closed principal lines windipgimes around the parallels-€ircles) and
g-times around the meridiang-circles) of the torus. The sector with vertex(@f 0) established

in Proposition 8 is the principal tongue, with rotation number 0. See (Chicone 1999, page 372).
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RESUMO

Neste trabalho sdo determinadas as curvaturas principais e as linhas de curvatura principal das superficie
canal que sdo as envoltérias de familias de esferas com raios variaveis e centros deslocando-se ao long
de curvas fechadas regulares Bfh A partir de uma conexdo com as equacdes de Riccati mostra-se que
estas superficies ttm no maximo duas curvas principais periddicas isoladas. Sao dados exemplos com dua
curvas principais periodicas simples e com uma dupla.

Palavras-chave:Equacao de Riccati, linha de curvatura principal, superficie canal.
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